
The Fork-Join Real-Time Task Model

Martin Stigge, Pontus Ekberg and Wang Yi
Uppsala University, Sweden

Email: {martin.stigge | pontus.ekberg | yi}@it.uu.se

Abstract—Hard real-time task models have evolved from periodic
models to more sophisticated graph-based ones like the Digraph Real-
Time Task Model (DRT) [1]. These models have in common that tasks are
sequential in nature and do not allow for forking structures, modeling
job releases that occur in parallel within the same task. To capture
these, we present a task model that extends the DRT model with the
possibility of forking and joining release paths. We are developing an
exact schedulability test for EDF on uniprocessor systems with a pseudo-
polynomial bound of its runtime.

I. TASK MODEL AND PROBLEM STATEMENT

A fork-join real-time (FJRT) task system τ = {T1, . . . , TN}
consists of N independent tasks. A task T is represented by a directed
hypergraph1 G(T) with both vertex and edge labels. The vertices vi
represent the types of all the jobs that T can release and are labeled
with ordered pairs 〈e(vi), d(vi)〉 of non-negative integers, denoting
worst-case execution-time demand e(vi) and relative deadline d(vi)
of the corresponding job. The hyperedges of G(T) represent the order
in which jobs generated by T are released. A hyperedge (U, V) is
either a sequence edge with U and V being singleton sets of vertices,
or a fork edge with U being a singleton set, or a join edge with
V being a singleton set. In all cases, the edges are labeled with a
non-negative integer p(U, V) denoting the minimum job inter-release
separation time. Note that this contains the DRT model as a special
case if all hyperedges are sequence edges.

As an extension of the DRT model, an FJRT task system releases
independent jobs, allowing to define concepts like utilization U(τ)
and demand bound function just as before (in e.g. [1]).

Semantics: A task executes by following a path through the
hypergraph, triggering releases of associated jobs each time a vertex
is visited. Whenever a fork edge ({u} , {v1, . . . , vm}) is taken, m
independent paths starting in v1 to vm, respectively, will be followed
in parallel until joined by a corresponding join edge. In order for a
join edge ({u1, . . . , un} , {v}) to be taken, all jobs associated with
vertices u1, . . . , un must have been released and enough time must
have passed to satisfy the join edge label. Forking can be nested, i.e.,
these m paths can lead to further fork edges before being joined. Note
that meaningful models have to satisfy structural restrictions which
we skip for space reasons, e.g., each fork needs to be joined by a
matching join, and control is not allowed to “jump” between parallel
sections. Consider the example in Figure 1.

The main objective of this work is to develop an efficient method
for analyzing EDF schedulability for the above model. Thus, we seek
to provide a proof to the following conjecture.

Conjecture I.1. For an FJRT task system τ with U(τ) 6 c for some
constant c < 1, feasibility can be decided in pseudo-polynomial time.

Similar results have been shown for simpler task models like the
DRT model [1].

1A hypergraph generalizes the notion of a graph by extending the concept
of an edge (u, v) between two vertices u and v to hyperedges (U, V) between
two sets U and V of vertices.

v1

v2 v3

v4

v5

v6

2

3

6

5 8

Fig. 1. Example FJRT task. The fork edge is depicted with an intersecting
double line, the join edge with an intersecting single line. All edges are anno-
tated with minimum inter-release delays p(U, V). The vertex labels are omit-
ted in this example. Assuming that vertex vi releases a job of type Ji, a possi-
ble job sequence containing jobs with their types and absolute release times is
σ = [(J1, 0), (J2, 5), (J5, 5), (J4, 6), (J3, 7), (J5, 8), (J6, 16), (J1, 22)].

II. SOLUTION APPROACH

Demand Bound Function: A demand bound function dbf T (t)
for an FJRT task T can be defined as usual as the maximum
cumulative execution time requirement of jobs with both release times
and deadlines within any interval of length t. Using this, a precise
schedulability test for EDF can be based on the following proposition
(and EDF’s optimality).

Proposition II.1. An FJRT task system τ is preemptive uniprocessor
feasible if and only if

∀t > 0 :
∑
T∈τ

dbf T (t) 6 t. (1)

Demand Tuples: For an FJRT task T without fork and join
edges, dbf T (t) can be evaluated by traversing its graph G(T) using
a path abstraction called demand tuples [1]. We can extend this
method to the new hyperedges by a recursive approach. Starting with
“innermost” fork/join parts of the hypergraph, the tuples are merged
at the hyperedges and then used as path abstractions like before. It
can be shown that this method is efficient.

Utilization: Just computing dbf T (t) does not suffice for evalu-
ating Condition (1) since it is also necessary to know which interval
sizes t need to be checked. As for the DRT model [1], a bound can
be derived from the task set’s utilization U(τ). It turns out that an
efficient way of computing U(τ) is surprisingly difficult to find and
is still work in progress. The difficulty comes from parallel sections
in the task with loops of different periods which, when joined, exhibit
the worst case behavior in very long time intervals of not necessarily
polynomial length.

REFERENCES

[1] M. Stigge, P. Ekberg, N. Guan, and W. Yi, “The Digraph Real-Time Task
Model,” in Proc. of RTAS 2011, pp. 71–80.

