A Note on Some Open Problems in Mixed-Criticality Scheduling

Pontus Ekberg and Wang Yi

Uppsala University, Sweden
Email: {pontus.ekberg | yi}@it.uu.se

In this note we list a few open problems that, despite being foundational for mixed-criticality (MC) scheduling
theory, have received little or no attention in the existing literature. We also present a couple of (unpublished)
claims related to the listed problems. The latter should, of course, be viewed with a healthy dose of skepticism.

We mainly consider the MC sporadic task model that is commonly used in the literature (sometimes called the
“Vestal model”), see, e.g., [3] for a concise description of its semantics. To the best of our knowledge, all the listed
problems remain open for all common variations of the system model. For example, they are open regardless of
whether we assume (i) implicit, constrained or arbitrary deadlines, (ii) K criticality levels for any constant or non-
constant K > 2, (iii) a uniprocessor or multiprocessor platform, (iv) preemptive or non-preemptive scheduling,
or (v) any common subclass such as task sets with harmonic periods.

In the remainder of this note we assume a system with constrained deadlines, two criticality levels (called LO
and HI) and a preemptive uniprocessor. It is also assumed that all schedulers are online (i.e., non-clairvoyant),
like any real scheduler must be. In particular, a scheduler cannot know the actual execution time of a job except
by executing it until completion, and it cannot know the exact release patterns of the sporadic tasks beforehand
(it only knows about the minimum release separations).

Let a job sequence be a static sequence of unbounded length that specifies all the release times of jobs in
one execution of the system. While the release times are fixed in a given job sequence, execution times are still
unknown. For non-MC sporadic task systems on preemptive uniprocessors, it is known [1] that a particular job
sequence generated by that task system—the synchronous arrival sequence (SAS)—is a guaranteed worst case,
in the sense that if the SAS is schedulable, then so is every other sequence of jobs that the system can generate.
This fact greatly simplifies feasibility analysis of such systems. Unfortunately, this property does not hold for
MC sporadic tasks, as is demonstrated by the task set in Figure 1. It is easily verified that this task system has a
correct scheduling policy for the SAS (execute 7 first, then 75 or 73 depending on 71’s finishing time). However,
it can also be verified that the job sequence where a job of 7 is released 1 time unit after the jobs from the other
tasks does not have a correct online scheduling policy.

Claim 1: The synchronous arrival sequence is not guaranteed to be the worst case for MC sporadic tasks.

‘ C(Lo) ‘ C'(H1) ‘ D ‘ P ‘ Level n 1 . 71 1 L
1 1 2 2 110| HI
T T
Bl 1 1 [3]10] m > 1 L 2 1 L
| 1 - [2]10| Lo 1 | 5 T l
(a) The task system (b) The SAS is schedulable (¢) An unschedulable sequence

Figure 1: A task system demonstrating that the SAS is not always a worst case.

The situation is even worse if we allow non-integer release times of jobs. Figure 2 shows a task set for which
all job sequences with integer release times are schedulable, but for which a job sequence with rational release
times is unschedulable. This is in contrast to non-MC tasks, for which the SAS remains the worst-case even if
non-integer release times are allowed.

Claim 2: [t is not enough to consider integer release times when analyzing sporadic MC task systems.

The lack of a concrete job sequence to focus on severely hampers any effort to perform schedulability analysis
of MC sporadic task systems. Can we identify a suitable replacement for the SAS?

| C(Lo) [C(m) | D | P | Level n 1 .

1 2 3110| HI
i n 1 L
Ty 1 2 4 (10| HI
T3 1 - 2110| Lo T3 T l
(a) The task system (b) An unschedulable sequence

Figure 2: A task set demonstrating that the worst case may have have non-integer release times.

Question 1: For a given MC sporadic task system, can we efficiently identify some smallish set of job sequences,
such that the task system is online schedulable if and only if all job sequences in that set are online schedulable?

It is possible that the answer to Question 1 is “no”, not only because it could be hard to identify such as set,
but because such a set might not even exist. With current knowledge it is conceivable that an MC sporadic task
system can generate two job sequences that share a common prefix, such that both job sequences have correct
online schedules, but require different scheduling decisions during that prefix. Since an online scheduler for an
MC sporadic task system presented with that prefix can not know which of the job sequences that eventually
will be generated, it must make a scheduling decision during the prefix that is incorrect for at least one potential
future. This is the motivation for the next question. If the answer to Question 2 is “no”, then job sequences do
not seem to be a good abstraction for analyzing MC sporadic task systems.

Question 2: If all job sequences that can be generated by an MC sporadic task system have correct online
schedules, does it follow that the task system has a correct online scheduler?

Another task model to consider is the (strictly) periodic task model, in which each task system can generate
only a single job sequence. If we are unable to find satisfactory answers to Questions 1 and 2, it seems as if the
added flexibility that the sporadic task model offers over the periodic one comes at a high price in the MC setting.
This is in contrast to the non-MC case where sporadic tasks are as easy to analyze as (synchronous) periodic ones
on uniprocessors. Perhaps, then, research into the scheduling of MC periodic task systems is also a worthwhile
effort? We are not aware of any results targeted at MC periodic tasks specifically.

Question 3: s scheduling or analysis for MC periodic tasks significantly easier than for MC sporadic tasks?

Not only do we have a limited understanding of the difficult cases that may arise, but also poor understanding
of how to best schedule MC systems. No optimal scheduling policy, of any complexity, is yet known for MC
sporadic or periodic task systems.

Question 4: What online scheduling policies are optimal for MC sporadic or periodic task systems?

A remaining question concerns the computational complexity of the feasibility decision problem: does a
given MC task system have a correct scheduling policy? Baruah et al. [2] have showed that the corresponding
decision problem for (synchronous) fixed MC job sequences is strongly NP-complete for any constant K number
of criticality levels (K > 2). It is also known that the feasibility problem for non-MC sporadic or periodic task
systems is strongly coNP-complete. It is trivial to reduce the non-MC case to the MC case, and it is also trivial
to reduce the feasibility problem for synchronous MC job sequences to the feasibility problem for MC periodic
task systems (either synchronous or asynchronous). If follows that the feasibility problem for MC periodic task
systems is both NP-hard and coNP-hard, and is therefore unlikely to be in either of NP or coNP. It is not clear
that feasibility for MC sporadic task systems is also NP-hard, but it seems reasonable to suspect that it is at least
as hard as feasibility for MC periodic tasks.

Question 5: What is the complexity of the (online) feasibility problem for MC' sporadic or periodic tasks?

References

[1] S. Baruah and J. Goossens. Scheduling real-time tasks: Algorithms and complexity. Handbook of scheduling: Algo-
rithms, models, and performance analysis, 3, 2004.

[2] S. Baruah, K., V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, N. Megow, and L. Stougie. Scheduling
real-time mixed-criticality jobs. IEEE Transactions on Computers, Aug. 2012.

[3] H. Li and S. Baruah. An algorithm for scheduling certifiable mixed-criticality sporadic task systems. In RTSS, pages
183 -192, 2010.

