Uniprocessor Feasibility of Sporadic Tasks Remains coNP-complete Under Bounded Utilization

Pontus Ekberg & Wang Yi

Uppsala University

RTSS, December 2015
The General Setting

Instances

Task set T of sporadic (or synchronous periodic) tasks with constrained deadlines.
The General Setting

Instances

Task set T of sporadic (or synchronous periodic) tasks with constrained deadlines.

Question

Is T feasible on a preemptive uniprocessor?
An Algorithm for Feasibility [Baruah et al., 1990]

\[\ell(P(T)) = \text{lcm}(f_{p_j}(e; d; p)^2 T_g) \]

Feasibility

- Exp. time algorithm exists
- In coNP
- Weakly coNP-hard [Eisenbrand & Rothvoß, SODA'10]
- Conjectured pseudo-poly. time
- Strongly coNP-hard [ECRTS'15]

Feasibility

- Pseudo-poly. time algorithm if \(c < 1 \)
- In coNP
- Conjectured poly. time for all \(c < 1 \)
- Weakly coNP-hard for all \(c > 0 \)

Pontus Ekberg

Feasibility is coNP-complete Under Bounded Utilization
An Algorithm for Feasibility [Baruah et al., 1990]

Feasibility is coNP-complete Under Bounded Utilization
An Algorithm for Feasibility [Baruah et al., 1990]

Feasibility

- Exp. time algorithm exists

\[\ell \]
\[\mathcal{P}(T) = \text{lcm}\{p \mid (e, d, p) \in T\} \]
An Algorithm for Feasibility [Baruah et al., 1990]

\[\ell_P(T) = \text{lcm} = \text{lcm} \{ p \mid (e, d, p) \in T \} \]

Feasibility

- Exp. time algorithm exists
- In coNP
An Algorithm for Feasibility [Baruah et al., 1990]

Feasibility

- Exp. time algorithm exists
- In coNP

\[\ell \]

\[\mathcal{P}(T) = \text{lcm}\{p \mid (e, d, p) \in T\} \]
An Algorithm for Feasibility [Baruah et al., 1990]

\[
\ell \leq \text{lcm} \{ p \mid (e, d, p) \in T \}
\]

Feasibility

- Exp. time algorithm exists
- In coNP

Feasibility is coNP-complete Under Bounded Utilization
An Algorithm for Feasibility [Barua et al., 1990]

Feasibility

- Exp. time algorithm exists
- In coNP

\[\ell = \text{lcm}\{p \mid (e, d, p) \in T\} \]
An Algorithm for Feasibility [Baruah et al., 1990]

Feasibility

- Exp. time algorithm exists
- In coNP

Feasibility is coNP-complete Under Bounded Utilization
An Algorithm for Feasibility [Baruah et al., 1990]

Feasibility

- Exp. time algorithm exists
- In coNP

\[\ell \]

\[\mathcal{P}(T) = \text{lcm}\{p \mid (e, d, p) \in T\} \]
An Algorithm for Feasibility [Baruah et al., 1990]

Feasibility

- Exp. time algorithm exists
- In coNP

\[\ell = \text{lcm} \{ p \mid (e, d, p) \in T \} \]
An Algorithm for Feasibility [Baruah et al., 1990]

Feasibility

- Exp. time algorithm exists
- In coNP

Expanding on the feasibility problem:

\[
\ell \overset{\text{p.p.}}{=} \text{lcm} \{ p \mid (e, d, p) \in T \}
\]

p.p. if \(U(T) \leq c < 1 \)
An Algorithm for Feasibility [Baruah et al., 1990]

Feasibility
- Exp. time algorithm exists
- In coNP

Feasibility (U(T) ≤ c)
- Pseudo-poly. time algorithm if c < 1
- In coNP

c-Feasibility

\[\ell = \text{lcm}\{p \mid (e, d, p) \in T\} \]
An Algorithm for Feasibility [Baruah et al., 1990]

Feasibility
- Exp. time algorithm exists
- In coNP
- Weakly coNP-hard
 [Eisenbrand & Rothvoss, SODA’10]

C-Feasibility \((U(T) \leq c)\)
- Pseudo-poly. time algorithm if \(c < 1\)
- In coNP

\[
\ell = \text{lcm}\{p \mid (e, d, p) \in T\}
\]
An Algorithm for Feasibility [Baruah et al., 1990]

Feasibility
- Exp. time algorithm exists
- In coNP
- Weakly coNP-hard
 [Eisenbrand & Rothvoß, SODA’10]
- Conjectured pseudo-poly. time

c-Feasibility \((U(T) \leq c)\)
- Pseudo-poly. time algorithm if \(c < 1\)
- In coNP

Feasibility
- Pseudopoly. time algorithm if \(c < 1\)
- In coNP

\[\ell = \text{lcm}\{p \mid (e, d, p) \in T\}\]
An Algorithm for Feasibility [Baruah et al., 1990]

Feasibility
- Exp. time algorithm exists
- In coNP
- Weakly coNP-hard
 [Eisenbrand & Rothvoß, SODA’10]
- Conjectured pseudo-poly. time

c-Feasibility \((U(T) \leq c)\)
- Pseudo-poly. time algorithm if \(c < 1\)
- In coNP
- Conjectured poly. time for all \(c < 1\)
An Algorithm for Feasibility [Baruah et al., 1990]

Feasibility

- Exp. time algorithm exists
- In coNP
- Weakly coNP-hard [Eisenbrand & Rothvoß, SODA’10]
- Conjectured pseudo-poly. time
- Strongly coNP-hard [ECRTS’15]

c-Feasibility \((\text{U}(T) \leq c) \)

- Pseudo-poly. time algorithm if \(c < 1 \)
- In coNP
- Conjectured poly. time for all \(c < 1 \)

\[\ell = \text{lcm}\{p \mid (e, d, p) \in T\} \]
An Algorithm for Feasibility [Barua et al., 1990]

\[
\ell(P(T)) = \text{lcm}(f_{p_j}(e, d, p))^{2T_g}
\]

\[\text{p.p. if } U(T) \leq c < 1\]

Feasibility

- Exp. time algorithm exists
- In coNP
- Weakly coNP-hard [Eisenbrand & Rothvoß, SODA'10]
- Conjectured pseudo-poly. time
- Strongly coNP-hard [ECRTS'15]

\[c\text{-Feasibility } (U(T) \leq c)\]

- Pseudo-poly. time algorithm if \(c < 1\)
- In coNP
- Conjectured poly. time for all \(c < 1\)
An Algorithm for Feasibility [Baruah et al., 1990]

\[P(T) = \text{lcm} \left(\prod_{j=1}^{f} \left(\sum_{k=1}^{p} \left(e_k; d_k; p_k \right) \right) \right) \]

0 ≤ \(U(T) \) ≤ 1

Feasibility

- Exp. time algorithm exists
- \(\text{coNP} \)
- Weakly \(\text{coNP} \)-hard
 - [Eisenbrand & Rothvoß, SODA'10]
- Conjectured pseudo-poly. time
- Strongly \(\text{coNP} \)-hard [ECRTS'15]

\[c \text{-Feasibility} \ (U(T) \leq c) \]

- Pseudo-poly. time algorithm if \(c < 1 \)
- In \(\text{coNP} \)
- Conjectured poly. time for all \(c < 1 \)
An Algorithm for Feasibility [Baruah et al., 1990]

\[\ell(T) = \text{gcd}(p_i(e; d); p_j(e; d))^2 \]

\[U(T) \leq c \]

\[c \text{-Feasibility} \]

- Pseudo-poly. time algorithm if \(c < 1 \)
- In coNP
- Conjectured poly. time for all \(c < 1 \)
An Algorithm for Feasibility [Baruah et al., 1990]

\[P(T) = \text{lcm} \prod p_j(e, d, p)^2T_g \]

\(U(T) \) if \(U(T) \leq c < 1 \)

\(c \)-Feasibility \((U(T) \leq c) \)

- Pseudo-poly. time algorithm if \(c < 1 \)
- In coNP
- Conjectured poly. time for all \(c < 1 \)
An Algorithm for Feasibility [Baruah et al., 1990]

\[P(T) = \text{lcm}(p_j(e; d; p)) \]

\[U(T) \leq c < 1 \]

c-Feasibility \ (U(T) \leq c)

- Pseudo-poly. time algorithm if \(c < 1 \)
- In coNP
- Conjectured poly. time for all \(c < 1 \)
An Algorithm for Feasibility [Baruah et al., 1990]

\[\ell(P(T)) = \text{lcm}(f(p_j(e; d; p)))^2 T_g \]

\[\text{p.p. if } U(T) \leq c < 1 \]

Feasibility

- Exp. time algorithm exists
- In coNP
- Weakly coNP-hard [Eisenbrand & Rothvoß, SODA’10]
- Conjectured pseudo-poly. time
- Strongly coNP-hard [ECRTS’15]

c-Feasibility \((U(T) \leq c)\)

- Pseudo-poly. time algorithm if \(c < 1\)
- In coNP
- Conjectured poly. time for all \(c < 1\)
An Algorithm for Feasibility [Baruah et al., 1990]

\[P(T) = \text{lcm}(\text{f}_p(j(e,d,p))^{2T}) \]

\[U(T) \leq c < 1 \]

\[\ell \]

c-Feasibility \((U(T) \leq c)\)

- Pseudo-poly. time algorithm if \(c < 1 \)
- In \(\text{coNP} \)
- Conjectured poly. time for all \(c < 1 \)
- Weakly \(\text{coNP} \)-hard for all \(c > 0 \)
Proving Hardness for c-Feasibility
Proving Hardness for c-Feasibility

Feasibility is coNP-complete Under Bounded Utilization
Proving Hardness for c-Feasibility

Feasibility is coNP-complete Under Bounded Utilization
Proving Hardness for c-Feasibility

Feasibility is coNP-complete Under Bounded Utilization
Proving Hardness for \(c \)-Feasibility

Feasibility is coNP-complete Under Bounded Utilization
Proving Hardness for \(c \)-Feasibility

1. \(T \) is feasible \(\iff \) \(T_c \) is feasible
2. \(U(T_c) \leq c \)
3. \(T_c \) is computed in poly. time
Feasibility $\propto c$-Feasibility, Step 1

Feasibility preserved
Utilization $\leq c$
Computed in poly. time

Feasibility preserved
Utilization $\leq c$
Compute in poly. time

Pontus Ekberg
Feasibility $\propto c$-Feasibility, Step 1
Feasibility $\propto c$-Feasibility, Step 1

Feasibility preserved

Utilization $\leq c$

Computed in poly. time

Feasibility preserved

3

Pontus Ekberg

Feasibility is coNP-complete Under Bounded Utilization
Feasibility $\propto c$-Feasibility, Step 1
Feasibility $\propto c$-Feasibility, Step 1

Feasibility preserved

Utilization $\leq c$

Computed in poly. time

Feasibility preserved

Pontus Ekberg

Feasibility is coNP-complete Under Bounded Utilization
Feasibility $\propto c$-Feasibility, Step 1

$\mathcal{P}(T) \leq c \mathcal{P}(T) + \mathcal{P}(T)$

Feasibility preserved

Utilization $\leq c$

Computed in poly. time

Feasibility preserved

Pontus Ekberg

Feasibility is coNP-complete Under Bounded Utilization
Feasibility ∝ c-Feasibility, Step 1

\[\mathcal{P}(T) + \mathcal{P}(T) + \mathcal{P}(T) = \text{Feasibility preserved} \]

Utilization \(\leq c \) Computed in poly. time

Feasibility is coNP-complete Under Bounded Utilization

Pontus Ekberg
Feasibility $\propto c$-Feasibility, Step 1

\[
\ell \begin{array}{c}
\mathcal{P}(T) \\
2\mathcal{P}(T) \\
3\mathcal{P}(T)
\end{array}
\]

\[
P(T) + P(T) + P(T) = \text{Feasibility preserved}
\]

Utilization $\leq c$ Computed in poly. time

Feasibility is coNP-complete Under Bounded Utilization
Feasibility $\propto c$-Feasibility, Step 1

Feasibility preserved

Utilization $\leq c$

Computed in poly. time
Feasibility $\propto c$-Feasibility, Step 1

Feasibility preserved

Utilization $\leq c$

Computed in poly. time

Feasibility is coNP-complete Under Bounded Utilization
Feasibility \(\propto c\text{-}Feasibility, \text{Step 1} \)

\[\begin{align*}
\text{Feasibility preserved} & \quad \checkmark \\
\text{Utilization} \leq c & \quad \times \\
\text{Computed in poly. time} &
\end{align*} \]
Feasibility $\propto c$-Feasibility, Step 1

- Feasibility preserved
- Utilization $\leq c$
- Computed in poly. time

Feasibility is coNP-complete Under Bounded Utilization
Feasibility $\propto c$-Feasibility, Step 2

Feasibility preserved

Utilization $\leq c$

Computed in poly. time

$\mathcal{P}(T)$ $2\mathcal{P}(T)$ $3\mathcal{P}(T)$

Pontus Ekberg
Feasibility $\propto c$-Feasibility, Step 2

Feasibility preserved
Utilization $\leq c$
Computed in poly. time
Feasibility $\propto c$-Feasibility, Step 2

Feasibility preserved

Utilization $\leq c$

Computed in poly. time
Feasibility $\propto c$-Feasibility, Step 2

Feasibility preserved

Utilization $\leq c$

Computed in poly. time
Feasibility $\propto c$-Feasibility, Step 2

Feasibility preserved

Utilization $\leq c$

Computed in poly. time

Feasibility is coNP-complete Under Bounded Utilization
Feasibility $\propto c$-Feasibility, Step 2

Feasibility preserved \(\times\)

Utilization $\leq c$ \(\checkmark\)

Computed in poly. time \(\checkmark\)
Feasibility $\propto c$-Feasibility, Step 3

\[
P(T) \quad 2P(T) \quad 3P(T) \quad \ell
\]

Feasibility preserved

Utilization $\leq c$

Computed in poly. time

Pontus Ekberg
Feasibility \propto c-Feasibility, Step 3

Feasibility preserved

Utilization $\leq c$

Computed in poly. time
Feasibility $\propto c$-Feasibility, Step 3

Feasibility preserved

Utilization $\leq c$

Computed in poly. time
Feasibility \(\propto c\)-Feasibility, Step 3

Feasibility preserved

Utilization \(\leq c \)

Computed in poly. time

\[
P(T) \quad 2P(T) \quad 3P(T)
\]

\[
\ell
\]
Feasibility $\propto c$-Feasibility, Step 3

Feasibility preserved

Utilization $\leq c$

Computed in poly. time

Feasibility is coNP-complete Under Bounded Utilization
Feasibility $\propto c$-Feasibility, Step 3

Feasibility preserved

Utilization $\leq c$

Computed in poly. time

Pontus Ekberg Feasibility is coNP-complete Under Bounded Utilization
Feasibility $\propto c$-Feasibility, Step 3

Feasibility preserved

Utilization $\leq c$

Computed in poly. time

Pontus Ekberg
Feasibility is coNP-complete Under Bounded Utilization
Feasibility \propto c-Feasibility, Step 3

Feasibility preserved

Utilization $\leq c$

Computed in poly. time

$P(T) \leq 2P(T)\leq 3P(T)$
Feasibility \(\propto c\text{-Feasibility}, \text{Step 3}\)

Feasibility preserved

Utilization \(\leq c\)

Computed in poly. time

\[P(T) \quad 2P(T) \quad 3P(T) \quad \ell \]
Feasibility $\propto c$-Feasibility, Step 3

Feasibility preserved

Utilization $\leq c$

Computed in poly. time
Feasibility $\propto c$-Feasibility, Step 3

Feasibility preserved

Utilization $\leq c$

Computed in poly. time
Feasibility $\propto c$-Feasibility, Step 3

Feasibility preserved

Utilization $\leq c$

Computed in poly. time
Feasibility $\propto c$-Feasibility, Step 3

Feasibility preserved

Utilization $\leq c$

Computed in poly. time

Feasibility is coNP-complete Under Bounded Utilization
Feasibility $\propto c$-Feasibility, Step 3

Feasibility preserved

Utilization $\leq c$

Computed in poly. time

$p(T) \quad 2p(T) \quad 3p(T)$

l
Feasibility \& c-Feasibility, Step 3

Feasibility preserved

Utilization $\leq c$

Computed in poly. time

$\mathcal{P}(T)$ $\mathcal{2P}(T)$ $\mathcal{3P}(T)$ ℓ

Feasibility is coNP-complete Under Bounded Utilization
Feasibility \(\propto c\)-Feasibility, Step 3

Feasibility preserved

Utilization \(\leq c\)

Computed in poly. time
Feasibility $\propto c$-Feasibility, Step 3

Feasibility preserved

Utilization $\leq c$

Computed in poly. time

$\mathcal{P}(T)$ $2\mathcal{P}(T)$ $3\mathcal{P}(T)$ ℓ
Feasibility \propto c-Feasibility, Step 3

Feasibility preserved

Utilization $\leq c$

Computed in poly. time

Pontus Ekberg
Feasibility \(\propto \) c-Feasibility, Step 3

Feasibility preserved

Utilization \(\leq c \)

Computed in poly. time

Pontus Ekberg
Feasibility is coNP-complete Under Bounded Utilization
Feasibility $\propto \text{c-Feasibility, Step 3}$

Feasibility preserved

Utilization $\leq c$

Computed in poly. time

Pontus Ekberg
Feasibility $\propto c$-Feasibility, Step 3

- Feasibility preserved
- Utilization $\leq c$
- Computed in poly. time

Feasibility is coNP-complete Under Bounded Utilization
Feasibility ∝ c-Feasibility, Step 3

Feasibility preserved

Utilization $\leq c$

Computed in poly. time

Pontus Ekberg Feasibility is coNP-complete Under Bounded Utilization 7
Feasibility $\propto c$-Feasibility, Step 3

Feasibility preserved

Utilization $\leq c$

Computed in poly. time

Pontus Ekberg

Feasibility is coNP-complete Under Bounded Utilization
Feasibility $\propto c$-Feasibility, Step 3

Feasibility preserved

Utilization $\leq c$

Computed in poly. time
Feasibility $\propto c$-Feasibility, Step 3

Feasibility preserved
Utilization $\leq c$
Computed in poly. time

Pontus Ekberg
Feasibility $\propto c$-Feasibility, With log-scale Glasses

Feasibility is coNP-complete Under Bounded Utilization
Feasibility ∝ c-Feasibility, With log-scale Glasses
Feasibility is coNP-complete Under Bounded Utilization
Feasibility \propto c\text{-Feasibility, With log-scale Glasses}
Feasibility ∝ c-Feasibility, With log-scale Glasses

Feasibility is coNP-complete Under Bounded Utilization
Feasibility $\propto c$-Feasibility, With log-scale Glasses

$P(T)$

$\log(\ell)$
Feasibility ∝ c-Feasibility, With log-scale Glasses

Feasibility is coNP-complete Under Bounded Utilization
Feasibility $\propto c$-Feasibility, With log-scale Glasses

Feasibility is coNP-complete Under Bounded Utilization
Feasibility is coNP-complete Under Bounded Utilization
Feasibility $\propto c$-Feasibility, With log-scale Glasses
Feasibility $\propto c$-Feasibility, With log-scale Glasses

Feasibility is coNP-complete Under Bounded Utilization

Pontus Ekberg
Feasibility $\propto c$-Feasibility, With log-scale Glasses

Feasibility is coNP-complete Under Bounded Utilization
Feasibility $\propto c$-Feasibility, With log-scale Glasses

Feasibility is coNP-complete Under Bounded Utilization
Feasibility $\propto c$-Feasibility, With log-scale Glasses

Feasibility is coNP-complete Under Bounded Utilization
When is Feasibility Decidable in Poly. Time?

1. If deadlines are implicit. [Liu & Layland, 1973]

2. If deadlines are constrained and periods are harmonic. [Bonifaci et al., 2013]

3. If $U(T) \leq c < 1$ and $\frac{\text{max period}}{\text{min period}} \leq q(n)$.
When is Feasibility Decidable in Poly. Time?

1. If deadlines are implicit. [Liu & Layland, 1973]

2. If deadlines are constrained and periods are harmonic. [Bonifaci et al., 2013]

3. If $U(T) \leq c < 1$ and $\frac{\text{max period}}{\text{min period}} \leq q(n)$.
When is Feasibility Decidable in Poly. Time?

1. If deadlines are implicit. [Liu & Layland, 1973]

2. If deadlines are constrained and periods are harmonic. [Bonifaci et al., 2013]

3. If $U(T) \leq c < 1$ and

 \[
 \frac{\text{max period}}{\text{min period}} \leq q(n).
 \]
Conclusion

<table>
<thead>
<tr>
<th>Asynchronous periodic</th>
<th>General case</th>
<th>Utilization bounded by a constant c, $0 < c < 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly coNP-complete</td>
<td>Strongly coNP-complete</td>
<td></td>
</tr>
<tr>
<td>Strongly coNP-complete</td>
<td>Weakly coNP-complete</td>
<td></td>
</tr>
<tr>
<td>Synchronous periodic (or sporadic)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
∀Thank you!

∃Questions?