
Optimal Scheduling of Measurement-Based Parallel Real-Time
Tasks

Kunal Agrawal · Sanjoy Baruah · Pontus Ekberg · Jing Li

Abstract In this work we consider a measurement-based model for parallel real-time
tasks represented by the work and span parameters of directed acyclic graphs, with dif-
ferent bounds for nominal and overload scenarios. We address the corresponding real-time
scheduling problem and propose an optimal scheduling strategy with a derived tight bound
on the maximum response time of a task.

Keywords DAG scheduling · Uncertainty ·Multiprocessors · Optimality

1 Introduction

Task models based upon directed acyclic graphs (DAGs) are widely used for representing
recurrent real-time processes in a manner that exposes their internal parallelism, thereby
enabling the exploitation of such parallelism upon multiprocessor and multicore platforms.
These task models typically represent pieces of sequential (i.e., non-parallelizable) com-
putation via vertices and their dependencies as edges between vertices; hence constructing
such a model for a recurrent process requires detailed knowledge of the internal control-
flow structure of the process.

This research was supported by NSF grants CCF-1733873, CCF-1618802, CCF-1439062, CNS-1814739, CPS-
1932530, CNS-1911460, and CNS-1948457 and by Swedish Research Council grant 2018-04446.

Kunal Agrawal
Washington University in St. Louis, Campus Box 1045, St Louis, MO 63130, USA
E-mail: kunal@wustl.edu

Sanjoy Baruah
Washington University in St. Louis, Campus Box 1045, St Louis, MO 63130, USA
E-mail: baruah@wustl.edu

Pontus Ekberg
Uppsala University, Box 337, SE-751 05 Uppsala, Sweden
E-mail: pontus.ekberg@it.uu.se

Jing Li
New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
E-mail: jingli@njit.edu



2 Kunal Agrawal et al.

Such knowledge is not always available. Furthermore, even when available, conser-
vative estimates of the computational demands of individual vertices, e.g., via worst-case
execution time (WCET) parameters, can result in severe under-utilization of computational
resources during run-time. To ameliorate these problems, a measurement-based model was
recently proposed [1]. This model deals with the lack of knowledge of the internal struc-
ture by representing the computation of a DAG with just the two parameters work (the
cumulative computation of all the vertices in the DAG) and span (the maximum cumula-
tive computation of any precedence-constrained sequence of vertices). This model deals
with the potential pessimism by requiring that two estimates be provided for each pa-
rameters: workO and spanO are very conservative upper bounds (safe even under overload
conditions), while workN and spanN are nominal upper bounds (i.e., upper bounds under
“typical” circumstances) on the values of the work and span parameters respectively. It is
assumed that workN ≤ workO and spanN ≤ spanO.

Definition 1 (The scheduling problem) Suppose we are given a task represented by the
four parameters workN, spanN, workO and spanO, and a deadline D and two processor counts:
mN and mO, where mN ≤ mO. The scheduling problem is to finish the task with a makespan
(response time) no larger than the deadline D, and we may use at most mN processors to do
so, unless it is observed during the execution that at least one of the nominal parameters
workN and spanN does not provide a valid upper bound for the current invocation of the task.
If this is observed, we may switch to using up to mO processors instead for the remainder
of the execution, but we must still meet the original deadline D even if the computational
demands of the task invocation turns out to be as high as workO and spanO. The scheduler
does not know anything more about the internal details of the task than what can be deduced
from the given parameters. ut

The approach presented in [1] is a scheduling strategy that precomputes an upper bound
DN on the maximum makespan that is possible when executing a task with a total work
at most workN and a span at most spanN upon mN processors using any greedy (work-
conserving) scheduling [2]. It then starts to execute the given task upon mN processors
greedily, and after DN time units checks whether the task has completed. If not at least one
of workN or spanN must have been exceeded, and so it activates the additional (mO−mN)
processors and continues the greedy execution until completion.

The new approach in this paper is also to begin executing the task greedily upon mN pro-
cessors, but rather than checking the progress of the task at a precomputed time point DN,
it instead monitors the total amount of execution occurring across all the mN processors. If
the invocation does not complete before the execution equals the nominal work parameter
workN, then it activates the additional (mO−mN) processors and continues executing the
task greedily until completion.

Contributions and comparisons. The approach of [1] only requires that the runtime detect
whether the task has completed by time DN. In contrast, our approach requires the capability
to monitor the total progress on the work — that is, the amount of execution done across
the processors. Assuming this capability is available, we will show below that our approach
is, in fact, optimal — no other scheduler can guarantee to meet the deadline D under the
constraints of the scheduling problem specified above if this approach cannot also do so.
Note that, our approach also has the advantage that it only needs three parameters; workN,



Optimal Scheduling of Measurement-Based Parallel Real-Time Tasks 3

workO, and spanO since it does not need to monitor whether the span exceeds spanN. In
contrast, the approach in [1] needs spanN to calculate the intermediate deadline DN with the
approach of [1].

In addition, (Expression (1) of Theorem 2) is a tight bound on the maximum makespan
with this new scheduling approach. In addition to its use as a schedulability test, this ex-
pression can be used to, e.g., minimize the processor counts mN and mO needed to meet
the deadline. Note that this is exactly what we want to do if the task is periodically or
sporadically activated and we wanted to schedule it in a federated manner similar to [3].

2 Schedulability conditions

We use a well-known result about scheduling DAG tasks characterized by single work and
span parameters (i.e., where we don’t separate nominal and overload scenarios).

Theorem 1 (Graham [2]) The maximum makespan of a given DAG executed on m pro-
cessors by a greedy (work-conserving) scheduler is no larger than M = (work−span

m +span).
ut

In the following, we derive a tight bound on the makespan for our new scheduling
approach for DAG tasks that are characterized by parameters workN, spanN, workO and
spanO for nominal and overload scenarios. Comparing this bound with a deadline is a
sufficient schedulability condition for our proposed strategy and also a necessary condition
for any scheduler following the rules of the scheduling problem described in Definition 1.

Theorem 2 Our proposed scheduling strategy will execute a task with a makespan that is
no larger than

M =


workO−spanO

mN
+ spanO, if workN > workO− spanO

workN
mN

+
workO−workN−spanO

mO
+ spanO, if workN ≤ workO− spanO.

(1)

In addition, no scheduler can guarantee a smaller makespan. ut

Theorem 2 follows directly from lemmas 1 to 4, proven below. We start with lemmas 1
and 2, which demonstrate that no scheduler can guarantee a smaller makespan bound. Re-
call from Definition 1 that schedulers are assumed to not know the internal structure of the
DAG, except for what can be deduced from the four parameters workN, spanN, workO and
spanO. The actual structure of the DAG may be anything consistent with those parameters.

Lemma 1 If workN >workO−spanO, then no scheduler can guarantee to complete the task
with a makespan smaller than workO−spanO

mN
+ spanO.

Proof Consider a task invocation where the first workO− spanO units of work that can be
executed is fully parallel (i.e., not on the critical path of the DAG) and the remaining spanO

units of work is sequential. Because workN > workO− spanO, no scheduler may activate
the extra mO−mN processors until some time after finishing the first workO− spanO units of
work. This initial work cannot be finished in less than (workO−spanO)/mN time units. After
finishing these workO− spanO units of work, the task invocation is left with the sequential
workload that takes spanO time units to finish no matter how many processors are available.
Therefore, the task can finish earliest after (workO− spanO)/mN + spanO time units. ut



4 Kunal Agrawal et al.

Lemma 2 If workN≤workO−spanO, then no scheduler can guarantee to complete the task
with a makespan smaller than workN

mN
+

workO−workN−spanO
mO

+ spanO.

Proof Let the task invocation be such that the first workN units of work executed are fully
parallel, which is possible since workN ≤ workO− spanO. Then, no scheduler may activate
the extra processors before finishing a total of workN units of work, which can happen
earliest after workN/mN time units. After finishing the first workN units of work and mO

processors are allowed to be used, the task invocation still has workO−workN−spanO units
of work that are fully parallel, which takes workO−workN−spanO

mO
time units to finish. Lastly, the

task invocation is left with an entirely sequential part that cannot be finished in less than
spanO time units. The total time to completion is then at least workN

mN
+

workO−workN−spanO
mO

+
spanO. ut

We now show with lemmas 3 and 4 that our proposed scheduling strategy can finish
within a makespan no larger than the one specified in Theorem 2.

Lemma 3 If workN > workO− spanO, then our proposed scheduling strategy will complete
the task with a makespan no larger than workO−spanO

mN
+ spanO.

Proof Follows from using Theorem 1 with the more conservative task parameters workO

and spanO and the smaller number of processors mN that we are always guaranteed. ut

Lemma 4 If workN ≤ workO− spanO, then our proposed scheduling strategy will complete
the task with a makespan no larger than workN

mN
+

workO−workN−spanO
mO

+ spanO.

Proof We separately consider the cases where the nominal parameter workN holds or not
during the execution of the task invocation.
Case 1 (The total workload of the current invocation is no larger than workN): In this case
the extra processors will never be activated. By Theorem 1 the makespan is no larger than
workN−spanO

mN
+ spanO, and using the assumption 0≤ workO−workN− spanO we have

workN− spanO

mN

+ spanO ≤ workN

mN

+
workO−workN− spanO

mO

+ spanO.

Case 2 (The total workload of the current invocation is larger than workN): In this case, the
extra mO−mN processors will get activated by our proposed approach, say after t time units.
Let tbusy denote the total amount of time before t where all mN processors are busy, and let
tidle = t− tbusy denote the total time during which at least one processor is idling. Let work′

and span′ denote the actual remaining work and span after the first t time units and note
that work′ ≤ workO−workN and span′ ≤ spanO.

Because a greedy scheduler never idles all processors unless the invocation completes
and we have completed exactly workN units of execution after t time units, we have workN≥
tbusy×mN + tidle, which implies that tbusy ≤ workN−tidle

mN
. Note that the first vertex in any path

is always available for execution, and so if any processor is idle we know that all critical
paths must currently be executing and therefore the remaining span is also being shortened.
We must then have span′ ≤ spanO− tidle, which implies tidle ≤ spanO− span′. Thus,

t =
(
tbusy + tidle

)
≤ workN− tidle

mN

+ tidle ≤
workN

mN

+(spanO− span′)
(

1− 1
mN

)
. (2)



Optimal Scheduling of Measurement-Based Parallel Real-Time Tasks 5

Using Eq. (2) and Theorem 1 we see that the total makespan cannot be larger than

t +
work′− span′

mO

+ span′ ≤ workN

mN

+(spanO− span′)
(

1− 1
mN

)
+

work′− span′

mO

+ span′

=
workN

mN

+
work′

mO

+ spanO−
spanO

mN

+
span′

mN

− span′

mO

≤ workN

mN

+
work′

mO

+ spanO−
spanO

mN

+

(
1

mN

− 1
mO

)
spanO

≤ workN

mN

+
workO−workN− spanO

mO

+ spanO,

which finishes the proof. ut

References

1. Kunal Agrawal and Sanjoy Baruah. A measurement-based model for parallel real-time tasks. In Proceedings
of the 30th Euromicro Conference on Real-Time Systems (ECRTS). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, July 2018.

2. R. Graham. Bounds on multiprocessor timing anomalies. SIAM Journal on Applied Mathematics, 17:416–
429, 1969.

3. J. Li, D. Ferry, S. Ahuja, K. Agrawal, C. Gill, and C. Lu. Mixed-criticality federated scheduling for parallel
real-time tasks. In Proceedings of the 22nd IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 1–12, April 2016.

This is a post-peer-review, pre-copyedit version of an article accepted for publication in Real-Time Systems. The final
authenticated version will be available online at http://link.springer.com.

http://link.springer.com

	Introduction
	Schedulability conditions

