
The final publication is available at Springer via https://doi.org/10.1007/s11241-018-9310-2

Uniprocessor scheduling of real-time synchronous
dataflow tasks

Abhishek Singh · Pontus Ekberg ·
Sanjoy Baruah

Abstract The synchronous dataflow graph (SDFG) model is widely used to-
day for modeling real-time applications in safety-critical application domains.
Schedulability analysis techniques that are well understood within the real-
time scheduling community are applied to the analysis of recurrent real-time
workloads that are represented using this model. An enhancement to the stan-
dard SDFG model is proposed, which supports the specification of a real-
time latency constraint between a specified input and a specified output of
an SDFG. A polynomial-time algorithm is derived for representing the com-
putational requirement of each such enhanced SDFG task in terms of the no-
tion of the demand bound function (DBF), which is widely used in real-time
scheduling theory for characterizing computational requirements of recurrent
processes represented by, e.g., the sporadic task model. By so doing, the exten-
sive DBF-centered machinery that has been developed in real-time scheduling
theory for the hard-real-time schedulability analysis of systems of recurrent
tasks may be applied to the analysis of systems represented using the SDFG
model as well. The applicability of this approach is illustrated by applying
prior results from real-time scheduling theory to construct an exact preemp-
tive uniprocessor schedulability test for collections of independent recurrent
processes that are each represented using the enhanced SDFG model.

Keywords Real-Time Systems · Synchronous Dataflow (SDF) · Hard
Real-Time Streaming Dataflow Applications · Algorithms

Abhishek Singh
The University of North Carolina, Chapel Hill, NC, USA
E-mail: abh@cs.unc.edu

Pontus Ekberg
Uppsala University, Uppsala, Sweden
E-mail: pontus.ekberg@it.uu.se

Sanjoy Baruah
Washington University in St. Louis, St. Louis, MO, USA
E-mail: baruah@wustl.edu

https://doi.org/10.1007/s11241-018-9310-2

2 Abhishek Singh et al.

1 Introduction

Although originally developed for describing digital signal processing appli-
cations for implementation on parallel hardware, the synchronous dataflow
graph (SDFG) model (Lee (1986); Lee and Messerschmitt (1987b)) is widely
used today for modeling real-time applications in domains such as telecom-
munications, automotive systems, and avionics, which require the processing
of streaming data under hard-real-time constraints. Run-time scheduling of
computational workloads that are represented in the SDFG model has tra-
ditionally been done with static methods (e.g., Lee (1986); Lee and Messer-
schmitt (1987a)), in which scheduling tables are computed off-line and used for
making run-time scheduling decisions. More recently, efforts have been made
to explore the use of dynamic scheduling approaches, of the kind that are
studied in the real-time scheduling theory community, in order to obtain more
resource-efficient implementations of systems that are represented using the
SDFG model. Examples of such efforts include the following (this is not an
exhaustive list):

– Bouakaz et al (2014) apply EDF (earliest deadline first) scheduling in or-
der to implement multiple independent applications each specified in the
SDFG model upon a shared (uniprocessor or partitioned multiprocessor)
computing platform.

– Bamakhrama and Stefanov (2011, 2012) propose techniques for transform-
ing SDFG specifications of a particular kind (called acyclic cyclo-static
data flow graphs) to collections of periodic tasks, which can then be sched-
uled using the methods and algorithms developed in real-time scheduling
theory for periodic task scheduling.

– Ali et al (2015) have developed techniques for transforming SDFG specifi-
cations of a different kind, called cyclic homogeneous SDFG, to collections
of periodic tasks.

– Mohaqeqi et al (2016) describe how to represent SDFG specifications in
the digraph real-time (DRT) task model (Stigge et al 2011).

– Khatib et al (2016); Klikpo and Kordon (2016) describe how periodic tasks
with inter-task dependencies may be modeled using SDFGs (and thereby
scheduled using approaches that have been developed for the scheduling of
SDFGs).

To our knowledge, none of these prior approaches claim optimality from the
perspective of run-time resource utilization; indeed, it is fairly easy to construct
example instances in which each such approach will result in implementations
that make arbitrarily inefficient use of platform computing resources. Other
data-flow approaches such as the Processing Graph Method (PGM (1987))
that have been explored in the real-time systems community similarly suffer
from an absence of optimality results.

Motivation for this research. The long-term objective of our research is to
investigate the applicability of the concepts, techniques, methodologies, and

Uniprocessor scheduling of real-time synchronous dataflow tasks 3

results of real-time scheduling theory to the analysis of real-time workloads
that are represented using the SDFG model.

While real-time scheduling theory has made tremendous progress in recent
years, this progress has, by and large, remained focused upon the workload
models that are popular within the community, such as Liu & Layland tasks
(Liu and Layland 1973) and 3-parameter sporadic tasks (Mok 1983; Baruah
et al 1990). Meanwhile, data-flow models such as SDFG are finding increasing
use in many embedded application domains, but research on these models has
thus far primarily concentrated on ensuring correctness of design rather than
enhancing efficiency of implementation. With embedded software becoming
increasingly computationally demanding, that obtaining efficient implemen-
tations of such software that are often specified using the SDFG model is
becoming a primary consideration on par with correctness. This opens up
opportunities for the thus-far distinct sub-fields of real-time scheduling and
SDFG analysis to collaborate on solving problems of mutual interest and ex-
pertise.

This research. This paper addresses the following research question:

How do we implement a given collection of independent SDFG tasks,
each of which is subject to real-time correctness constraints, upon a
shared platform in an efficient manner?

The manner in which we propose to solve this problem is by precisely char-
acterizing the cumulative computational requirement of each such SDFG task
using the demand bound function (dbf) abstraction (Baruah et al (1990)). By
obtaining dbf characterizations of the SDFG tasks’ computational demand,
we are able to deploy the powerful dbf-centered machinery that has been
developed in the real-time scheduling theory community to the schedulability
analysis and run-time scheduling of systems modeled as collections of indepen-
dent real-time SDFG tasks; as an illustration, we derive an optimal EDF-based
algorithm and an associated schedulability test for implementing such systems
upon preemptive uniprocessor platforms.

This paper is an improvement upon our initial efforts in this direction
(Singh et al 2017). In the previous paper, we proposed a polynomial-time algo-
rithm for computing the dbf of a subclass of SDFG tasks called homogeneous
SDFG tasks. The algorithm that was proposed for general SDFG tasks, on
the other hand, had an exponential-time upper bound. In this paper, we have
come up with a simple algorithm for computing the dbf of general SDFG tasks
that has polynomial running time. Thus, we are freed from reasoning about
homogeneous SDFG tasks separately. While informal arguments were made in
the previous paper about the run times, we have a more formal proof for the
polynomial run-time bound for general SDFG tasks. Establishing the polyno-
mial run-time bound for dbf computation for general SDFG tasks needed a
deeper understanding of the run-time behavior of SDFGs. We consider these
insights to be a significant part of the contribution of this paper — they pro-
vide us with a better understanding of SDFG executions, and we are currently

4 Abhishek Singh et al.

engaged in the process of seeking to exploit these insights to obtain some
additional schedulability results.

In this paper, we also extend the algorithm for general SDFG tasks to work
without the assumption that all enabled actors are maximally fired before
run-time. While this extended algorithm is more comprehensive, it is also the
first polynomial-time algorithm that can compute the dependency distance
(Siyoum 2014) of an SDFG, to the best of our knowledge.

Organization. The remainder of this paper is organized in the following man-
ner. In Section 2 we describe an event-triggered recurrent real-time extension
to the SDFG model that has been developed over a number of years, which
we will be using in this paper. (In addition to reviewing the model in this
section, we define, and prove properties of, the concept of the reverse SDFG
of a given SDFG; this concept plays a crucial role in enabling us to prove some
properties of our algorithms.) In Section 3 we briefly review the 3-parameter
sporadic task model (Mok (1983); Baruah et al (1990)) that underpins a large
body of research in the real-time scheduling theory community. A significant
fraction of this body of research represents the computational requirement of
a 3-parameter sporadic task by the demand bound function (dbf) abstraction;
in Section 4, we derive an algorithm for determining the dbf for a recurrent
real-time SDFG task and prove that this algorithm has running time polyno-
mial in the representation of the task.

2 A real-time SDF model

In this section we describe both the basic SDF model (Lee (1986); Lee and
Messerschmitt (1987b)), and several extensions that have been proposed to the
model in order to enhance its capabilities to more accurately depict real-time
considerations. This introduction is necessarily brief; we refer the interested
reader to (Lee and Seshia 2011, Ch 6.3.2) for a text-book description and
additional references.

A dataflow graph is a directed graph1 in which the vertices (known as
actors) represent computation and edges (known as channels) represent FIFO
queues that direct data (called tokens) from the output of one computation
to the input of another. Actors consume tokens from their input channels,
perform computations upon them (this is referred to as a firing of the actor)
and produce tokens on their output channels. Channels may contain initial
tokens (also known as delays) — these represent data that populate the FIFO
queues prior to run time. The number of tokens at each channel determines
the state or configuration of the dataflow graph.

1 Most SDFG models allow for multigraphs, in which there may be multiple edges between
the same pair of vertices. This feature is not particularly relevant to determining how they
are scheduled and we, therefore, ignore them in this paper. For the same reason, we also
ignore edges that are self-loops: lead from a vertex back to itself. We point out that our
results are easily extended to deal with multiple edges and self-loops.

Uniprocessor scheduling of real-time synchronous dataflow tasks 5

c

a b
2 3

6

12

16
8

684

Γ (G) =

a b c

(a, b) 2 −3 0
(b, a) −4 6 0
(b, c) 0 6 −1
(c, a) −8 0 2

()
a 3

q(G) = b 2
c 12

Fig. 1: An example SDFG G, its topology matrix Γ (G), and its repetition
vector q(G). (Rows and columns of the topology matrix are labeled by channel
and actor respectively, and rows of the repetition vector are labeled by actor.)

2.1 Synchronous Data Flow Graphs

A synchronous dataflow graph (SDFG) is a dataflow graph with the additional
constraints that the number of initial tokens on each channel, as well as the
number of tokens produced (consumed, respectively) by each actor on each of
its outgoing (incoming, resp.) channels upon a firing of the actor, is a known
constant.

Definition 1 (SDFG) An SDFGG is represented as a 5-tupleG = 〈V,E,prod,
cons,delay〉 where

– V denotes the set of actors.
– E ⊂ (V × V) is the set of channels. For each channel e = (u, v), we denote
u as tail(e) and v as head(e). For each channel e, tail(e) 6= head(e),
since we ignore self-loops.

– prod : E → N>0. For each e ∈ E, prod(e) tokens are added to channel e
each time the actor tail(e) fires.

– cons : E → N>0. For each e ∈ E, cons(e) tokens are removed from
channel e each time the actor head(e) fires.

– delay : E → N≥0. For each e ∈ E, delay(e) denotes the number of initial
tokens (or delays) on channel e.

ut

We shall use the SDFG depicted in Figure 1 as our running example. It has
three actors a, b and c, denoted by circles containing the actor name. Edges
represent channels and are annotated at their ends with production and con-
sumption rates and at their centers with the number of delays if this number
is > 0.

6 Abhishek Singh et al.

As we had stated above, the number of tokens in each channel in E deter-
mines the state or configuration of the SDFG G = 〈V,E,prod, cons,delay〉.
For a particular configuration of G, an actor v ∈ V is said to be enabled if
each channel e ∈ E for which head(e) = v contains at least cons(e) tokens.
An enabled actor v may fire; doing so changes the configuration of the SDFG
in the following manner: cons(e) tokens are removed from each channel e ∈ E
for which head(e) = v, and prod(e) tokens are added to each channel e ∈ E
for which tail(e) = v. The sequence of configurations that an SDFG G goes
through via a sequence of firings is sometimes called a trace of G; the possible
traces of G define its run-time behavior. SDFG analysis techniques and algo-
rithms have been developed (Lee (1986); Lee and Messerschmitt (1987b)) for
determining, for a given SDFG, whether traces could lead to deadlock — a
configuration of tokens on channels such that no actor is enabled, or to buffer
overflow — the number of tokens in a channel growing without bound2.

According to the description above, the initial configuration of tokens on
channels (as represented by the delay function) determines all the future
firings of actors; external events play no role in the SDFG’s behavior. Lee and
Messerschmitt (1987b) state this explicitly: “Connections to the outside world
are not considered [...] a node with only inputs from the outside is considered
a node with no inputs, which can be scheduled at any time.” (Equivalently,
it may be assumed that external input is always available when needed by an
actor in order for it to fire.) While this assumption may have been reasonable
for the original intended use of this model of computation for representing
streaming computations, it is inconsistent with our efforts to incorporate real-
time considerations; in Section 2.2 below, we discuss how we extend the SDFG
model to incorporate timing properties of externally-provided data, which we
model as external input tokens.

Definition 2 (Topology matrix (from Lee (1986))) For an SDFG G =
〈V,E,prod, cons, delay〉, its topology matrix, denoted Γ (G), is an |E| × |V |
matrix in which the entry in the i’th row, j’th column, is as follows:

Γ (G)[i, j]
def
=

prod(ei), if tail(ei) = vj

−cons(ei), if head(ei) = vj

0, otherwise

ut

Figure 1 depicts an SDFG and its topology matrix. Consider, for instance,
its first row corresponding to the channel leading from actor a to actor b.
The entry Γ (G)[1, 1] = 2 denotes that each firing of actor a (represented

2 In addition to requiring that each buffer be of finite size, many SDFG scheduling al-
gorithms seek to minimize the maximum number of tokens each buffer will need to hold.
However the algorithms of Singh et al (2017) do not consider buffer-size minimization while
seeking to construct schedules in which real-time constraints are met, and we will do like-
wise here – require that buffers be of finite size, but leave as future work the problem of
determining the minimum sizes needed.

Uniprocessor scheduling of real-time synchronous dataflow tasks 7

by the first column) adds (produces) two tokens to this channel; the entry
Γ (G)[1, 2] = −3 denotes that each firing of actor b (represented by the second
column) removes (consumes) three tokens from this channel.

The following results are from Lee (1986); Lee and Messerschmitt (1987b):

1. Algorithms are known for determining whether a given SDFGG is deadlock-
free.

2. A connected3 SDFG G that is deadlock-free will not suffer from buffer
overflow if and only if the rank4 of its topology matrix Γ (G) equals (|V |−1),
where |V | denotes the number of actors in G.
In the remainder of this paper, we will assume that the SDFGs we deal with
have been a priori verified to possess the properties of being deadlock-free
and not subject to buffer overflow.

3. For such an SDFG G, we can efficiently find a positive integer vector #»v 6= 0
such that

Γ (G) · #»v = 0. (1)

If we interpret the |V | components of #»v as number of firings of the |V | actors,
the reader may verify that satisfying Equation 1 is equivalent to asserting that
upon completing the number of firings of each actor represented in #»v , the total
number of tokens in each channel is unchanged. This observation motivates
the following definitions:

Definition 3 (Repetitions vector; Iteration) The repetitions vector for
an SDFG G is the smallest vector #»v not equal to 0 for which Equation 1 holds,
and is denoted by q(G). An iteration is a set of actor firings with as many
firings as the repetitions vector entry for each actor. ut

Henceforth we will often simplify our notation and write Γ and q, rather than
Γ (G) and q(G), when the SDFG G under consideration is evident.

Observe that the number of tokens in each channel remains unchanged
upon completion of an iteration, during which each actor fires as many times as
indicated by its corresponding entry in the repetitions vector. This is formally
stated in the following balance equation: for each e ∈ E,

prod(e)× q[tail(e)] = cons(e)× q[head(e)] (2)

In addition to the topology matrix, the repetitions vector for the SDFG
depicted in Figure 1 is also shown in the figure. For this example, it is easily
verified that Equations 1 and 2 do indeed hold:

Γ · q =

2 −3 0
−4 6 0
0 6 −1
−8 0 2

 ·
 3

2
12

 =

0
0
0
0

3 An SDFG G is said to be connected if the undirected graph formed by taking the actors

as vertices and channels as undirected edges is connected.
4 The rank of a matrix is the maximum number of linearly independent columns in it.

Efficient polynomial-time algorithms are known for computing rank.

8 Abhishek Singh et al.

A B

3 2

243

A B

3 4 2

23

Fig. 2: A simple SDFG and its reverse

An iteration of this example SDFG therefore comprises three firings (i.e., ex-
ecutions) of actor a, two of actor b, and twelve of actor c.

It is sometimes useful to look at the following restricted type of SDFG.

Definition 4 (Homogeneous SDFG (HSDFG)) A homogeneous SDFG
is one in which all the prod and cons rates are equal to one. ut

For such homogeneous SDFGs, it follows from the balance equation (Equa-
tion 2 above) that the repetitions vector, if one exists (i.e., if the SDFG is
deadlock-free and is not subject to buffer overflow) will comprise all ones:
q(a) = 1 for all a ∈ V .

2.1.1 Reverse of an SDFG

We now introduce a concept that we will be using later in deriving some of
our technical results — that of reversing an SDFG. Informally, the reverse GR

of SDFG G is an SDFG with the same set of actors but with the direction of
each channel reversed (and with the roles of the production and consumption
parameters of each channel reversed). More formally,

Definition 5 (Reverse) The reverse of an SDFGG = 〈V,E,prod, cons,delay〉
is the SDFG GR = 〈V ′, E′,prod′, cons′,delay′〉 with

– V ′ = V ;
– E′ = {(v, u) | (u, v) ∈ E};
– prod′(v, u) = cons(u, v);
– cons′(v, u) = prod(u, v); and
– delay′(v, u) = delay(u, v).

ut

A simple 2-actor SDFG and its reverse are depicted in Figure 2.

Lemma 1 An SDFG G is deadlock-free and not subject to buffer overflow if
and only if its reverse SDFG GR is deadlock-free and not subject to buffer
overflow.

Proof Sketch As stated previously, a firing of an actor of an SDFG changes the
configuration of the SDFG. Suppose that some actor v ∈ V is enabled at some
configuration χ1 of G, and that the firing of actor v changes the configuration
of G from χ1 to χ2.

Uniprocessor scheduling of real-time synchronous dataflow tasks 9

– Since v is enabled in G in configuration χ1, it must be the case that each
channel e in G for which head(e) = v contains at least cons(e) tokens in
configuration χ1.

– Upon firing v in G, prod(e) tokens are deposited into each channel e in
G for which tail(e) = v; hence each such channel will contain at least
prod(e) tokens in configuration χ2.

Next, we show v is enabled in an equivalent configuration χ2 of GR, and firing
v changes the configuration of GR from χ2 to χ1.

– For each channel e in G such that tail(e) = v, there is a channel e′ in GR

such that head′(e′) = v. As we saw above, each such channel e in G has at
least prod(e) tokens in configuration χ2. Equivalently, each channel e′ in
GR has at least cons′(e′) tokens in the configuration χ2. Therefore, actor
v is enabled in configuration χ2 of GR.

– Firing actor v in configuration χ2 of GR removes these tokens, and deposits
prod′(e′) tokens into each channel e′ for which tail′(e′) = v in GR. For
each such channel e′ in GR, there is a channel e in G such that head(e) = v.
Since prod′(e′) = cons(e), cons(e) tokens are deposited back into each
such channel e in G with head(e) = v. Thus, firing actor v in GR changes
GR’s configuration from χ2 back to χ1.

Hence, each trace of G can be “executed in reverse” for GR. If G is deadlock-
free, then a complete iteration of G from the initial configuration leads to
exactly the same configuration. We may reverse this entire trace in GR; thereby
establishing that G is deadlock-free and not subject to buffer overflow if and
only if GR is. ut

For the SDFG and its reverse that are depicted in Figure 2, the trace for
one iteration of both the SDFG and its reverse are depicted in Figure 3. It
may be verified that they are mirror images of each other: the configurations
and the transitions read top to bottom in the left column are identical to the
configurations and the transitions read bottom to top in the right column.

2.2 Incorporating real-time considerations

As initially defined, SDFGs do not deal with the notion of real time: “SDF
is an untimed model of computation. All actors under SDF consume input
tokens, perform their computation and produce outputs in one atomic op-
eration.” (Neuendorffer 2005, page 53). Real-time modeling capabilities were
added by incorporating the notions of (i) latency between the executions of
different actors (Ghamarian et al (2007)); and (ii) the response time to exter-
nal triggering events that may occur recurrently in a sporadic manner (Singh
et al (2017)). To account for the execution time of actors, an additional pa-

rameter
(
wcet : V → N≥0

)
was added to the specification of an SDFG, with

the interpretation that for each v ∈ V , wcet(v) is the worst-case execution

10 Abhishek Singh et al.

A B

4

A B

3

1

A B

1

3

A B

4

A B

2

2

A B

4

fire A

fire B

fire A

fire B

fire B

A B

4

A B

2

2

A B

4

A B

3

1

A B

1

3

A B

4

fire B

fire B

fire A

fire B

fire A

Fig. 3: Illustrating Lemma 1. The left column depicts the trace for one entire
iteration of the SDFG depicted in Figure 2; the right column depicts the
trace for one entire iteration of the reverse SDFG (also depicted in Figure 2).
Observe that the traces are mirror images of each other.

Uniprocessor scheduling of real-time synchronous dataflow tasks 11

time of a (single) firing of actor v. In order to explicitly represent real-time
responsiveness to recurrent external triggering events, the SDFG model was
extended as follows: for each SDFG, we are required to additionally specify

1. A single input actor vin and a single output actor vout. External tokens
are assumed to arrive at the input actor vin. That is, we can imagine an
additional channel ein with head(ein) = vin and tail(ein) not specified,
but rather representing the external environment within which the SDFG
is operating. The consume rate cons(ein) is one, while no produce rate
prod(ein) is specified; instead, tokens “appear” on channel ein according
to the period parameter (discussed next).

2. A period parameter, denoting the minimum duration between successive
arrivals of external tokens on the input channel ein.

3. A relative deadline parameter, denoting the maximum duration that may
elapse between the arrival of an external token on the input channel ein

and the completion of the “corresponding” execution of the output ac-
tor vout (this notion of correspondence is elaborated upon below — see
Definition 6).

Let us now formalize the notion of correspondence alluded to above. Consider
a simple real-time SDFG in this extended model comprising just two nodes,
one the designated input and the other the designated output, and a single
channel with produce rate 2 and consume rate 3 connecting the two:

vin vout
2 3

Suppose that the first external input token arrives at actor vin at some time-
instant, thereby causing vin to fire. Observe that since the produce rate of
the channel leading from vin to vout is two while the consume rate is three,
at least two firings of vin must occur before actor vout may fire for the first
time. But since the period of the SDFG denotes only a lower bound on the
duration between the arrival of successive external input tokens, we cannot
provide an upper bound upon the time-instant at which actor vout is enabled
– this depends upon when the second external input token arrives at actor
vin. It is therefore not particularly meaningful to discuss the latency of the
response to the first external input token since the response will be triggered
by not the first, but the second external input token.

Ghamarian et al (2007) sidestepped the dilemma that this poses, by arguing
that an entire iteration (see Definition 3) of an SDFG should be thought of
as representing a single logical chunk of computation: it is not meaningful to
consider the arrivals of external input tokens at the input actor, and firings
of the output actor, within an iteration; instead, we should only consider the
delay between the arrival of the last external input token in the iteration, and
the completion of the execution of the last firing of the output actor during
that iteration. In the simple SDFG above, the repetitions vector is (3 2)T .
For this SDFG, latency should be defined as the delay between the arrival of

12 Abhishek Singh et al.

c

a bsrc dst
2 3

6

12

16
8

684

3 1 1 2

Fig. 4: Applying the transformations of Section 2.2 to the example SDFG
shown in Figure 1. Suppose that actors a and b are identified as the input
and output actors of the example SDFG of Figure 1. The (dashed) actors and
channels designated src and dst are added, and become the designated input
and output actors. Recall from Figure 1 that q(a) = 3 and q(b) = 2; hence
the production and consumption rates assigned to the channel connecting src
to a are 3 and 1 respectively, while the production and consumption rates
assigned to the channel connecting b to dst are 1 and 2 respectively. This
SDFG is further augmented with a relative deadline and a period parameter,
both being positive integers.

the 3rd and last external input token in the iteration, and the completion of
execution of the 2nd and last firing of vout in the iteration.

Ghamarian et al (2007) proposed that any SDFG be preprocessed by
“add[ing] an explicit source actor to the [input actor] and a destination actor
to the [output actor], each of which fires by construction exactly once in every
iteration of the graph. If an SDFG already has meaningful input and output
actors with repetition vector entries of one, these actors can function as source
and destination and no actors need to be added.” Such preprocessing makes
the following changes (Figure 4 illustrates the result of applying these changes
to the example of Figure 1):

– Add two new actors src and dst, with wcet(src) = wcet(dst) = 0, and
ensure (see below) that each will execute exactly once per iteration. These
now become the designated input and output actors, while the original vin

and vout are just “regular” actors.
– Add two new channels: e1 = (src, vin), e2 = (vout, dst), with

– delay(e1) = delay(e2) = 0,
– prod(e1) = q(vin), cons(e1) = 1, (recall that each actor a executes

q(a) times per iteration), and
– prod(e2) = 1, cons(e2) = q(vout).

These assignments of delay,prod, and cons values to e1 and e2 ensure
that src and dst both execute exactly once per iteration (i.e., q(src) =
q(dst) = 1).

After the transformation, the arrival of q(vin) external input tokens at
actor vin in the original SDFG is modeled as the arrival of one external input

Uniprocessor scheduling of real-time synchronous dataflow tasks 13

token at src5. If the period parameter of the original SDFG had represented
the minimum inter-arrival duration of external input tokens at vin, the period
parameter of the transformed SDFG should be set equal to this original period
multiplied by q(vin). The interpretation of the relative deadline parameter is
ambiguous when the input and output actors may fire multiple times per
iteration; we, therefore, assume that the value is actually assigned to this
parameter after the modifications outlined above have been carried out.

Henceforth, we will assume that our SDFGs have been pre-processed in this
manner , and that, as a consequence, we have SDFGs with designated input
and output actors that are guaranteed to execute exactly once per iteration
(for consistency of terminology, we will continue to refer to these input and
output actors as vin and vout respectively). We will also assume that each
actor is “reachable” via channels from vin, and that vout is reachable from
each actor; i.e., each actor is involved in processing and relaying data from the
input to the output. (Actors not reachable in this manner will not impact the
real-time properties of the SDFG, and may be ignored during pre-processing
to be executed in the background during run-time.)

An additional factor that must be taken into account arises from the tokens
that populate each channel initially, as specified by the delay parameters.
There are delay(e) such tokens on each e ∈ E; since each delay(e) is finite
and since we require that each actor be reachable from src, any actor can be
fired at most a finite number of times prior to vin firing for the first time. The
dependency distance denotes the maximum number of times the output actor
vout can be fired before exhausting the initially-supplied tokens:

Definition 6 (Dependency Distance δ (Siyoum (2014)); Correspon-
dence) Due to the initial distribution of tokens on the channels specified by
delay, vout can fire some δ times before the first firing of vin. The number δ
is called the dependency distance.

For any k ∈ N, the k-th firing of vin is said to correspond to the (k+ δ)-th
firing of vout, where δ is the dependency distance. ut

Suppose that in our example SDFG of Figure 1, appropriately pre-processed
to take the form depicted in Figure 4, delay(a, b) were equal to 10 rather than
zero (i.e, 10 tokens were initially provided in this channel). Since cons(a, b) =
3, it is evident that actor b may fire a total of three times prior to the arrival of
any external input tokens at src, thereby placing three tokens on the channel
connecting actor b to actor dst. Since actor dst needs two tokens on this channel
to fire, it may fire once prior to the first arrival of any external input tokens
at src; the dependency distance for this SDFG is therefore 1, and for all k ∈ N

5 One may choose to think of src as a dummy actor that queues the external input tokens
directed at vin until it has accumulated q(vin) tokens, at which instant it releases them
all simultaneously to a; hence, a does not have to deal with the possibility of unbounded
durations between the arrivals of the three tokens. (However, an unbounded duration may
elapse before the next set of three tokens are released to it.) A similar interpretation may
be made for dst.

14 Abhishek Singh et al.

the k’th firing of the input actor src corresponds to the (k+ 1)’th firing of the
output actor dst.

There are a variety of semantic reasons as to why channels of an SDFG
may be populated with initial tokens. From the perspective of minimizing
the amount of execution that must be performed in response to the arrival
of an external input token, it is a good strategy to perform as much “pre-
computation” on the SDFG as possible, and fire as many actors as one can
prior to the arrival of the first external input token. (Continuing the example
above of having 10 initial tokens on channel (a, b), we could fire actor b thrice
beforehand, thus placing 3 tokens on channel (b, dst), (3 × 6 =) 18 tokens on
channel (b, c), and (3 × 6 + 8 =) 26 tokens on channel (b, a). The tokens on
channel (b, dst) would allow actor dst to fire once, while the tokens on channel
(b, c) would allow actor c to fire 18 times, placing (18 × 2 + 16) = 52 tokens
on channel (c, a). The final state of the channels is then

delay(a, b) = 1; delay(b, dst) = 1; delay(b, a) = 26;

delay(b, c) = 0; delay(c, a) = 52; delay(src, a) = 0.

In much of the remainder of this paper we will assume that all enabled actors
are repeatedly fired prior to run time, so that there are no enabled actors prior
to the arrival of the first external input token. This immediately implies that
the dependency distance δ = 0: the k’th firing of the input actor corresponds
to the k’th firing of the output actor for all k ∈ N.

Firing all enabled actors prior to run time makes sense from the perspective
of achieving maximum schedulability — i.e., maximizing the likelihood that all
deadlines will be met during run time. If for some reason we are unable to fire
all the actors before run time, we discuss, in Section 4.3, how our results may
be extended to deal with SDFGs for which all enabled actors have not been
fired before run time and the dependency distance δ is potentially a positive
integer.

2.3 Summary of, and rationale for, the sporadic real-time SDFG model

We will refer to the recurrent task model obtained by making all the enhance-
ments discussed in Section 2.2 above to the “traditional” SDFG model as the
sporadic real-time SDFG model. A task in this model is specified as follows:

G
def
=
〈
V,E,prod,cons,delay,wcet, vin, vout, D, T

〉
(3)

with

– V , E, prod, cons, and delay as specified for traditional SDFGs;
– wcet : V → N≥0 specifying the worst-case execution times of the actors;
– Actors vin ∈ V and vout ∈ V being specified as the unique input and output

actor, respectively; and
– D ∈ N>0 and T ∈ N>0 specifying the relative deadline and period param-

eters of this sporadic real-time SDFG task.

Uniprocessor scheduling of real-time synchronous dataflow tasks 15

Additionally, we assume that the SDFG has been validated to be deadlock-free
and free from buffer overflow, and to have the repetition rates for the input
and output actors equal to one: q(vin) = q(vout) = 1.

We now briefly discuss the rationale behind some of the design decisions that
we have made in the specification of the sporadic real-time SDFG task model.

1. A single input actor. Tokens are assumed to arrive at an input actor in
a sporadic manner, with a specified minimum inter-arrival duration, but
no maximum inter-arrival duration. Latency or response time is measured
from the instant that such an input token arrives, to the instant that the
corresponding firing of the output actor completes. The following simple
example illustrates the problem with allowing multiple independent input
actors.
Suppose that there are two input actors a and b; external tokens arrive
sporadically at each. Suppose that there are channels (a, c) and (b, c) lead-
ing from a and b to a third actor c, and both a and b must complete firing
in order for c to fire. After an external token arrives at a, there is no upper
bound on the duration of time before an external token arrives at b; hence,
we cannot bound the duration of time between the arrival of the input
token at a and the firing of c.
It is, of course, possible to have the same sporadic input stream of tokens
arrive at multiple actors, but this is effectively modeled by having a single
dummy input actor (with wcet = 0) from which channels lead out to all
the original input actors receiving this stream of tokens.

2. The input and output actors execute once per repetition (q(vin) =
q(vout) = 1). This was discussed above, when introducing the transforma-
tion of adding the single source actor: since we cannot bound the duration
between the arrival of successive external tokens from above, the concept
of latency is not meaningful except in considering arrivals of a group of
external input tokens for an entire iteration of the SDFG. This concept is
abstracted into the new input actor vin that is added, and guaranteed to
have q(vin) = 1.

3. A single output actor. This is not a necessary restriction – it is quite
possible to specify multiple output actors, with different latencies (“relative
deadlines”) specified for each. (Of course, each output actor so specified
must satisfy the property that it executes exactly once per iteration: q(v) =
1 for each such output actor v.) In this paper we restrict consideration to
a single output actor per task in order to keep things simple; our results
are easily extended to deal with multiple output actors.

4. Each actor is reachable from vin, and vout is reachable from each
actor. Any actor from which vout is not reachable need not fire at all in
order to ensure that vout fires in response to a firing of vin.
An actor v that is not reachable from vin, but from which vout can be
reached, does not need external input tokens and may be fired repeatedly
prior to run time to create a buildup of supply tokens for vout, subject to
memory constraints. The delay(e) values of the outgoing channels of v can

16 Abhishek Singh et al.

be modified to reflect the accumulated tokens. Our scheduling algorithm
may be able to assign deadlines to firings of v without any modification.
However, we choose to simplify our analysis by assuming that actors like
v are not present in the SDFG.
Actors that cannot be reached from vin and from which vout is unreachable
need not be scheduled during run time to ensure real-time correctness: their
presence has no impact on schedulability. In practice, such actors may be
executed in the background when there are no real-time actors awaiting
execution.

5. No actors are enabled before the first external input arrives. (And
as a result, δ = 0.) As we had argued above, performing pre-processing prior
to run time by maximally firing all enabled actors is a reasonable strat-
egy from the perspective of minimizing the computational workload. We,
therefore, assume this in the remainder of this paper. However, we point
out that this is not necessary – we describe in Section 4.3 how our algo-
rithms may be extended to deal with the case where such pre-processing
is not done for whatever reason, and δ is potentially a positive integer.

3 Three-parameter sporadic tasks

We now provide a very brief introduction to terminology, notation, and some
basic concepts associated with the 3-parameter sporadic task model (Mok
(1983)), which is widely used in real-time scheduling theory. A 3-parameter
sporadic task τi = (Ci, Di, Ti) is characterized by a WCET Ci, a relative
deadline parameter Di, and a period Ti. Such a task generates an unbounded
sequence of jobs, with each job having an execution requirement ≤ Ci and
successive arrivals at least Ti time units apart. Each job is required to complete
by a deadline that is Di time units after its arrival time.

The scheduling of systems of 3-parameter sporadic tasks upon preemptive
uniprocessors by the earliest deadline first scheduling algorithm (EDF) has
been extensively studied, and algorithms derived for determining whether a
given task system is EDF-schedulable or not. These algorithms make use of the
concept of the demand bound function (Baruah et al (1990)). For any sporadic
task τi and any real number t > 0, the demand bound function dbf(τi, t) is
the largest cumulative execution requirement of all jobs that can be generated
by τi to have both their arrival times and their deadlines within a contiguous
interval of length t. It is evident that the cumulative execution requirement
of jobs of τi over an interval [to, to + t) is maximized if one job arrives at the
start of the interval – i.e., at time-instant to – and subsequent jobs arrive as
rapidly as permitted — i.e., at instants to +Ti, to + 2Ti, to + 3Ti, . . . (this fact
is formally proved in Baruah et al (1990)). We therefore have (Baruah et al
(1990)):

dbf(τi, t)
def
= max

(
0,

(⌊ t−Di

Ti

⌋
+ 1

)
× Ci

)

Uniprocessor scheduling of real-time synchronous dataflow tasks 17

A load parameter, based upon the dbf function, may be defined for any
sporadic task system τ as follows:

load(τ)
def
= max

t>0

(∑
τi∈τ dbf(τi, t)

t

)
It has been shown (Baruah et al (1990)) that a necessary and sufficient con-
dition for 3-parameter sporadic task system τ to be EDF-schedulable on a
unit-speed preemptive uniprocessor is that load(τ) ≤ 1. Pseudo-polynomial
algorithms are known (Baruah et al (1990); Ripoll et al (1996); Zhang and
Burns (2009)) for computing load(τ), for task systems τ possessing the ad-
ditional property that the quantity (

∑
τi∈τ Ci/Ti) is bounded from above by

a constant < 1. Polynomial-time approximation schemes (PTAS’s) have also
been derived that are able to compute an approximation to load(τ) in poly-
nomial time, to any desired degree of accuracy (Fisher et al (2006)).

4 dbf representation of computational demand

In this section we will develop a polynomial-time algorithm that accepts as
input any sporadic real-time SDFG G and determines a collection of at most
2 × |V | 3-parameter sporadic tasks (here, |V | denotes the number of actors
in the sporadic real-time SDFG), that is equivalent to it from the perspective
of the demand bound function: for any t ∈ R≥0, the maximum cumulative
execution requirement by jobs of these 3-parameter sporadic tasks with both
arrival times and deadlines within any contiguous interval of duration t is ex-
actly equal to the maximum cumulative execution requirement by the sporadic
real-time SDFG over any contiguous interval of duration t. Such a transforma-
tion allows us to use the vast dbf-based machinery for schedulability analysis
that has been developed in the real-time scheduling theory community; for
instance, it allows for the optimal EDF-based scheduling of collections of inde-
pendent sporadic real-time SDFGs upon a preemptive uniprocessor (or indeed
of collections of independent tasks represented using a mixture of different
models –SDFG’s, 3-parameter sporadic tasks, etc.– for all of which techniques
have been developed for representing their computational demand using the
dbf abstraction).

As with 3-parameter sporadic tasks (Section 3), let us characterize the exe-
cution requirement of a sporadic real-time SDFG by a demand bound function
(dbf): for any sporadic real-time SDFG G and any positive real number t, let
dbf(G, t) denote the maximum cumulative execution requirement that could
be generated by SDFG G over a contiguous interval of duration t. Let k(G, t)
denote the following function:

k(G, t)
def
= max

(
0,

(⌊ t−D
T

⌋
+ 1

))
(4)

18 Abhishek Singh et al.

(As we did in writing Γ for Γ (G) and q for q(G), henceforth we will often
simplify our notation and write k(t) rather than k(G, t) when the SDFG G
under consideration is evident.)

It is evident, using an argument analogous to those used in computing dbf
for 3-parameter sporadic tasks, that over any contiguous time-interval of du-
ration t there may be at most k(t) external input tokens arriving at vsrc for
which the corresponding firings of vdst must occur within the interval (this
happens when the first external input token arrives at the start of the inter-
val, and successive external input tokens arrive exactly T time units apart).
Since each arrival of an external input token at vsrc triggers one iteration (see
Definition 3) of G, an upper bound for dbf(G, t) may be obtained by simply
assuming that each actor v ∈ V fires a total of q[v] times during each such
iteration, thereby obtaining the bound

dbf(G, t) ≤ k(t)×
∑
v∈V

(
q[v]wcet(v)

)
(5)

However this bound, while safe, is not necessarily tight – the presence of ini-
tial tokens on some of the channels (as represented by the delay(e) values)
means that not all firings of all actors need to take place during the current
iteration – some firings may be postponed to later (thereby “spreading out”
the computational requirement of this SDFG). Our approach to determining
which firings may be postponed in this manner is to compute a skip vector
s(G) of non-negative integers, with |V | components, which will represent the
maximum number of firings of each actor that we may “skip” as a consequence
of the presence of initial tokens on the channels6. That is, we will show that for
each actor v ∈ V the computed skip-vector value s(G)[v] is the largest integer
possessing the property that actor a will need to complete no more than

max
(

0,
(
k(t)× q[v]

)
− s(G)[v]

)
firings over any contiguous interval of duration t.

(As we have done at previous points in this paper, we will often simplify
our notation and write s for s(G) when the SDFG G under consideration is
evident.)

In Section 4.1, we illustrate how these skip-vector values, once computed,
will be used during run time for assigning deadlines to the firings of actors.
In Section 4.2, we will derive an algorithm that computes the skip vector for
any sporadic real-time SDFG with a run time that is polynomial in the repre-
sentation of the sporadic real-time SDFG. In Section 4.3, we will extend this
algorithm to deal with the case where all actors have not been fired maximally
before run time and the dependency distance δ is not necessarily zero.

Uniprocessor scheduling of real-time synchronous dataflow tasks 19

-6 6 6 6 6
? ? ? ? ?

t (t+T) (t+2T) (t+3T) (t+4T)t+D (t+T+D) (t+2T+D) (t+3T+D) (t+4T+D)

Remaining
skips: 10

Remaining
skips: 7

Remaining
skips: 4

Remaining skips: 1
Must fire twice Must fire thrice

Fig. 5: Illustrating the use of skip vectors, for an actor v with q[v] = 3 and
s[v] = 10.

4.1 Run-time scheduling

Suppose that we have determined, for a particular actor v ∈ V in given spo-
radic real-time SDFG G, that s[v] = 10 and q[v] = 3 (i.e., the actor fires three
times per iteration, but a maximum of ten firings may be skipped). Suppose an
external input token arrives at vin at some time-instant t, we would schedule
two firings of actor v to complete by a deadline t+ 3T +D, and a third firing
of actor v to complete by a deadline t+ 4T +D. This is equivalent, from the
perspective of having an equivalent demand bound function for all values of
t, to representing actor v’s computational requirements by two 3-parameter
sporadic tasks: one with parameters (2wcet(v), 3T + D,T), and one with
parameters (wcet(v), 4T +D,T).

We now explain the rationale behind this strategy. If we were to not sched-
ule any firings of actor v in response to the arrival of the first external input
token at vin, we would have “used up” three of the ten skips that are permit-
ted. Similarly not scheduling any firings of v in response to the arrivals of the
second and third input tokens at vin would use up an additional six skips; the
arrival of the fourth input token at vin would require us to schedule two firings
of v to complete within an interval of duration D from the token’s arrival, and
subsequent arrivals of input tokens would require us to schedule three firings
of v within an interval of duration D from each such token’s arrival.

Recall that our objective is to minimize the computational demand of
the task, which, as quantified by dbf, is a worst case measure; under such a
strategy, the dbf for the task is defined by these future iterations during which
no firings may be skipped — applied to all the actors, this would be exactly
equal to the upper bound of Expression 5. So instead we do schedule the three
firings of v associated with the arrival of each external input token at vin (at,
say, time-instant t), but rather than assigning them a deadline at t + D, we
assign them later deadlines, thereby “spreading out” their contribution to the
dbf. We know that the next three external input tokens cannot arrive before
time-instants t + T , t + 2T , and t + 3T – see Figure 5. Since we are allowed
to skip 10 firings of the actor, we may skip all three firings for the first three
iterations of the SDFG, and one of the firings for the next (i.e., fourth) iteration
of the SDFG; however, we cannot skip the other two firings for the fourth
iteration, nor any for the fifth (and future) iterations. We, therefore, schedule

6 We will show, in Lemma 2, that this skip vector is uniquely defined for a given G.

20 Abhishek Singh et al.

two of the firings of a associated with the current iteration to complete by the
deadline of the fourth iteration, and the third to complete by the deadline of
the fifth iteration. As shown in Figure 5, the deadline of the fourth iteration
is ≥ (t + 3T + D) while the deadline of the fifth iteration is ≥ (t + 4T + D);
hence the decision to schedule two firings of actor v to complete by a deadline
t+3T +D, and a further firing of actor v to complete by a deadline t+4T +D.

We now generalize the example above from q[v] ← 3 and s[v] ← 10 to
arbitrary values for q[v] and s[v]. Letting

r[v]
def
= s[v] mod q[v]

and f [v]
def
=
⌊
s[v]/q[v]

⌋
,

it is straightforward to show that in response to an external input token’s
arrival at time-instant t, we would schedule each actor v to have

(
q[v]− r[v]

)
firings with a deadline at

(
f [v] · T + D

)
, and the remaining r[v] firings with

a deadline at
(
(f [v] + 1) · T +D

)
. Equivalently, for all t ∈ R≥0 actor v’s con-

tribution to the SDFG task’s demand bound function is equal to the demand
bound function of the two 3-parameter sporadic tasks:

wcet relative deadline period(
q[v]− r[v]

)
·wcet(v) f [v] · T +D T

r[v] ·wcet(v)
(
f [v] + 1

)
· T +D T

Optimality of run-time scheduler If a sporadic real-time SDFG task set
is EDF-schedulable for some deadline and period assignments, it is also EDF-
schedulable using the above assignments since the above assignments minimize
the dbf. Thus, the above assignments are optimal for EDF-schedulability.

EDF itself is optimal in the sense of feasibility, as shown by Dertouzos
(1974). EDF can find a feasible schedule for a set of independent jobs with
arbitrary release times and deadlines on a preemptive uniprocessor if a feasible
schedule exists. Although the firings of the actors have precedence constraints
between them, the time-slice swapping argument that supports the optimality
of EDF still holds for the firings since the above assignments ensure that the
deadline of a preceding firing does not exceed the deadline of the following
firing.

4.2 Computing the skip vector

Our intent is that the skip vector value s[v] denote the maximum number of
times the execution of actor v may be skipped, due to the presence of initial
tokens on the edges. The larger the components of the skip vector, the better in
the sense that deadlines assigned to more firings of actors may be postponed.
(We will show below, in Lemma 2, that such a quest is well-defined in that
there cannot be multiple incomparable skip vectors for the same SDFG.)

Consider any channel e ∈ E of the sporadic real-time SDFG under consid-
eration, and let u = tail(e), v = head(e). Let nu and nv denote the number

Uniprocessor scheduling of real-time synchronous dataflow tasks 21

of times that actors u and v have fired by some point in time; since the number
of tokens consumed during the firing of this channel cannot exceed the number
of tokens produced in it plus the number of tokens initially placed upon it, it
must be the case that

nu · prod(e) + delay(e) ≥ nv · cons(e). (6)

Let us instantiate Equation 6 above to the end of the k’th iteration of the
sporadic real-time SDFG under consideration, when nu ← (k ·q[u]− s[u]) and
nv ← (k · q[v]− s[v]). Therefore

(
k · q[u]− s[u]

)
· prod(e) + delay(e)

≥
(
k · q[v]− s[v]

)
· cons(e)

⇔k · q[u] · prod(e)− s[u] · prod(e) + delay(e)

≥ k · q[v] · cons(e)− s[v] · cons(e)

⇔k ·

= 0 by the balance equation (Eqn. 2)︷ ︸︸ ︷(
q[u] · prod(e)− q[v] · cons(e)

)
+delay(e)

≥ s[u] · prod(e)− s[v] · cons(e)
⇔ delay(e) ≥ s[u] · prod(e)− s[v] · cons(e)

We will use this relationship that we have just derived above (replacing u and
v with tail(e) and head(e)):

s[tail(e)] · prod(e)− s[head(e)] · cons(e) ≤ delay(e)

⇔ s[tail(e)] ≤
⌊delay(e) + s[head(e)] · cons(e)

prod(e)

⌋
(7)

to help us compute the skip vector: our objective is to determine the largest
values for s[a] for all actors a, such that Equation 7 is satisfied across all
channels of the SDFG. Before doing so, we prove in Lemma 2 below, that
there cannot be multiple incomparable skip vectors for the same SDFG.

Lemma 2 The skip vector s is unique.

Proof By contradiction. Assume that there exist two distinct skip vectors s
and s′ for which Equation 7 holds for all channels e ∈ E. Assume also that
both s and s′ are maximal, so that Equation 7 would not hold for either of
them if we increased some values of s or s′.

22 Abhishek Singh et al.

Now let s′′ be defined as follows: s′′[v]← max(s[v], s′[v]) for all v ∈ V . For
each channel e ∈ E of the SDFG we have

s′′[tail(e)] = max(s[tail(e)], s′[tail(e)])

≤ max

⌊
delay(e)+s[head(e)]·cons(e)

prod(e)

⌋
⌊
delay(e)+s′[head(e)]·cons(e)

prod(e)

⌋

=
⌊delay(e) + s′′[head(e)] · cons(e)

prod(e)

⌋
,

from which it follows that Equation 7 holds for all channels e ∈ E of the
SDFG also when using skip vector s′′. It follows that s and s′ cannot both be
maximal. ut

We now derive our algorithm for determining this (unique maximal) skip
vector. We start out defining some additional terminology and notation. For
each actor v, let sub[v] denote an upper bound on the value of s[v]; we will
refer to these upper bounds as skip estimates. Our algorithm for computing
the skip vector values will initialize these skip estimates as follows:

sub[v]←
{

0, if v = vout

∞, otherwise
(8)

It is evident that these initial values on sub are indeed upper bounds on the
skip vector values: since all skip vector values are necessarily finite, ∞ is an
upper bound on the actual skip-vector values. Recall from Definition 6 that our
model assumes that the dependency distance between the input and output
actors equal zero (δ = 0)7. Thus, vout cannot be skipped at all, i.e. s[vout] = 0,
and sub[vout] = 0 is a valid upper bound.

We will additionally maintain, as auxiliary variables8, a constraining actor
π[v] ∈ V

⋃
{NIL} for each actor v ∈ V , that are initialized as follows

π[v]← NIL for all v (9)

The intended semantics of these constraining actors will be explained a bit
later.

Relaxing (along) a channel. For a given assignment of sub values to all the
actors, the process of relaxing a channel e consists of the following steps (also
depicted in Algorithm 1):

7 As we have stated in Section 2.3, in this paper we have assumed δ = 0 in order to keep
things simple. However, our algorithm may be extended to handle non-zero dependency
distances: we briefly describe the extension in Section 4.3.

8 These are auxiliary variables in the sense that they will not appear in the actual code
that implements the algorithm. They are defined solely to record information that is useful
in proving properties (in our case, computational complexity) of the algorithm.

Uniprocessor scheduling of real-time synchronous dataflow tasks 23

Algorithm 1 Relaxing channel e

procedure Relax(e)

if
(
sub[tail(e)] >

⌊
delay(e)+sub[head(e)]·cons(e)

prod(e)

⌋)
then

sub[tail(e)]←
⌊
delay(e)+sub[head(e)]·cons(e)

prod(e)

⌋
;

π[tail(e)]← head(e);
end if

end procedure

§1. Determine whether the current skip estimates violate Condition 7 across
channel e:

sub[tail(e)] >
⌊delay(e) + sub[head(e)] · cons(e)

prod(e)

⌋
(10)

If head(e) is skipped sub[head(e)] times, then the maximum number of times
tail(e) can be skipped is specified by the right-hand side of the expression
above. Hence if the current skip estimate for head(e) is equal to sub[head(e)]
and the expression above holds, then the current skip estimate for tail(e) is
too high — we must reduce it to equal the right-hand side of the expression
above. (If Condition 7 is not violated – i.e., the expression above does not hold
– then there is nothing more to be done, and the relaxation is complete.)

§2. If Condition 10 is true, we decrease the skip estimate of tail(e) in order
to have it satisfy Condition 7:

sub[tail(e)]←
⌊delay(e) + sub[head(e)] · cons(e)

prod(e)

⌋
(11)

§3. If such an update occurs, the fact is “recorded” by setting

π[tail(e)]← head(e) (12)

Thus the value of π[a], if not NIL, denotes the head of the channel whose
relaxation has resulted in the value currently assigned to sub[a].

We now prove some properties that are maintained by the sub and π values
as we perform repeated relaxations.

Lemma 3 Suppose that the sub and π values are initialized as specified in
Expressions 8-9, and a series of relaxations performed. The following holds
after each relaxation:

∀ v ∈ V : sub[v] ≥ s[v] (13)

Proof This lemma is proved by induction on the number of relaxations that
are performed. It is obviously correct at initialization (as pointed out in the
paragraph following Expression 8). For the inductive step, suppose for an
inductive hypothesis (IH) that it is true prior to the instant that a relaxation

24 Abhishek Singh et al.

v0 v1 v2 vk−1e1 e2 ek−1

ek

Fig. 6: Illustrating the proof of Lemma 4. (The labels on the edges denote the
channel names, not the delays on the channel.)

operation is performed across the channel e). The only skip estimate that is
changed is sub[tail(e)]; it changes as follows:

sub[tail(e)]←
⌊delay(e) + sub[head(e)] · cons(e)

prod(e)

⌋
≥
⌊delay(e) + s[head(e)] · cons(e)

prod(e)

⌋
(By the IH)

≥ s[tail(e)] (By Expression 7)

and the invariant is thereby maintained. ut

We now use the constraining actor auxiliary variables (the π[·] values) to
define a constraint graph Gπ as follows9. The vertices in Gπ are exactly the
actors in G. The edges in Gπ are the pairs (v,π(v)), where v is an actor in G
and π(v) 6= NIL.

Lemma 4 Suppose that the sub and π values are initialized as specified in
Expressions 8-9, and a series of relaxations performed. The following invariant
is maintained: the constraint graph Gπ contains no cycle.

Proof This is obviously correct at initialization: since π(v) = NIL for all v, Gπ

contains no edges. Now consider Gπ after a series of relaxation steps have been
carried out. Suppose for the sake of contradiction that some relaxation step
creates a cycle in Gπ. Let this cycle comprise the actors 〈vo, v1, . . . , vk−1, vk =
vo〉, such that π(vi−1) = vi for each i, 1 ≤ i ≤ k. Without loss of generality,
assume that relaxing the channel (vk−1, vo) caused the cycle. Let ei denote the
channel (vi−1, vi) for each i, 1 ≤ i ≤ k. (Figure 6 illustrates such a hypothetical
cycle for the case when the cycle comprises four actors.)

We now examine the skip estimates just prior to the relaxation of ek (i.e.,
of channel (vk−1, vo)). It must be the case that for all i, 1 ≤ i ≤ (k − 1),

π[vi−1] = vi (14)

sub[vi−1] ≥
⌊sub[vi] · cons(ei) + delay(ei)

prod(ei)

⌋
(15)

9 As with the π[·] auxiliary variables, the constraint graph is a concept used only in our
proofs — no such graph is explicitly constructed by our algorithm.

Uniprocessor scheduling of real-time synchronous dataflow tasks 25

Since we are assuming that the relaxation of channel ek would lead to the
cycle in the constraint graph (by setting π(vk−1) ← v0), it must be the case
that

sub[vk−1] >
⌊sub[vo] · cons(ek) + delay(ek)

prod(ek)

⌋
(16)

Now let us relax along the channels ek−1, ek−2, . . . , e1 in order, so that all of
Eqn 15 becomes a strict equality: for all i, 1 ≤ i ≤ (k − 1),

sub[vi−1] =
⌊sub[vi] · cons(ei) + delay(ei)

prod(ei)

⌋
(17)

Note that Eqn 16 continues to hold since sub[vk−1] has not changed and sub[vo]
has not increased.

Let us now consider the reverse SDFG GR of G (see Definition 5 for a
quick refresher). Recall that all the channels in GR are reversed versions of
the channels in G; for 1 ≤ i ≤ k, let e′i denote the channel (vi, vi−1) in GR.
We will consider execution traces of GR in which the number of firings of
the individual actors are specified according to the sub values shown above to
satisfy Eqns 16 and 17. More specifically, consider execution traces of GR in
which the actor vk−1 fires exactly

f [vk−1]
def
= sub[vk−1] (18)

times. Since G is assumed to be deadlock-free, it follows from Lemma 1 that
GR is deadlock-free as well. Such traces therefore exist.

Now, let f [vi] denote the maximum number of firings of actor vi that are
possible in any such trace of GR. We claim the following:

Fact 1 For each i, 1 ≤ i ≤ (k − 1),

f [vi−1] ≤ sub[vi−1]

Proof (Fact 1) We prove Fact 1 by induction on i, starting with i ← (k − 1)
and decreasing it in steps of size 1 until i = 1.

The base case, i = (k − 1), is true by the definition of f [vk−1].

For the inductive step, assume, as an inductive hypothesis (IH), that f [vi] ≤
sub[vi]. Now observe that the total number of tokens available on the channel
e′i = (v′i, v

′
i−1) is at most

(
f [vi] · prod′(e′i) + delay′(e′i)

)
.

26 Abhishek Singh et al.

Since cons′(e′i) tokens are consumed each time actor v′i−1 fires, it must be the
case that

f [vi−1] ≤
⌊f [vi] · prod′(e′i) + delay′(e′i)

cons′(e′i)

⌋
=
⌊f [vi] · cons(ei) + delay(ei)

prod(ei)

⌋
(Since prod′(e′i) =

cons(ei);cons
′(e′i) = prod(ei), and delay′(e′i)

= delay(ei) – see Definition 5)

≤
⌊sub[vi] · cons(ei) + delay(ei)

prod(ei)

⌋
(From the IH)

= sub[vi−1] (By Eqn 17)

ut

Consider now the channel (vo, vk−1) in GR. The total number of tokens
that are made available on this channel is at most

f [vo]× prod′(e′k) + delay′(e′k)

≤ (By Fact 1) sub[vo]× prod′(e′k) + delay′(e′k)

= (Since prod′(e′k) = cons(ek) and delay′(e′k) = delay(ek))

sub[vo]× cons(ek) + delay(ek)

Hence the maximum number of times the actor vk−1 may fire in these traces
of GR is

≤
⌊sub[vo]× cons(ek) + delay(ek)

cons′(e′k)

⌋
=

⌊sub[vo]× cons(ek) + delay(ek)

prod(ek)

⌋
=

⌊sub[vk]× cons(ek) + delay(ek)

prod(ek)

⌋
(since cons(ek) = prod′(e′k), from the definition of reverse – see Definition 5
— and vo = vk.)

Recall that we had chosen f [vk−1] ← sub[vk−1] (Equation 18). We have
thus shown that

sub[vk−1] ≤
⌊sub[vk]× cons(ek) + delay(ek)

prod(ek)

⌋
.

But this contradicts Inequality 16; we therefore have a contradiction to our
assumption that there is a cycle in the constraint graph Gπ ut

Uniprocessor scheduling of real-time synchronous dataflow tasks 27

To understand the significance of Lemma 4, let us consider the constraint
graph when all the skip bounds (the sub[·] values) have converged to a fixed
point – Expression 7 holds for all channels in the SDFG. Since none of these
fixed-point values of sub[·] can be reduced any further, they are, by Lemmas 2
and 3, equal to the s[·] values that we seek to determine. At this stage, the
following Lemma establishes that the constraint graph comprises a tree that
is rooted at vout.

Lemma 5 The constraint graph Gπ is a directed in-tree rooted at vout.

Proof After convergence, only π[vout] = NIL as by assumption vout is reach-
able from all actors and therefore no actor v can have s[v] = ∞. Consider
any directed path in Gπ. By Lemma 4 this path has no cycles, and therefore
can contain no actor twice. As each actor except vout has an outgoing edge,
it follows that all paths, if extended, must eventually end in vout. In addition,
the undirected graph given by ignoring the directions on the edges of Gπ has
|V | vertices, |V | − 1 edges and is connected, hence it must be a tree (by basic
graph theory). The lemma follows. ut

Let us define the constraint distance of any actor v to denote the length
of the (unique) path in this tree from v to vout. These constraint distances
are not known beforehand; however, we point out the obvious fact that the
maximum constraint distance for any actor is (|V | − 1) where |V | denotes the
number of actors.

1. Recall that upon initialization, sub[vout] = s[vout] = 0 (assuming that the
dependency distance δ = 0).

2. Consider any actor v that is at constraint distance 1, and let c denote the
channel for which tail(c) = v and head(c) = vout. Upon relaxing the
channel c, we will have sub[v] = s[v].
We do not a priori know which actors are at constraint distance 1. However,
if we were to relax every channel once, then upon having done so we would
know that each actor at constraint distance 1 has its sub value equal to its
s value.

3. Once this is done and all actors at constraint distance 1 have their sub value
equal to their s value, consider some actor v that is at constraint distance 2,
and let c denote the channel for which tail(c) = v and head(c) = v′, where
v′ is the (unknown) actor at constraint distance 1 that lies on the path in
the eventual (i.e., upon convergence to a fixed point) constraint graph from
v to vout. Upon relaxing the channel c, we will have sub[v] = s[v].
As was the case for constraint distance 1 (argued above), we do not know
beforehand which actors are at constraint distance 2. However, upon relax-
ing every channel once again we would know that all the actors at constraint
distance 2 have their sub value equal to their s value.

4. Repeating the above argument (|V |−1) times, we would know that all the
actors at constraint distance ≤ (|V |−1) have their sub value equal to their
s value. And since all actors have their constraint distances in the range

28 Abhishek Singh et al.

[0, 1, . . . , |V | − 1], this implies that we will have successfully computed the
s values for all actors in the SDFG.

Algorithm 2 Computing the skip vector when all enabled actors are fired
maximally before run time

1: procedure ComputeSkipVector(G)
2: Initialize sub and π according to Expressions 8–9
3: for i← 1 to |V | − 1 do
4: for all channels e do
5: Relax(e)
6: end for
7: end for
8: return sub

9: end procedure

The argument above is presented in pseudo-code form in Algorithm 2. A formal
proof of correctness is easily established by induction, with the loop invariant
for the outer for loop that at the start of the i’th iteration, all actors at
constraint distance at most (i− 1) have their sub value equal to their s value.

Run-time complexity. Since we perform (|V | − 1) × |E| relaxations and
each relaxation takes Θ(1) time, the computational complexity of determining
the skip vector is Θ(|V | × |E|). This is clearly polynomial (quadratic) in the
representation of the sporadic real-time SDFG.

4.3 Extended algorithm for the case where all enabled actors are not fired
maximally before run time

As we had stated in Section 2.3, it makes sense from a real-time perspective
to pre-process as much as possible, thereby minimizing the computational
demand that must be accommodated during run time; hence, we believe that
preprocessing the SDFG to have a dependency distance equal to zero makes
sense. However, our algorithm is easily generalized to deal with SDFGs that
have not been preprocessed in this manner (so that the dependency distance
is some value δ ≥ 0).

A key idea behind the generalization is that skip values can be negative.
While a positive skip value for an actor indicates the maximum number of
firings of the actor that may be skipped, a negative skip value indicates the
additional number of firings of the actor that need to be completed before
the first deadline. A positive skip value allows the computational demand
to be diffused over a number of iterations; a negative skip value forces the
concentration of higher computational demand in the first iteration.

Now that negative skip values are allowed, we can describe the skip value
of vout when δ is potentially greater than zero. Recall from Definition 6 that

Uniprocessor scheduling of real-time synchronous dataflow tasks 29

the (k + δ)’th firing of vout corresponds to the k’th firing of vin; hence, vout

must fire (δ + 1) times before the first deadline. It follows that vout needs
to be fired δ times in addition to its repetitions vector entry, q[vout] = 1, in
the first iteration. Thus, s[vout] = −δ. The skip value of vin is even easier to
characterize. In any iteration, a single input token arrives at vin and vin fires
exactly once, conforming to its repetitions vector entry, q[vin] = 1. Thus, s[vin]
must be 0.

Knowing that s[vout] must be −δ, we could simply initialize sub[vout] as
−δ in Algorithm 2, if δ is known a priori. However, we do not need to know
δ in advance because the fact that s[vin] must be zero can be used to modify
Algorithm 2 to produce the correct skip values and δ gets computed as a
side effect. Let us examine the skip estimate update step of relaxation in
Equation 11 when we have a different skip estimate sub′[head(e)] for head(e)

such that sub′[head(e)] = sub[head(e)] + k · q[head(e)] and k ∈ Z:

sub′[tail(e)]←
⌊delay(e) + sub′[head(e)] · cons(e)

prod(e)

⌋
=
⌊delay(e) + (sub[head(e)] + k · q[head(e)]) · cons(e)

prod(e)

⌋
=
⌊delay(e) + sub[head(e)] · cons(e)

prod(e)
+
k · q[head(e)] · cons(e)

prod(e)

⌋
=
⌊delay(e) + sub[head(e)] · cons(e)

prod(e)

⌋
+ k · q[tail(e)]

(using balance equation (Eqn. 2).)

= sub[tail(e)] + k · q[tail(e)]

Thus, adding k · q[v] to the skip estimate of an actor v results in addition
of k · q[u] to all actors u, where π[u] = v. Recall from Lemma 5 that the
constraint graph is a directed in-tree rooted at vout. This, combined with the
fact that q[vout] = 1, implies that we can compute the skip values for a different
initial value α ∈ Z of sub[vout] by adding α times the repetitions vector to the
skip vector originally computed by Algorithm 2. Since s[vin] must be zero,
we must choose α to be −sub[vin]. This modification to Algorithm 2 is shown
in Algorithm 3. To the best of our knowledge, Algorithm 3 is also the first
polynomial-time algorithm proposed for computing the dependency distance
δ.

The reduction to sporadic tasks described in Section 4.1 should be modified
as follows only for actors with negative skip values:

wcet relative deadline period
q[v] ·wcet(v) D T
−s[v] ·wcet(v) D ∞

The second row is a job that represents the additional computational demand
that needs to be met before the first deadline. We stress that it is impossible

30 Abhishek Singh et al.

Algorithm 3 Computing the skip vector when all enabled actors are not fired
maximally before run time

1: procedure ComputeSkipVector(G)
2: Initialize sub and π according to Expressions 8–9
3: for i← 1 to |V | − 1 do
4: for all channels e do
5: Relax(e)
6: end for
7: end for
8: δ ← sub[vin]
9: s← sub − (δ × q)

10: return s
11: end procedure

for the dbf to be lower for a different set of deadline and period assignments.
Thus, we have extended our EDF-schedulability test for the case where all
enabled actors are not fired maximally before run time.

5 Conclusions

The Synchronous Data Flow Graph (SDFG) model is widely used in the mod-
eling of embedded real-time systems. In this paper, we have made an effort
to combine the core competencies of two communities – those studying data-
flow methodologies, and researchers in real-time scheduling theory – to obtain
a better understanding of the problem of achieving highly resource-efficient
implementations of SDFG-modeled real-time systems.

Acknowledgements This research has been supported by NSF grants CNS 1115284, CNS
1218693, CNS 1409175, and CPS 1446631, AFOSR grant FA9550-14-1-0161, and ARO grant
W911NF14-1-0499.

References

(1987) PGM – Processing Graph Method Specification. Naval Research Laboratory, prepared
by the Naval Research Laboratory for use by the Navy Standard Signal Processing
Program Office (PMS-412). Version 1.0

Ali HI, Akesson B, Pinho LM (2015) Generalized extraction of real-time parameters for
homogeneous synchronous dataflow graphs. In: 2015 23rd Euromicro International Con-
ference on Parallel, Distributed, and Network-Based Processing, pp 701–710, DOI
10.1109/PDP.2015.57

Bamakhrama M, Stefanov T (2011) Hard-real-time scheduling of data-dependent tasks in
embedded streaming applications. In: Proceedings of the Ninth ACM International Con-
ference on Embedded Software, ACM, New York, NY, USA, EMSOFT ’11, pp 195–204,
DOI 10.1145/2038642.2038672, URL http://doi.acm.org/10.1145/2038642.2038672

Bamakhrama MA, Stefanov T (2012) Managing latency in embedded streaming applica-
tions under hard-real-time scheduling. In: Proceedings of the Eighth IEEE/ACM/IFIP

http://doi.acm.org/10.1145/2038642.2038672

Uniprocessor scheduling of real-time synchronous dataflow tasks 31

International Conference on Hardware/Software Codesign and System Synthesis, ACM,
New York, NY, USA, CODES+ISSS ’12, pp 83–92, DOI 10.1145/2380445.2380464, URL
http://doi.acm.org/10.1145/2380445.2380464

Baruah S, Mok A, Rosier L (1990) Preemptively scheduling hard-real-time sporadic tasks
on one processor. In: Proceedings of the 11th Real-Time Systems Symposium, IEEE
Computer Society Press, Orlando, Florida, pp 182–190

Bouakaz A, Gautier T, Talpin JP (2014) Earliest-deadline first scheduling of multiple inde-
pendent dataflow graphs. In: 2014 IEEE Workshop on Signal Processing Systems (SiPS),
pp 1–6, DOI 10.1109/SiPS.2014.6986102

Dertouzos M (1974) Control robotics : the procedural control of physical processors. In:
Proceedings of the IFIP Congress, pp 807–813

Fisher N, Baker T, Baruah S (2006) Algorithms for determining the demand-based load of
a sporadic task system. In: Proceedings of the International Conference on Real-time
Computing Systems and Applications, IEEE Computer Society Press, Sydney, Australia

Ghamarian AH, Stuijk S, Basten T, Geilen MCW, Theelen BD (2007) Latency minimization
for synchronous data flow graphs. In: Digital System Design Architectures, Methods and
Tools, 2007. DSD 2007. 10th Euromicro Conference on, pp 189–196, DOI 10.1109/DSD.
2007.4341468

Khatib J, Kordon AM, Klikpo EC, Trabelsi-Colibet K (2016) Computing latency of a
real-time system modeled by synchronous dataflow graph. In: Proceedings of the 24th
International Conference on Real-Time Networks and Systems, RTNS 2016, Brest,
France, October 19-21, 2016, pp 87–96, DOI 10.1145/2997465.2997479, URL http:

//doi.acm.org/10.1145/2997465.2997479

Klikpo EC, Kordon AM (2016) Preemptive scheduling of dependent periodic tasks modeled
by synchronous dataflow graphs. In: Proceedings of the 24th International Conference
on Real-Time Networks and Systems, RTNS 2016, Brest, France, October 19-21, 2016,
pp 77–86, DOI 10.1145/2997465.2997474, URL http://doi.acm.org/10.1145/2997465.

2997474

Lee EA (1986) A coupled hardware and software architecture for programmable digital
signal processors. PhD thesis, EECS Department, University of California, Berkeley,
URL http://www2.eecs.berkeley.edu/Pubs/TechRpts/1986/715.html

Lee EA, Messerschmitt DG (1987a) Static scheduling of synchronous data flow programs
for digital signal processing. IEEE Transactions on Computers C-36(1):24–35

Lee EA, Messerschmitt DG (1987b) Synchronous data flow. Proceedings of the IEEE
75(9):1235–1245, DOI 10.1109/PROC.1987.13876

Lee EA, Seshia SA (2011) Introduction to Embedded Systems, A Cyber-Physical Systems
Approach. MIT Press, URL http://LeeSeshia.org

Liu C, Layland J (1973) Scheduling algorithms for multiprogramming in a hard real-time
environment. Journal of the ACM 20(1):46–61

Mohaqeqi M, Abdullah J, Yi W (2016) Modeling and analysis of data flow graphs us-
ing the digraph real-time task model. In: Proceedings of the 21st Ada-Europe Inter-
national Conference on Reliable Software Technologies — Ada-Europe 2016 - Volume
9695, Springer-Verlag New York, Inc., New York, NY, USA, pp 15–29

Mok A (1983) Fundamental design problems of distributed systems for the hard-real-time
environment. PhD thesis, Laboratory for Computer Science, Massachusetts Institute of
Technology, available as Technical Report No. MIT/LCS/TR-297

Neuendorffer S (2005) The SDF Domain. In: Brooks C, Lee EA, Liu X, Neuendorffer S,
Zhao Y, Zheng H (eds) Heterogeneous Concurrent Modeling and Design in Java, vol
3 (Ptolemy II Domains), EECS, University of California, Berkeley, chap 3, pp 49–60,
memorandum UCB/ERL M05/23

Ripoll I, Crespo A, Mok AK (1996) Improvement in feasibility testing for real-time tasks.
Real-Time Systems: The International Journal of Time-Critical Computing 11:19–39

Singh A, Ekberg P, Baruah S (2017) Applying real-time scheduling theory to the synchronous
data flow model of computation. In: 2017 29th Euromicro Conference on Real-Time
Systems, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik

Siyoum F (2014) Worst-case temporal analysis of real-time dynamic streaming applications.
PhD thesis, PhD thesis, Eindhoven University of Technology

http://doi.acm.org/10.1145/2380445.2380464
http://doi.acm.org/10.1145/2997465.2997479
http://doi.acm.org/10.1145/2997465.2997479
http://doi.acm.org/10.1145/2997465.2997474
http://doi.acm.org/10.1145/2997465.2997474
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1986/715.html
http://LeeSeshia.org

32 Abhishek Singh et al.

Stigge M, Ekberg P, Guan N, Yi W (2011) The digraph real-time task model. In: Proceed-
ings of the IEEE Real-Time Technology and Applications Symposium (RTAS), IEEE
Computer Society Press, Chicago, pp 71–80

Zhang F, Burns A (2009) Schedulability analysis for real-time systems with EDF scheduling.
IEEE Transactions on Computers 58(9):1250–1258, DOI 10.1109/TC.2009.58

	Introduction
	A real-time SDF model
	Three-parameter sporadic tasks
	dbf representation of computational demand
	Conclusions

