
The final publication is available at Springer via http://dx.doi.org/10.1007/s11241-015-9225-0

Schedulability Analysis of a Graph-Based Task Model for
Mixed-Criticality Systems

Pontus Ekberg · Wang Yi

Abstract We present a new graph-based real-time task model that can specify com-
plex job arrival patterns and global state-based mode switching. The mode switching
is of a mixed-criticality style, meaning that it allows immediate changes to the param-
eters of active jobs upon mode switches. The resulting task model generalizes previ-
ously proposed task graph models as well as mixed-criticality (sporadic) task models;
the merging of these mutually incomparable modeling paradigms allows formulation
of new types of tasks. A sufficient schedulability analysis for EDF on preemptive
uniprocessors is developed for the proposed model.

Keywords Real-time ·Mixed-criticality · Task graphs · Schedulability analysis

1 Introduction

During the last seven years, a wealth of research has investigated the scheduling and
analysis of mixed-criticality systems, often using a sporadic mixed-criticality task
model that has become a de facto standard (e.g., Vestal 2007; Li and Baruah 2010;
Guan et al. 2011; Baruah et al. 2011a,b; Ekberg and Yi 2012). While this model is
popular and theoretically interesting, it has been criticized for its limited applicability
to many real systems (e.g., see Burns and Baruah 2013). Some of this criticism can
be traced back to the task model’s restricted notion of what should happen to each
task or job upon a change of the system’s criticality mode and to its lack of an explicit
mechanism for going back to previous modes.

To tackle these problems and more, we present a new task model that we call the
Mode-Switching Digraph Real-Time (MS-DRT) task model. It combines complex ar-
rival patterns of jobs with global mode switching. The tasks are represented by graphs

P. Ekberg ·W. Yi
Uppsala University, Department of Information Technology, Box 337, SE-751 05 Uppsala, Sweden
E-mail: pontus.ekberg@it.uu.se

W. Yi
E-mail: yi@it.uu.se

http://dx.doi.org/10.1007/s11241-015-9225-0
mailto:pontus.ekberg@it.uu.se
mailto:yi@it.uu.se

2 Pontus Ekberg, Wang Yi

that specify both the arrival patterns of jobs and the synchronization points (mode
switches) between tasks. MS-DRT is a strict generalization of the Digraph Real-
Time (DRT) task model (Stigge et al. 2011) and of the common mixed-criticality
sporadic task model, as well as of some of its variations (Baruah 2012) and general-
izations (Ekberg and Yi 2014).

Mode-switching logic is specified per state (vertex) of the task graphs, so that
behaviors may differ depending on the local state of the tasks. The mode change
protocol is of a generalized mixed-criticality style, enabling immediate changes to
the timing parameters of active jobs at mode changes. As opposed to the usual mixed-
criticality setting, the order in which different modes may be visited in MS-DRT can
take the form of an arbitrary directed graph, including cycles.

The combination of graph-based task models with state-based mode switching
results in a fairly general model. Its semantics need not be interpreted as those of a
mixed-criticality system. It could also find use as a timing model for other types of
state-based systems with modes, such as statecharts (Harel 1987).

In this paper we describe and prove correct a sufficient schedulability analysis for
EDF for the proposed task model on preemptive uniprocessors. Because of the com-
plexity of the task model, the analysis follows a structured approach in which each
mode of the system is analyzed in relative separation by abstracting the influences
from other modes. With this approach it is also possible to use other scheduling algo-
rithms in some of the modes, without the need of updating the analysis for the modes
scheduled by EDF.

The analysis procedure builds upon ideas from previously published EDF schedu-
lability analysis methods for DRT task sets (Stigge et al. 2011) and mixed-criticality
sporadic task sets (Ekberg and Yi 2012, 2014). The proposed test has the property
that it is exact for the case where there is only a single mode in the system (in this
case it reduces to the test for DRT task sets from Stigge et al. (2011)) and is equal1

to the schedulability test from Ekberg and Yi (2014) in the case where the modeled
system is equivalent to a mixed-criticality sporadic task system. The latter test, while
not being exact (in common with all other schedulabilty tests for sporadic mixed-
criticality systems to date), has empirically been shown to perform well (see Ekberg
and Yi (2014) for details). For systems that combine features from both cases—the
systems that we are mainly interested in here—it is difficult to evaluate the effective-
ness of the proposed test because there are no other tests to compare with for this new
model. Still, there is no source of pessimism in the test other than the ones already
present in Ekberg and Yi (2014), so there is reason to believe that it performs well
also for some of these other systems.

1.1 Related Work

After the seminal paper by Vestal (2007), which described fixed-priority response-
time analysis for mixed-criticality sporadic task systems, the initial research effort
into mixed-criticality scheduling considered static sequences of jobs. The work by

1 It is equal assuming the same heuristics are applied in a preprocessing tuning phase.

Schedulability Analysis of a Graph-Based Task Model for Mixed-Criticality Systems 3

Baruah et al. (2011c) provides a good overview of such mixed-criticality job schedul-
ing. Later on, many works have considered the scheduling and analysis of mixed-
criticality sporadic task systems, e.g., Li and Baruah (2010); Guan et al. (2011);
Baruah et al. (2011a, 2012, 2011b); Ekberg and Yi (2012). This list is by no means
exhaustive.

EDF-based scheduling of mixed-criticality sporadic task systems was investi-
gated by Baruah et al. (2011a) in their work on EDF-VD. With EDF-VD they in-
troduced the idea of changing the deadline of jobs upon a switch to another criti-
cality mode. Similar EDF-based runtime scheduling was later used by Ekberg and
Yi (2012), but with an analysis based on computing demand bound functions for the
mixed-criticality tasks. Demand bound functions offer a useful abstraction for use in
EDF-based schedulability analysis, and have been applied to many varying task mod-
els outside of the mixed-criticality setting. For example, scheduling analyses based
on demand bound functions exist for task models that offer greater expressiveness
than sporadic tasks regarding job arrival patterns, such as the GMF (Baruah et al.
1999) and DRT (Stigge et al. 2011) task models. This wide applicability of demand
bound functions is what allows us analyze a combination of mixed-criticality style
mode switching with more general job release patterns in this paper.

Easwaran (2013) and Zhang et al. (2014) have adapted the demand bound func-
tion based analysis in Ekberg and Yi (2012) by essentially breaking the relative isola-
tion in which modes are considered, thereby increasing both computational complex-
ity and precision. In principle it should be possible to build an analysis of MS-DRT
task systems on such an approach as well, but the complexity could become pro-
hibitive.

Baruah (2012) has also proposed a variation of the standard mixed-criticality spo-
radic task model, in which the periods of sporadic tasks rather than their execution-
time estimates are subject to uncertainties. A generalization by Ekberg and Yi (2014)
covers the case where all parameters of the sporadic tasks may change, and the poten-
tial mode switches can be expressed as a directed acyclic graph instead of being lin-
early ordered. This generalized model is still much less expressive than the MS-DRT
model.

Some limitations of sporadic mixed-criticality systems have also been addressed
in other works recently. Santy et al. (2013) considered the transitioning back to lower
criticality modes under both fixed-priority and EDF scheduling. Huang et al. (2014)
additionally considered increasing the periods of low-criticality tasks rather than
dropping them at a switch to a higher criticality mode when using EDF. Burns and
Baruah (2013) instead looked at the analysis of fixed-priority scheduling when low-
criticality tasks are allowed to decrease their execution-time budgets after a mode
switch. Several authors (e.g., Su and Zhu 2013; Jan et al. 2013) have used elastic
task models to let low-criticality tasks adapt their periods depending on the current
load on the system. These solutions tend to be more specialized than the MS-DRT
model presented in this paper, with which any number of complicated behaviors can
be modeled on a per-task basis.

For a comprehensive review of the literature on mixed-criticality scheduling, we
refer the reader to Burns and Davis (2015).

4 Pontus Ekberg, Wang Yi

2 Model

In this section we describe the syntax and semantics of the MS-DRT task model.
Some example tasks, focusing on a mixed-criticality interpretation of the semantics,
are presented in Section 2.3. The task in Figure 1 helps to illustrate the syntax.

2.1 Syntax

An MS-DRT task system is formally defined by a finite set of tasks T = {τ1,τ2, . . .}
with an associated finite set of modes M(T) = {µ1,µ2, . . .}. An MS-DRT task τ ∈ T
is given by a triple (V (τ),Ecf(τ),Ems(τ)), defined as follows.

– V (τ) is a set of vertices, representing job types.
– Each vertex v ∈ V (τ) is labeled with a triple of parameters (e(v),d(v),µ(v)) ∈
N>0×N>0×M(T), representing worst-case execution time, relative deadline and
mode of the corresponding job type, respectively.

– Ecf(τ) is a set of directed edges representing possible task control flow, such that
µ(u) = µ(v) for each (u,v) ∈ Ecf(τ). In the figures these edges are drawn as
straight arrows.

– Each edge (u,v)∈Ecf(τ) is labeled with a minimum inter-release separation delay
parameter p(u,v) ∈ N>0.

– Ems(τ) is a set of directed edges representing possible mode switches, such that
µ(u) 6= µ(v) for each (u,v) ∈ Ems(τ). These edges are drawn as wiggly arrows.

We assume that each task τ ∈ T satisfies the frame separation property, a gener-
alization of the constrained deadlines concept for sporadic tasks. In other words, for
each vertex u ∈V (τ) and (u,v) ∈ Ecf(τ) we have d(u)6 p(u,v).

Note that, by the above definition, Ecf(τ) and Ems(τ) are disjoint sets. Also,
(V (τ),Ecf(τ)) is a directed graph with disjoint subgraphs for each mode of the task,
and (V (τ),Ems(τ)) is a directed multipartite graph (colorable with one color per
mode). For convenience, let the subgraph in (V (τ),Ecf(τ)) corresponding to mode
µi be denoted DRTµi(τ)

def
= ({v ∈V (τ) | µ(v) = µi} ,{(u,v) ∈ Ecf(τ) | µ(u) = µi}).

2.2 Semantics

All tasks in an MS-DRT system run in the same mode at any particular time point,
i.e., the modes are system wide. While running inside some mode µi, an MS-DRT
task τ behaves as an ordinary DRT task with graph DRTµi(τ). That is, it releases a se-
quence of jobs that corresponds to some path (represented as a sequence of vertices)
in DRTµi(τ), such that every vertex on the path matches one released job. More for-
mally, a job of τ is defined by a pair (r,v)∈R×V (τ), representing a release time and
a job type, respectively. A job sequence [(r1,v1),(r2,v2), . . .] is said to be generated
by τ in µi if there is a path (π1,π2, . . .) through DRTµi(τ) such that for all n

1. vn = πn,
2. rn+1 > rn + p(πn,πn+1).

Schedulability Analysis of a Graph-Based Task Model for Mixed-Criticality Systems 5

u

(3,30,µ1)

v

(5,25,µ1)

w(3,30,µ2)

x

(2,15,µ2)

y (0,0,µ2)

30

30

70

30 0

20

Fig. 1 An example task. The colors help reading, but carry no semantic information. In mode µ1, this task
behaves as a simple two-vertex DRT task, releasing jobs at vertices u and v in some pattern. In µ2, the
behavior is mostly sporadic with repeated job releases at x. The behavior at a mode switch from µ1 to µ2
depends on the state. If the latest job released in µ1 was at v, that job is dropped if it is still active upon the
switch to y (by setting its execution time budget to 0). Immediately after, x can be visited and a new job be
released. If the latest job in µ1 was instead at u, it is allowed to finish after the mode switch (its parameters
are preserved in w) before the sporadic behavior at x starts.

A job (r,u) has an execution-time budget equal to e(u) and an absolute dead-
line equal to r+ d(u). The valid runtime behaviors of task τ in µi is to release any
sequence of jobs that it can generate. Jobs may require execution time up to their
budgets before they must finish, but may also finish earlier.

It is sometimes possible for the tasks in the task set T to synchronously switch
from their current mode µ j to a new mode µi. A mode switch from µ j to µi is allowed
if there is an outgoing mode-switch edge to the new mode from the latest job type of
each task. More formally, it is allowed if and only if the latest released job of each
task τ ∈ T is some (r,u) and there exists an edge (u,v) ∈ Ems(τ) such that µ(v) = µi.

When that mode switch occurs, each task synchronously switches to the new
mode through one of its valid mode-switch edges (u,v) and immediately updates
its last released job (r,u) correspondingly. In particular, the job (r,u) is changed to
become job (r,v) as follows.

1. Its total execution-time budget is changed from e(u) to e(v), but is not replen-
ished. If its remaining execution time is now less than or equal to 0, it is consid-
ered to have finished.

2. Then, its absolute deadline is changed to be r+d(v).

If a job has already finished before a mode switch it is never reactivated, even if its
execution-time budget is increased. Jobs that are active during a mode switch are
called carry-over jobs. A job is still eligible to become a carry-over job at the time
point where its remaining execution-time budget reaches zero; this allows modeling
of mode switches due to execution-time overruns.

After the mode switch, each task τ can go on to release a new sequence of jobs
[(r′1,v

′
1),(r

′
2,v
′
2), . . .] in the new mode µi, as long as that sequence prepended by the

updated job (r,v) can be generated by τ in µi. By these semantics, minimum inter-
release separation delays hold across mode switches. In other words, if the latest

6 Pontus Ekberg, Wang Yi

released job of τ (active or not) was released at time r in a previous mode, then the
first control-flow edge (v,w) ∈ Ecf(τ) to be followed in the new mode can not be
taken earlier than time r+ p(v,w).

The model does not specify the origin of the events triggering mode switches, but
rather just says that such events can arrive at any time. Any event-triggering scheme
chosen by the system designer is then valid for the model. For example, mode-switch
events can be emitted due to the run-time behavior of the tasks themselves, or due to
execution-time overruns of jobs. They could also be the result of errors or faults, or
come from external sources. A system may start with any mode as the initial one, and
with any vertices with job types of that mode as the initial vertices of the tasks.2

We define schedulability with some algorithm per mode of the system.

Definition 1 (Schedulability) A mode µi ∈M(T) is A-schedulable if all jobs have
finished latest at their deadlines while the system is in µi and the jobs are executed in
µi by scheduling algorithm A.

Note that the syntax and semantics of this model have intentionally been designed
to be low-level, flat and suitable for timing analysis. Large and complex tasks could
quickly become unwieldy for humans; we fully expect such tasks to be synthesized
by tools rather than be manually crafted.

2.3 Examples

Here we present some simple example tasks, showing a few of the properties that can
be modeled with the MS-DRT task model. The examples focus on mixed-criticality
systems, but recall that the MS-DRT task model is not restricted to be interpreted as
a model of such systems. An additional larger example is given in Appendix B.

Example 1 (Dual-criticality tasks) Figure 2 shows four tasks that are similar to
ordinary mixed-criticality tasks, but some with additional semantics that can not be
expressed in the original model. The intended interpretation is that the system would
switch from a low-criticality mode (named LO) to a high-criticality mode (named HI)
upon an execution-time overrun.

τ1 is equivalent to a high-criticality sporadic task, with period 28 and relative dead-
line 15, that gets its execution-time budget increased from 2 to 4 at a switch to the
high-criticality mode (HI).

τ2 will instead drop any active job at a mode switch, and after a delay start a less
intensive sporadic workload. It is like a low-criticality sporadic task that must
provide a minimum quality of service also in the high-criticality mode, but holds
back this service a short while to ease the transition between modes for the rest of
the system. Recall that the inter-release separation constraints hold transparently
across mode switches, so the extra dummy job at v3 is introduced to ensure that v4
is visited no earlier than 100 time units after the mode switch as opposed to 100

2 In practice, systems will often have just a few initial states, but allowing it to start in any reachable
state typically has no effect on schedulability.

Schedulability Analysis of a Graph-Based Task Model for Mixed-Criticality Systems 7

time units after the last job release at v1. If v2 instead was connected directly to v4,
a job could be released at v4 immediately after the mode switch if enough time had
passed since the last job release at v1 in LO. Informally, the release of a dummy
job at v3 serves to reset the timer for the inter-release separation constraints.

τ3 will stop releasing new jobs after a mode switch, but must finish any active job
that it has at that time; the time given to finish the last job is increased to 70 time
units instead of the 30 time units that are normally given.

τ4 is a direct extension from a simple two-vertex DRT task to a high-criticality task
with different execution-time estimates at the different criticality levels.

τ1 u1

(2,15,LO)

u2

(4,15,HI)

28 28

τ2 v1

(3,20,LO)

v2

(0,0,HI)

v3

(0,0,HI)

v4

(2,50,HI)

20 0

100

50

τ3 w1

(6,30,LO)

w2

(6,70,HI)

30

τ4

y1

(3,16,LO)

y2

(1,25,LO)

y3

(6,16,HI)

y4

(3,25,HI)

30

25

25

30

25

25

Fig. 2 Example tasks that somewhat similar to ordinary dual-criticality tasks.

8 Pontus Ekberg, Wang Yi

τ ′1 u1

(3,15,LO)

u2

(6,30,HI)

u3

(6,30,HI)

u4

(6,12,HI)

u5
(0,0,LO)

30
30

30

30

30

τ ′2

v1

(4,25,LO)

v2

(0,0,HI)

v3 (0,0,LO)v4(0,0,LO)

40

0

20

Fig. 3 Example tasks that can switch back to previous modes.

Example 2 (Cyclic criticality modes) Figure 3 shows two tasks that could be in a
dual-criticality system where it is possible for the system to switch back to mode LO.

τ ′1 exemplifies one possible way to model a high-criticality task. It releases jobs at
most every 30 time units, and the execution-time estimate is 3 time units for the
low-criticality mode (optimistic) and 6 time units for the high-criticality mode
(pessimistic). The deadlines for the jobs are 30 time units after their release times,
but for some vertices we have artificially decreased the relative deadlines to sim-
ulate the result of a tuning procedure.3

The intended interpretation is that τ ′1 performs its normal mode of operation in
u1, moving to u2 (and mode HI) upon an execution-time overrun. The carry-over
job and the next job in HI will have the larger (original) deadline to provide extra
slack during the mode transition, and the task eventually settles down in u4, which
has a smaller deadline parameter. The smaller deadline again provides some slack
for the carry-over job should the system switch back to mode LO. The model

3 Some process of deadline tuning is essential for improving EDF-schedulability of mixed-criticality
systems, and has previously been used for sporadic tasks (e.g., Baruah et al. 2011a, 2012; Ekberg and
Yi 2012, 2014; Easwaran 2013; Zhang et al. 2014). Automatic deadline tuning is discussed further in
Section 4.

Schedulability Analysis of a Graph-Based Task Model for Mixed-Criticality Systems 9

allows the switch to LO to happen at any time, but the intended interpretation is
that it should only happen if either a) the last visited vertex is u2 or u3 and the
corresponding job is finished, or b) the last visited vertex is u4 and the last job is
not currently executing beyond the low-criticality budget of 3 time units. If there
are several high-criticality tasks in the system, the intention is that switching back
to LO should happen only when it is acceptable for all of them.
Essentially, the high-criticality behavior of τ ′1 has been unrolled twice, creating
vertices u2 and u3. The purpose is to allow the first two jobs in HI to have a
different deadline and different semantics for switching back to LO. The number
of times to unroll is a design-time choice for this type of task.

τ ′2 is instead an example of how a type of low-criticality task can be modeled. Its
normal mode of operation is in v1. Upon a mode switch to HI (due to an execution
time overrun of some high-criticality task), it drops any active job and becomes
inactive. If the system switches back to LO, it additionally waits at least 20 time
units before it begins to release new jobs at v1 in order to ease the transition.

3 Analysis

In this section we introduce a structured methodology for analyzing the schedulability
of MS-DRT task systems on preemptive uniprocessors. EDF analysis is presented in
detail in this paper. The analysis is designed to consider each mode of the system as
independently as possible, abstracting the possible influences from preceding modes.
For easy reference, a table of the notation used throughout this section is available in
Appendix D.

Definition 2 (Mode structure) The mode structure G(T) of an MS-DRT task sys-
tem T is the directed graph (V,E) where V = M(T) is the set of modes and E con-
tains edges for the possible mode switches. That is, (µ j,µi) ∈ E if and only if each
task τ ∈ T has vertices u,v such that (u,v) ∈ Ems(τ) and µ(u) = µ j and µ(v) = µi.
Also, let the set of immediate predecessor modes to any mode µi in G(T) be denoted
predG(T)(µi)

def
=
{

µ j | (µ j,µi) ∈ E
}

.

Note that G(T) contains no self-loops, but can otherwise be an arbitrary directed
graph. Figure 4 shows the mode structures for the example task sets from the previous
section.

LO HI LO HI

Fig. 4 Mode structures of the tasks in Example 1 (left) and Example 2 (right).

10 Pontus Ekberg, Wang Yi

µ j µi

idbfµi (T, `) considers whole jobs
in any interval inside µi of length `.

`

`

tdbfµ j→µi (T, `) also considers
carry-over workload, but only

intervals starting at a mode switch.

Fig. 5 Illustration of internal and transitional demand bound functions.

3.1 Overview of the EDF Analysis

The EDF analysis is based on computing demand bound functions for the task set.
We define two different types of demand bound functions, covering different cases.

Definition 3 (Internal demand bound functions) An internal demand bound func-
tion idbfµi(T, `) gives the maximum cumulative execution requirement of jobs from
tasks in T that can be both released and have deadline in any time interval of length
`, during which the system is continuously in mode µi. The top of Figure 5 illustrates
this type of demand bound function.

Definition 4 (Transitional demand bound functions) A transitional demand bound
function tdbfµ j→µi(T, `) gives the maximum cumulative execution requirement of jobs
from tasks in T in any time interval of length `, such that the interval starts at a mode
switch from µ j to µi and during which the system is continuously in mode µi. To be
counted towards the cumulative execution requirement, a job must satisfy one of the
following conditions.

1. Be released and have deadline inside the interval.
2. Be active at the time point of the mode switch and have deadline (the updated

deadline, as seen in mode µi) before the end of the interval.

In the latter case, only the workload that remains after the mode switch is counted,
i.e., discounting any execution time that was done before the mode switch. The bottom
of Figure 5 serves as an illustration.

Internal demand bound functions can be computed directly using techniques from
Stigge et al. (2011). Transitional demand bound functions offer a greater challenge.

Schedulability Analysis of a Graph-Based Task Model for Mixed-Criticality Systems 11

In order to determine the exact demand of carry-over jobs and actually compute a
tdbfµ j→µi(T, `) we would have to consider, in great detail, the behavior of the system
in µ j, which in turn can depend on the mode preceding µ j and so on. A safe approx-
imation of transitional demand bound functions is described in Section 3.3. For now,
we define two predicates using the demand bound functions defined above, and show
that they can be used to guarantee EDF-schedulability of a mode µi, considering a
mode switch from another mode µ j.

SEDF(T, µi)
def
= ∀`> 0, idbfµi(T, `)6 ` (1)

SEDF(T, µ j→ µi)
def
= ∀`> 0, tdbfµ j→µi(T, `)6 ` (2)

Lemma 1 Mode µi of MS-DRT task system T is EDF-schedulable when either of the
following hold.

1. Mode µi is the first mode the system is in and

SEDF(T, µi).

2. Mode µi is switched to from µ j and

SEDF(T, µi) ∧ SEDF(T, µ j→ µi).

Proof We prove the contrapositive. Assume that µi was scheduled by EDF and that
time point tmiss was the earliest time point in µi at which some job J has missed its
deadline. Let [tstart, tmiss] be the busy period and tswitch the time point of the last switch
from µ j to µi if such a time point exists, or tswitch =⊥ otherwise. The start of the busy
period tstart is defined to be the earliest time point such that at all points in the interval
[tstart, tmiss] there was at least one active job with absolute deadline latest at tmiss. Such
a time point is guaranteed to exist. We now consider two cases.

First case: tswitch 6∈ [tstart, tmiss]. In this case the busy period must be entirely in
mode µi. By the definitions of the busy period and EDF, jobs with absolute deadline
latest at tmiss were executed during the entire period. Again by definition, all jobs
executed in the busy period were released inside it and so was the job J (regardless of
whether it was executed or not). As not all jobs that were both released and had their
deadline in the busy period finished inside it (in particular, job J did not), despite only
those jobs being executed there, the total cumulative execution requirement of those
jobs must exceed the length of the busy period. Because idbfµi(T, `) is the maximum
cumulative execution requirement of jobs from tasks in T that are both released and
have deadline in any interval of length ` in µi, predicate SEDF(T, µi) can not hold for
`= tmiss− tstart.

Second case: tswitch ∈ [tstart, tmiss]. In this case the busy period can extend into
previous modes. The part of the busy period that is inside µi is [tswitch, tmiss]. Dur-
ing the whole of [tswitch, tmiss], EDF scheduled only jobs with an absolute deadline
latest at tmiss, by the definition of the busy period. In addition, the jobs executed in
[tswitch, tmiss], as well as J, must have been either released earliest at tswitch or been
active at tswitch and carried over from µ j. Because J did not finish inside the in-
terval [tswitch, tmiss], the cumulative execution requirement of those jobs (not count-
ing workload finished before tswitch) must have exceeded the length of the interval.
As tdbfµ j→µi(T, `) is the maximum cumulative execution requirement of exactly the
above kind of jobs in an interval of length `, starting at a mode switch from µ j to µi,
SEDF(T, µ j→ µi) can not hold for `= tmiss− tswitch. ut

12 Pontus Ekberg, Wang Yi

The schedulability guarantee provided by the above lemma is easily extended to
cover all possible preceding modes.

Corollary 1 Mode µi of MS-DRT task system T is EDF-schedulable if

SEDF(T, µi) ∧ ∀µ j ∈ predG(T)(µi), SEDF(T, µ j→ µi).

ut

3.2 Exact Formulation of Internal Demand Bound Functions

First we look at the internal demand bound functions. Because they only consider
time intervals contained in a single mode and only jobs with both release time and
deadline inside those intervals, they are equivalent to demand bound functions for
ordinary DRT tasks, i.e., without mode switches. Such demand bound functions can
be captured exactly by considering the paths in the single-mode subgraphs of each
task. Every job sequence generated by a task τ while in any single mode µi corre-
sponds to a path in the graph DRTµi(τ). Let Πµi(τ) denote the set of finite paths in
DRTµi(τ). If π is a path, let πn denote its n-th vertex, let πn···m denote the (possibly
empty) sub-path between and including the n-th and m-th vertices, and let |π| denote
its length in number of vertices.

For each path π ∈ Πµi(τ) we can calculate the maximum cumulative execution
demand ẽ(π) of the job sequences corresponding to that path, as well as the minimum
interval length d̃(π) that can contain all the release times and absolute deadlines of
such a job sequence.

ẽ(π) def
=

|π|

∑
n=1

e(πn) (3)

d̃(π) def
=
|π|−1

∑
n=1

p(πn,πn+1)+d(π|π|) (4)

The pair 〈ẽ(π), d̃(π)〉 is called a demand pair for path π . As is illustrated in
Figure 6, the demand pairs for the paths in Πµi(τ) contain all the information needed
to make a constructive formulation of the internal demand bound function for a single
task τ (see Stigge et al. 2011):

idbf?µi
(τ, `)

def
= max{ẽ(π) | π ∈Πµi(τ) ∧ d̃(π)6 `} (5)

Because the tasks in a task set do not synchronize while the system remains in a
single mode, any interleaving of job sequences from the tasks is possible. The sum
of the internal demand bound functions for each task therefore exactly matches the
internal demand bound function for the task set, as defined in Definition 3.

idbfµi(T, `) = ∑
τ∈T

idbf?µi
(τ, `) (6)

Schedulability Analysis of a Graph-Based Task Model for Mixed-Criticality Systems 13

0 25 50 75 100 125 150
0

5

10

15

20

25

e

d

idbf?HI(τ4, `)

Fig. 6 The (beginning of) function idbf?HI(τ4, `) for τ4 from Example 1. The demand pairs for the paths
through DRTHI(τ4) are drawn as diamond-shaped points.

It is shown by Stigge et al. (2011) how to efficiently compute all demand pairs that
are relevant for establishing EDF-schedulability using a dynamic programming tech-
nique. This technique will also be used as the final step during the computation of
approximated transitional demand bound functions. We now consider this approxi-
mation.

3.3 Approximation of Transitional Demand Bound Functions

Transitional demand bound functions can not, in general, be characterized exactly
without a holistic analysis of the entire system. The complexity of such an analysis is
likely prohibitive (recall that even for much simpler mixed-criticality sporadic tasks,
an exact EDF analysis is yet to be found). Here we construct an approximation of
transitional demand bound functions that is safe given the only assumption that the
immediately preceding mode, i.e., the mode that is switched from, is schedulable with
the scheduling algorithm used there. This may seem like a problematic assumption if
there are cycles in the mode structure, but it does not actually cause any problems, as
will be shown later in Theorem 2.

The approximation will be constructed in three steps that are outlined below.

1. We construct a function that is provably an upper bound on the true transitional
demand bound function if the preceding mode is schedulable, but is impractical
to compute.

2. From the first function we construct a second, simplified, function that is more
practical to work with. It is a lower bound on the first function, but despite this it
provably preserves safety in the schedulability analysis.

3. We construct a DRT task and show that its demand bound function is equal to the
second function, and use the methods of Stigge et al. (2011) to compute it.

We begin by looking at individual carry-over jobs.

14 Pontus Ekberg, Wang Yi

Approximating demand of carry-over jobs The carry-over jobs are the main issue to
consider for a transitional demand bound function tdbfµ j→µi(T, `). Assume in the fol-
lowing that the preceding mode µ j is scheduled by algorithmA and isA-schedulable,
meaning that no deadline can be missed in µ j. It follows from the frame separation
property (see Section 2) that there is at most one active job for each task at any time
point in mode µ j, and this is the job that was most recently released by the task. Each
task τ can then have at most one carry-over job, and if τ switched mode via edge
(u,v) ∈ Ems(τ), then the job that is carried over is of the type labeled on vertex u.4

The job sequences we have to consider for each task therefore start with at most one
carry-over job that is followed by a number of jobs that are both released and have
deadline inside mode µi.

For each task τ, we must characterize the execution requirements of the (at most)
single carry-over job. Let

Eµ j→µi(τ)
def
=
{
(u,v) ∈ Ems(τ) | µ(u) = µ j ∧µ(v) = µi

}
denote the set of mode-switch edges that can take τ from µ j to µi, and let

firstµ j→µi(τ)
def
=
{

w | (u,v) ∈ Eµ j→µi(τ)∧ (v,w) ∈ Ecf(τ)
}

denote the first vertices that can be visited in µi via a control-flow edge after such a
mode switch.

Clearly, each of the edges (u,v) ∈ Eµ j→µi(τ) that τ may take on a mode switch
could result in carry-over jobs of different parameters. However, also at any single
edge (u,v) the resulting carry-over job can be in any of a large number of differ-
ent states. There are two important properties of carry-over jobs that are generally
unknown:

1. At which time point, relative to the carry-over job’s scheduling window, does the
mode switch occur?

2. How much of its execution time-requirement remains at that point?

Precise answers to those questions would likely require, as previously mentioned, a
very detailed analysis of all possible behaviors of the system prior to a mode switch.

We assumed that the previous mode µ j is schedulable. It follows that for a job
to be active at the mode switch and become a carry-over job, the switch must occur
between its release time and absolute deadline in µ j. For a carry-over job at edge
(u,v) ∈ Eµ j→µi(τ), let x be the length of the time interval between the mode switch
and the job’s absolute deadline in µ j, as in Figure 7. We know that x ∈ [0,d(u)].
Further, because µ j is schedulable, we know that if there had not been a mode switch
(which is also a valid behavior according to the system model) the would-be carry-
over job would have met its deadline in µ j. The job’s remaining execution time budget
in µ j at the time of the mode switch can therefore not exceed the length of the time
interval until its deadline in µ j, and is then at most min(e(u),x). In the new mode µi,

4 Even if the job was not released at u, but in an even earlier mode, its job type must have been changed
to the type of u prior to switching to mode µi.

Schedulability Analysis of a Graph-Based Task Model for Mixed-Criticality Systems 15

µ j µi

t t +d(u) t +d(v) > t + p(v,w)

dco(u,v,x)

x

> pco(u,v,w,x)

Release of the next job at w.

Release of the
carry-over job.

. . .

Fig. 7 A carry-over job of τ at a mode switch via (u,v) ∈ Eµ j→µi (τ). The first job to be released inside µi
is at vertex w ∈ firstµ j→µi (τ).

the total budget is changed to e(v) and the most that can remain of it immediately
after the mode switch is

eco(u,v,x)
def
= max(0, e(v)− e(u)+min(e(u),x)) . (7)

We can also calculate the minimum length of a time interval starting at the mode
switch, such that the carry-over job’s new deadline in µi is latest at the end of the
interval, as

dco(u,v,x)
def
= max(0, d(v)−d(u)+ x). (8)

Similarly, the minimum delay before a new control-flow edge (v,w) ∈ Ecf(τ) can be
followed after the mode switch, resulting in the first job released in µi, is

pco(u,v,w,x)
def
= max(0, p(v,w)−d(u)+ x). (9)

A carry-over job at a mode-switch via (u,v)∈Eµ j→µi(τ) can therefore only add to
the value of the transitional demand bound function tdbfµ j→µi(T, `) if dco(u,v,x)6 `
for some x ∈ [0,d(u)], and then with at most eco(u,v,x).

Considering entire job sequences Also jobs following the carry-over job (if there
even is one) have to be considered for the transitional demand bound function. The
execution requirements of the jobs following the carry-over job can be captured con-
sidering paths in DRTµi(τ), much in the same way as for the internal demand bound
functions in Eq. (3) and (4).

We look first at the case where there is no carry-over job from task τ. In this
case, all the jobs from τ that can add to the cumulative execution requirement of

16 Pontus Ekberg, Wang Yi

tdbfµ j→µi(T, `) are both released and have deadline in an interval of length ` that
starts at the mode switch. Those jobs form a job sequence that corresponds to some
path π ∈Πµi(τ), and a demand pair for that job sequence is simply

pairnco(π)
def
= 〈ẽ(π), d̃(π)〉.

The first job to be released in such an interval must be of a type represented by one
of the vertices in firstµ j→µi(τ). The set of demand pairs for job sequences without
carry-over jobs is therefore

ncoµ j→µi(τ)
def
= {pairnco(π) | π ∈ Paths}, (10)

where Paths = {π ∈Πµi(τ) |π1 ∈ firstµ j→µi(τ) ∨ |π|= 0}.
We now look at the case where there is a carry-over job from task τ. Each job

sequence to consider from τ in this case corresponds to some path π ∈Πµi(τ) where
the first vertex is the carry-over job, i.e., where (u,π1) ∈ Eµ j→µi(τ) for some vertex
u. Again, the exact parameters of the carry-over job are unknown, but we know from
Eq. (7) how to bound its remaining execution requirement when there are x time units
left of its scheduling window in mode µ j. Given such an x ∈ [0,d(u)], the cumulative
execution requirement to consider for the entire job sequence is therefore at most

ẽco(u,π,x)
def
= eco(u,π1,x)+ ẽ(π2···|π|).

Similarly, the minimal length of any time interval that starts at the mode switch and
can contain the entire job sequence can be derived using Eq. (8) and (9). If the carry-
over job is the only job in the sequence, the interval needs only be long enough to
contain the carry-over job’s new deadline in µi. If there are other jobs in the sequence,
the interval must be long enough to contain all their releases and deadlines, in addi-
tion to the minimum offset until the first of those jobs can be released. The minimal
interval length is therefore

d̃co(u,π,x)
def
=

{
dco(u,π1,x) if |π|= 1,
pco(u,π1,π2,x)+ d̃(π2···|π|) otherwise.

Putting these together we can construct demand pairs for job sequences starting with
a carry-over job as

pairco(u,π,x)
def
= 〈ẽco(u,π,x), d̃co(u,π,x)〉.

We then consider all possible job sequences starting with a carry-over job, and
all values of x for the carry-over job in each sequence. This way we define a safe
approximation on the set of demand pairs for all job sequences starting with a carry-
over job as

coµ j→µi(τ)
def
= {pairco(u,π,x) | (u,π,x) ∈ Vals}, (11)

where we have Vals = {(u,π,x) | π ∈Πµi(τ) ∧ (u,π1) ∈ Eµ j→µi(τ) ∧ x ∈ [0,d(u)]}.

Schedulability Analysis of a Graph-Based Task Model for Mixed-Criticality Systems 17

Having safely approximated the demand pairs of all relevant job sequences, we
can define an upper bound on the transitional demand bound function for a single
task τ in the same manner as in Eq. (5).5

tdbfub
µ j→µi

(τ, `)
def
= max{e | 〈e,d〉 ∈ Pairs ∧ d 6 `}, (12)

where Pairs = ncoµ j→µi(τ)
⋃

coµ j→µi(τ).
By summing the over-approximated transitional demand bound functions of each

τ ∈ T , we get an upper bound on the true transitional demand bound function of T .

Lemma 2 If mode µ j is scheduled by algorithm A and is A-schedulable, then

∀`> 0, ∑
τ∈T

tdbfub
µ j→µi

(τ, `) > tdbfµ j→µi(T, `).

Proof By the reasoning above. ut

Note that this formulation has two sources of pessimism. The first is the potential
over-approximation of the remaining execution time of carry-over jobs in Eq. (7). The
second is that the summation of the single-task transitional demand bound function
may combine worst cases for carry-over jobs that can not actually happen at the same
time. Contrary, the jobs following a carry-over job in a job sequence are precisely
captured by the demand pair technique and do not incur any additional pessimism.

Reducing the number of demand pairs In Lemma 2 it was shown that tdbfub
µ j→µi

(τ, `)
can be used as an upper bound on the transitional demand bound function, given that
the preceding mode is schedulable. It is, however, impractical to compute using a
dynamic programming technique such as that of Stigge et al. (2011). This is because
it considers individual demand pairs for all possible sizes of the carry-over jobs’
remaining scheduling windows (i.e., all the different values of x in Eq. (11)).

To mitigate this, we create a new function tdbf?µ j→µi
(τ, `) considering only a sin-

gle size for each carry-over job’s (remaining) scheduling window (i.e., a single value
for x). We then show that the new function is safe to use for establishing schedulabil-
ity even though it may at some points under-approximate tdbfub

µ j→µi
(τ, `). We want to

consider only the demand pairs that are, in a certain sense, the most problematic. For
this we pick out a subset from the set of demand pairs in Eq. (11):

co?µ j→µi
(τ)

def
= {pairco(u,π,e(u)) | (u,π) ∈ Vals?}, (13)

where Vals? = {(u,π) | π ∈Πµi(τ) ∧ (u,π1) ∈ Eµ j→µi(τ)}.
The smaller set of demand pairs is used to define the final function as

tdbf?µ j→µi
(τ, `)

def
= max{e | 〈e,d〉 ∈ Pairs? ∧ d 6 `}, (14)

where Pairs? = ncoµ j→µi(τ)
⋃

co?µ j→µi
(τ).

5 Here it can be noted that if we would model a sporadic mixed-criticality task with MS-DRT, such as
task τ1 in Example 1, the function tdbfub

LO→HI(τ1, `) would be equal to function dbfLO,HI(τ1, `) from Eq. (8)
in Ekberg and Yi (2014), although the formulation is completely different.

18 Pontus Ekberg, Wang Yi

The following lemma shows that tdbf?µ j→µi
(τ, `) preserves safety in schedulability

analysis.

Lemma 3

∃`1 > 0, ∑
τ∈T

tdbfub
µ j→µi

(τ, `1)> `1 ⇐⇒

∃`2 > 0, ∑
τ∈T

tdbf?µ j→µi
(τ, `2)> `2

Proof The proof is in Appendix C. ut

We can now define new versions of the two predicates in (1) and (2).

S?EDF(T, µi)
def
= ∀`> 0, ∑

τ∈T
idbf?µi

(τ, `)6 ` (15)

S?EDF(T, µ j→ µi)
def
= ∀`> 0, ∑

τ∈T
tdbf?µ j→µi

(τ, `)6 ` (16)

These predicates are safe replacements for their original counterparts:

Lemma 4 First, S?EDF(T, µi)⇐⇒ SEDF(T, µi). Second, if mode µ j is scheduled by
algorithm A and is A-schedulable, then

S?EDF(T, µ j→ µi) =⇒SEDF(T, µ j→ µi).

Proof From Eq. (6) we directly get S?EDF(T, µi)⇐⇒ SEDF(T, µi). Lemmas 2 and 3
taken together give us S?EDF(T, µ j→ µi) =⇒SEDF(T, µ j→ µi). ut

Our two main theorems follow. The first is about the EDF-schedulability of one
mode given the schedulability of the possible preceding modes.

Theorem 1 Mode µi of MS-DRT task system T is EDF-schedulable if each mode
µ j ∈ predG(T)(µi) is scheduled by algorithm A j and is A j-schedulable and if

S?EDF(T, µi) ∧ ∀µ j ∈ predG(T)(µi), S?EDF(T, µ j→ µi).

Proof By Corollary 1 and Lemma 4. ut

The second theorem shows that the same condition applied to all modes is suf-
ficient to show the schedulability of the entire system if all modes are scheduled by
EDF.

Theorem 2 If all modes of MS-DRT task system T are scheduled by EDF, they are
all EDF-schedulable if for all µi ∈M(T),

S?EDF(T, µi) ∧ ∀µ j ∈ predG(T)(µi), S?EDF(T, µ j→ µi).

Proof By Lemmas 1 and 4 and by induction on the sequence of modes the system
transitions through. The base case is the first mode µi that the system is in, which is
guaranteed schedulability by S?EDF(T, µi). ut

Schedulability Analysis of a Graph-Based Task Model for Mixed-Criticality Systems 19

3.4 Efficiently Computing the Demand Bound Functions

We now look at how to evaluate the predicates S?EDF(T, µi) and S?EDF(T, µ j→ µi)
efficiently. There are two major challenges:

1. We cannot actually compute the functions idbf?µi
(τ, `) and tdbf?µ j→µi

(τ, `) at all
values of `> 0 because of the infinite domain.

2. Even for a given value of `, the number of possible paths through the graphs is
generally exponential in `.

Fortunately, the above problems have been solved for regular DRT task sets in Stigge
et al. (2011). For such task sets it was shown that if the utilization of the task set
is bounded by some constant c < 1, it is enough to consider integer values of ` up
to a pseudo-polynomial upper bound, providing a solution to the first point. For the
second point, a path abstraction was introduced that enabled traversals of the graphs
with dynamic programming. The computation of all relevant demand pairs could then
be done in pseudo-polynomial time.

Because idbf?µi
(τ, `) is equal to the (regular) demand bound function of DRTµi(τ),

the existing methods are directly applicable to the DRT task set {DRTµi(τ) | τ ∈ T},
and can thus be used to evaluate S?EDF(T, µi).

Mapping of functions to DRT tasks For tdbf?µ j→µi
(τ, `) we have to do some more

work. It would be possible to extend the methods of Stigge et al. (2011) to compute
this function instead, but for brevity we opt to provide a construction of a DRT task
whose demand bound function is exactly tdbf?µ j→µi

(τ, `). This allows us to reuse the
existing methods without the need to reprove their correctness in a new setting.6

The key observation that makes the construction possible is that for each mode-
switch edge (u,v) ∈ Eµ j→µi(τ), we have reduced all the possible carry-over jobs con-
sidered for tdbf?µ j→µi

(τ, `) to the equivalent of a single concrete job. The idea is to
construct a new DRT task DRTµ j→µi(τ) by taking the graph DRTµi(τ) and adding new
vertices and edges to it representing the possible carry-over jobs. The details of the
construction are as follows. Note that we omit to label vertices with modes as the
resulting DRT tasks are non-modal.

1. For every (u,v)∈Eµ j→µi(τ), we add a vertex named Ju,vK after the corresponding
edge to DRTµ j→µi(τ), and label it with (eco(u,v,e(u)),dco(u,v,e(u))).

2. For every newly added vertex Ju,vK and edge (v,w) ∈ Ecf(τ), we add an edge
(Ju,vK,w) and label it with pco(u,v,w,e(u)).

It is evident that for every (u,π) ∈ Vals? used in Eq. (13), there is now a path π ′ in
DRTµ j→µi(τ) such that π ′1 = Ju,π1K and π ′2···|π ′| = π2···|π|. By construction, we have
〈ẽ(π ′), d̃(π ′)〉= pairco(u,π,e(u)).

6 There are actually two minor technical differences remaining. One is that the original DRT task model
assumes non-zero parameters (i.e., the labels on vertices an edges) while the DRT tasks we construct here
may have zero-valued parameters. The other is that we restrict the considered paths to those that start at a
subset of the vertices. The methods in Stigge et al. (2011) are easily extended to handle these differences,
and we omit doing so here.

20 Pontus Ekberg, Wang Yi

The set of demand pairs for those paths in DRTµ j→µi(τ) that start at one of
the newly added vertices therefore equal the set co?µ j→µi

(τ). The demand pairs in
ncoµ j→µi(τ) still correspond to the paths starting at one of the vertices in firstµ j→µi(τ)
(because the added vertices have no incoming edges they can never be a part of these
paths and therefore don’t affect their set of demand pairs). We can then apply the
methods from Stigge et al. (2011) to the task set {DRTµ j→µi(τ) | τ ∈ T}, but restrict
the considered paths to those starting at either one of the new vertices or a vertex
in firstµ j→µi(τ). It follows that the demand bound function computed in this way for
DRTµ j→µi(τ) equal the function tdbf?µ j→µi

(τ, `) over `.
As an illustration, Figure 8 shows the DRT tasks constructed from the tasks in

Example 2. It is easy to see that some of the vertices in the constructed tasks are
redundant for the purposes of computing the demand bound function (e.g., u2, Jv2,v3K
and practically all of DRTLO→HI(τ

′
2)), but this is not a problem because the dynamic

programming graph traversal algorithm will ignore such vertices almost immediately.

Complexity The sizes of the constructed DRT task graphs are polynomial in the rep-
resentation of the original MS-DRT task set, and the construction itself is a polyno-
mial time operation. The values used as the labels on the constructed graphs never
exceed the values used for labels on the MS-DRT task set. Note that DRTµ j→µi(τ) has
the same utilization as DRTµi(τ) because the added vertices are never part of a cycle.
The evaluation of S?EDF(T, µi) or S?EDF(T, µ j→ µi) is therefore of pseudo-polynomial
time complexity, following the results of Stigge et al. (2011), as long as the asymp-
totic utilization in µi is bounded by some constant c < 1.

To determine the EDF-schedulability of all modes in an MS-DRT task system
T , as in Theorem 2, we need to perform |V |+ |E| such pseudo-polynomial time
procedures, where (V,E) = G(T). Note that traversals in DRTµ j→µi(τ) are equiva-
lent to traversals in DRTµi(τ) after the first few vertices because the added vertices
in DRTµ j→µi(τ) have no incoming edges. Much of the computation needed for es-
tablishing schedulability of a given mode µi (i.e., evaluating S?EDF(T, µi) and each
S?EDF(T, µ j→ µi)) therefore consists of repeated graph traversals in DRTµi(τ) and
can be combined into a single more efficient procedure.

4 Tuning

Tuning of the relative deadline parameters of tasks is an essential aspect of EDF-
based scheduling of mixed-criticality systems. Various forms of deadline tuning have
been successfully applied to mixed-criticality sporadic task sets before (see, e.g.,
Baruah et al. 2011a, 2012; Ekberg and Yi 2012, 2014; Easwaran 2013; Zhang et al.
2014). The key idea is to artificially decrease the deadline of a job in one mode, and
then to revert back to the larger deadline if it would become a carry-over job. In this
way it is provided with extra slack time during the transitional period following a
mode switch. Note that if we never assign a value to a deadline parameter that is
larger than the original value, we are still keeping the timing constraints given by the
system designer.

Schedulability Analysis of a Graph-Based Task Model for Mixed-Criticality Systems 21

Ju1,u2K

(6,18)

u2

(6,30)

u3

(6,30)

u4

(6,12)

Ju5,u2K(6,30)

18

30

30

30

30

Jv1,v2K

(0,0)

v2

(0,0)

Jv3,v2K

(0,0)

Jv4,v2K

(0,0)

v1

(4,25)

Jv2,v3K

(0,0)

v3 (0,0)v4(0,0)

40

0

20
0

u1

(3,15)

Ju2,u5K

(0,0)

Ju3,u5K

(0,0)

Ju4,u1K (3,9)

u5 (0,0)

30
6

6

24

30

DRTLO→HI(τ
′
1)

DRTHI→LO(τ
′
1)

DRTLO→HI(τ
′
2)

DRTHI→LO(τ
′
2)

Fig. 8 The DRT tasks that are generated from the two MS-DRT tasks in Example 2. Valid start vertices
are those drawn with solid lines; no path starting at a dashed vertex is considered when computing their
demand bound functions.

A similar tuning approach can be used to improve the EDF-schedulability of an
MS-DRT task system (regardless of whether it is interpreted as a mixed-criticality
system or not). Consider the case where task τ has a carry-over job at some mode-
switch edge (u,v)∈ Eµ j→µi(τ). The carry-over job’s timing properties in mode µi are
characterized for the EDF-analysis by Eq. (7)–(9). If we were to decrease the relative
deadline parameter d(u) by some value δ , then eco(u,v,x) would remain the same
(for a given x) while dco(u,v,x) and pco(u,v,w,x) would both increase by up to δ . In
other words, the carry-over job would be easier to schedule after a mode switch, at
the expense of making jobs from vertex u harder to schedule in mode µ j due to the
smaller deadline.

22 Pontus Ekberg, Wang Yi

Finding valid values for all relative deadlines such that some condition is met
(e.g., so that all predicates in Theorem 2 hold) is a form of constraint satisfaction
problem. There are many ways of attempting to solve such a problem. For example,
in Ekberg and Yi (2012, 2014) a heuristic search algorithm tunes each deadline pa-
rameter individually while a condition based on demand bound functions is checked.
For MS-DRT task sets that are somewhat similar to sporadic task sets and have a
mode structure that is a DAG (like the tasks in Example 1), we believe that a heuris-
tic tuning approach inspired by that in Ekberg and Yi (2014) should work well. For
more complicated tasks and cyclic mode structures, new tuning heuristics would be
required. We consider the design of tuning heuristics to be out of scope of this paper.
We instead outline a general method of implementing tuning procedures efficiently
by eliminating redundant recomputations after a parameter change.

4.1 Avoiding Recomputations

If we change the relative deadline parameter of some vertex u ∈V (τ), where µ(u) =
µi, that change can affect all the demand bound functions on mode µi, i.e., idbf?µi

(τ, `)
and tdbf?µ j→µi

(τ, `) for each predecessor mode µ j. If jobs of type u can be carried over
to another mode µk, then the parameter change can also affect tdbf?µi→µk

(τ, `). These
are demand bound functions defined by the demand pairs of paths in one of the graphs
DRTµi(τ), DRTµ j→µi(τ) or DRTµi→µk(τ).

It is wasteful to recompute those demand bound functions from scratch every
time a parameter value is changed. Clearly, the change to d(u) only affect demand
pairs corresponding to paths that contain u in some form. That is, paths that contain
at least one of the vertices u, Jv,uK or Ju,vK for some v. In addition, the demand pair
〈ẽ(π), d̃(π)〉 of such a path π is only affected by the change to d(u) if either π1 is
Ju,vK or π|π| is u or Jv,uK. Changes to deadlines of intermediate vertices in π do not
affect its demand pair. In fact, given any path π we only need to know the identities
of vertices π1, π2 and π|π| to update its demand pair to be valid for a new value of
parameter d(u) for any arbitrary vertex u ∈ V (τ). (The identity of π2 is needed to
calculate the minimum separation between π1 and π2 with Eq. (9).) See Figure 9 for
an illustration.

Ju,vK

π1

w

π2

x

π3

y

π|π|−1

z

π|π|

. . .

Fig. 9 At most three vertices of path π must be considered when updating its demand pair upon a deadline
change. For this path, a decrease of d(z) results in a decrease of d̃(π), and a decrease of d(u) may instead
increase d̃(π). Changes to the deadline of other vertices, such as d(y), do not affect the demand pair.

We propose to perform the tuning at the level of the path abstractions used in the
graph traversals. The path abstraction used in Stigge et al. (2011) is a triple 〈e,d,v〉,
consisting of a demand pair 〈e,d〉 extended with a single vertex v; it represents all

Schedulability Analysis of a Graph-Based Task Model for Mixed-Criticality Systems 23

paths that end in v and have demand pair 〈e,d〉. It forms the basis for the dynamic
programming based graph traversal because longer paths can be created from it by
just replacing v with some successor vertex u and updating the values e and d ac-
cordingly. After generating all (relevant) path abstractions, the set of demand pairs is
easily extracted.

We extend the path abstraction to contain also the first and second vertices of the
paths it represent, so it becomes a triple 〈e,d,(u,v,w)〉. It then represents all paths
with demand pair 〈e,d〉 starting with vertices u and v and ending in w. The graph
traversal proceeds like before by replacing w and updating e and d. With the extension
there are clearly more path abstractions that can be created in total, but from Stigge
et al. (2011) it is clear that they are still at most pseudo-polynomially many. After
performing the graph traversals once, we can perform deadline tuning directly on
the sets of path abstractions generated for each induced DRT graph. There are many
further optimizations that can be applied, but the above provides a proof of concept
that efficient deadline tuning is possible.

5 Conclusions

We have presented the MS-DRT task model, which combines complex job arrival
patterns with state-based mode changes. The mode-switching protocol is of a mixed-
criticality style, meaning that parameters of active jobs may be immediately changed
upon a mode switch. A consequence of this is that the task model generalizes both
previous graph-based and mixed-criticality (sporadic) task models. The model can
express some features of mixed-criticality systems that are lacking in the standard
mixed-criticality task models. Being fairly general, it may also be useful as a timing
model for other state-based systems with various types of modes, such as some used
in model-based design tools.

There are several ways in which the task model can be extended. For example,
one can add a language for describing conditions on how and when different mode
switches can occur. Another extension is to allow arbitrary deadlines, with the conse-
quence that each task may have several carry-over jobs at once. Also the latter would
require some syntactic changes in order to specify how each of the possibly several
carry-over jobs should be changed, for example by labeling job-type mappings on the
mode-switching edges. A topic of further study is to figure out which extensions to
the model that are both useful and analyzable with reasonable efficiency and preci-
sion.

We have described a structured EDF-schedulability analysis for the proposed task
model. The analysis does not require that all modes are scheduled by EDF, but only
assumes that other modes are schedulable with whatever scheduling algorithm is used
there. As a future work, it might be possible to adapt the work of Stigge and Yi (2013)
on fixed-priority schedulability analysis for DRT task systems to the MS-DRT setting.

Acknowledgements This work was supported in part by the Swedish Research Council within the
UPMARC Linnaeus centre of Excellence. We would like to thank the anonymous reviewers for their
helpful comments.

24 Pontus Ekberg, Wang Yi

Appendix A: Some Preliminary Experiments

A.1 Motivation

It is possible to model many different types of systems using MS-DRT, but at this
stage we find it generally difficult to quantitatively evaluate the effectiveness of both
the modeling formalism itself and the proposed schedulability analysis, because there
is little to directly compare with. Here we try to illustrate the effectiveness of our
approach on a restricted set of systems that address a common concern voiced about
mixed-criticality scheduling, namely the usual assumption that low-criticality tasks
are dropped upon a switch to a higher criticality mode. Often, it is instead desirable
to guarantee a minimal quality of service (QoS) to the low-criticality tasks even after
a mode switch.

There have been some attempts to solve this in the context of sporadic mixed-
criticality tasks by allowing low-criticality tasks to continue executing in the higher
criticality mode, but with new parameters (see, e.g., Burns and Baruah 2013; Ekberg
and Yi 2014). In these works, low-criticality tasks are essentially treated the same
as high-criticality tasks in the sense that they are immediately given new parameters
upon a mode switch. Contrary to the high-criticality tasks that typically get worsened
parameters (e.g., increased execution times) in the new mode, low-criticality tasks
are changed to have a smaller impact on the system, for example by decreasing their
execution times or increasing their periods. The motivation for doing so is that if such
a system is schedulable, it will provide some QoS guarantees for low-criticality tasks
even in the higher criticality mode.

However, we argue that using such an approach will unnecessarily limit schedula-
bility. The reason is that it makes the transitional periods after mode switches harder
to successfully schedule. The major challenge in guaranteeing the schedulability of
a mixed-criticality system is to show that all jobs that are active shortly after a mode
switch will meet their deadlines, in particular the carry-over jobs. If also the low-
criticality tasks can have carry-over jobs, ensuring schedulability becomes signifi-
cantly harder. At the same time, we argue that low-criticality tasks do not need to be
treated the same as those of higher criticality simply to provide some QoS in the new
mode. The mode switch protocol used for the high-criticality tasks—to immediately
change the parameters, including those of active jobs—is, after all, quite extreme. It
was designed to make sure that critical tasks will continue to function without any
delay whatsoever even in the face of invalid parameter estimates. Instead, by simply
pausing low-criticality tasks for a short period of time after a mode switch, before
restarting them with less intensive parameters, we can achieve almost the same QoS
guarantees without sacrificing schedulability.

Tasks that pause activity for a while after a mode switch are easily modeled with
MS-DRT, for example as task τ2 of Example 1. In this evaluation we will compare
three different types of low-criticality tasks: those without QoS guarantees in the
high-criticality mode; those with basic guarantees as proposed by Burns and Baruah
(2013) and Ekberg and Yi (2014); and those that introduce a small delay after a
mode switch before restarting. These different types of tasks are shown in Figure 10,
together with the standard type of high-criticality task that they will be mixed with.

Schedulability Analysis of a Graph-Based Task Model for Mixed-Criticality Systems 25

Type HI
Ordinary high-criticality task

(e′ > e).
u1

(e,d,LO)

u2

(e′,d,HI)

p p

Type LO-no-QoS
Ordinary low-criticality task

without QoS guarantee.
w1

(e,d,LO)

w2

(0,0,HI)

p

Type LO-basic-QoS
Low-criticality task with

basic QoS guarantee
(e′ 6 e, p′ > p, d′ > d).

u1

(e,d,LO)

u2

(e′,d′,HI)

p p′

Type LO-delay-QoS
Low-criticality task
with QoS guarantee
after initial delay δ

(e′ 6 e, p′ > p, d′ > d, δ > 0).

v1

(e,d,LO)

v2

(0,0,HI)

v3

(0,0,HI)

v4

(e′,d′,HI)

p 0

δ

p′

Fig. 10 A standard high-criticality task and three different types of low-criticality tasks.

A.2 Task Set Generation

To evaluate the differences between these approaches, we generate random task sets
where the low-criticality tasks are of one of the three different types, and compare
their EDF-schedulability according to the analysis presented in this paper. First, we
define a few constants used for the task set generation, namely

PrHI = 0.5, the probability of each task to be of high criticality,

eLO
max = 10, the maximum execution time budget in mode LO,

pLO
max = 200, the maximum period in mode LO,

eHI
fact = 4, the maximum factor of execution time increase in HI (for HI-tasks),

eLO
fact = 0.5, the minimum factor of execution time decrease in HI (for LO-tasks),

pLO
fact = 2, the maximum factor of period increase in HI (for LO-tasks).

The first three constants were chosen somewhat arbitrarily. The value for eHI
fact was

set to 4 because a difference of up to four times between, say, measurement-based
and static analysis-based WCET estimates seems fairly realistic for complex code
and hardware platforms. To balance this, low-criticality tasks may be limited to as
little as half their ordinary execution time (eLO

fact) and double their periods (pLO
fact) in the

high-criticality mode.

26 Pontus Ekberg, Wang Yi

Each task set is generated with a target utilization U∗ in mind. A generated task
set T is considered valid only if Uavg(T) ∈ [U∗−0.005,U∗+0.005], where

Uavg(T)
def
= ∑

µi∈M(T)

U(T,µi)

|M(T)|

is the average utilization of T and U(T,µi) is the asymptotic utilization of T in mode
µi. In addition, a task set T is considered valid only if its utilization is at most 0.99
in each mode, and each mode is EDF-schedulable in its steady-state. The former is
a practical restriction to limit analysis time, the latter a restriction to the interesting
cases where task sets are not trivially unschedulable no matter how the mode changes
are handled. Generated task sets that are deemed invalid are simply discarded and
new ones are generated instead. The task sets are always generated three at a time,
each with low-criticality tasks of a certain type, the parameters of the tasks in each
of the sets are kept identical where applicable. The details of the task set generation
are found in Algorithm 1. Note that the values of the δ -labels for the tasks of type
LO-delay-QoS are not determined by Algorithm 1, we will instead search for suitable
values as part of the experiment. Also note that task sets with type LO-no-QoS tasks
can have smaller average utilization than the other two task sets, U∗ is only compared
against the average utilization of the task sets with QoS tasks.

A.3 Evaluation

When determining the EDF-schedulability of the task sets, we use the deadline tuning
algorithm TuneSystem from Ekberg and Yi (2014). It is directly applicable to the task
sets with low-criticality tasks of type LO-no-QoS and LO-basic-QoS (indeed, even
the schedulability analysis in Ekberg and Yi (2014) is equivalent to the one in this
paper for such tasks). For task sets with type LO-delay-QoS tasks, we use the naive
extension of TuneSystem that only attempts to tune deadlines of high-criticality tasks.

We still have to determine the values of the δ parameters of the tasks of type
LO-delay-QoS. For simplicity, we assume that all such tasks in a task set Tdelay have
the same value for their δ parameter. For each such task set we do a binary search
on the ordered set {0, . . . , pLO

max} to find the minimal value for δ with which Tdelay
is deemed EDF-schedulable. Figure 11 shows the acceptance ratios of the various
types of task sets, without QoS, with basic QoS and with delayed QoS. For the task
sets with delayed QoS, acceptance ratios are plotted for when the δ parameters are
bounded by some different constants. Each data point is based on 10,000 randomly
generated task sets.

From Figure 11 we can see that even for relatively small delays, less than half
of the maximum period, acceptance ratios are practically the same for task sets with
QoS as for those without. In contrast, task sets with basic QoS that use the same
mode-switching logic for both high- and low-criticality tasks have significantly lower
acceptance ratios. Even when δ = 0 there was an increase in acceptance ratio com-
pared to the basic QoS. The reason is that it is easier to schedule tasks that drop active
jobs at a mode switch and immediately release new ones than it is to schedule tasks
with carry-over jobs.

Schedulability Analysis of a Graph-Based Task Model for Mixed-Criticality Systems 27

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Average utilization

0

10

20

30

40

50

60

70

80

90

100

A
cc

ep
ta

nc
e

ra
tio

(%
)

Without QoS
Delayed QoS with δ 6 80
Delayed QoS with δ 6 40
Delayed QoS with δ 6 20
Delayed QoS with δ 6 10
Delayed QoS with δ 6 0
Basic QoS

Fig. 11 Acceptance ratios for the three different types of task sets.

Figure 12 shows the average value for the δ parameter that was necessary to make
the task sets Tdelay schedulable, when such a value could be found in {0, . . . , pLO

max}.
The error bars indicate the standard deviation of the sample. It is clear from the figure
that even for very large utilizations, small δ parameters tend to be sufficient.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Average utilization

0

5

10

15

20

25

30

35

40

45

50

A
ve

ra
ge

de
la

y

Fig. 12 The average of the minimum values for δ needed to make the task sets schedulable.

28 Pontus Ekberg, Wang Yi

Algorithm 1: Algorithm for generating random task sets.
1 Function generate-task-sets(U∗, PrHI, eLO

max, pLO
max, eLO

fact, eHI
fact, pLO

fact):
2 Tno,Tbasic,Tdelay← /0, /0, /0
3 repeat
4 with probability PrHI do
5 (e,d, p,e′)← get-hi-task-params(eLO

max, pLO
max, eHI

fact)

6 τHI ← Type HI task with parameters (e,d, p,e′)
7 Tno← Tno∪{τHI}
8 Tbasic← Tbasic∪{τHI}
9 Tdelay← Tdelay∪{τHI}

10 otherwise do
11 (e,d, p,e′,d′, p′)← get-lo-task-params(eLO

max, pLO
max, eLO

fact, pLO
fact)

12 τno
LO ← Type LO-no-QoS task with parameters (e,d, p)

13 Tno← Tno∪{τno
LO}

14 τbasic
LO ← Type LO-basic-QoS task with parameters (e,d, p,e′,d′, p′)

15 Tbasic← Tbasic∪{τbasic
LO }

16 τ
delay
LO ← Type LO-delay-QoS task with parameters (e,d, p,e′,d′, p′)

17 Tdelay← Tdelay∪{τdelay
LO } // Task parameter δ to be set later

18 if ¬is-valid-task-set(Tbasic) then
19 Tno,Tbasic,Tdelay← /0, /0, /0

20 until U∗−0.005 6 Uavg(Tbasic) 6 U∗+0.005
21 return (Tno, Tbasic, Tdelay)

22 Function get-hi-task-params(eLO
max, pLO

max, eHI
fact):

23 e← random sample from U{1, . . . ,eLO
max} // Discrete uniform distribution

24 efact← random sample from U [1,eHI
fact] // Continuous uniform distribution

25 e′← de · efacte
26 p← random sample from U{e′, . . . , pLO

max}
27 dfact← random sample from U [0,1]
28 d←max(e′,dp ·dfacte)
29 return (e, d, p, e′)

30 Function get-lo-task-params(eLO
max, pLO

max, eLO
fact, pLO

fact):
31 e← random sample from U{1, . . . ,eLO

max}
32 efact← random sample from U [eLO

fact,1]
33 e′← de · efacte
34 p← random sample from U{e, . . . , pLO

max}
35 pfact← random sample from U [1, pLO

fact]
36 p′← dp · pfacte
37 dfact← random sample from U [0,1]
38 d←max(e,dp ·dfacte)
39 d′←max(e′,dp′ ·dfacte)
40 return (e, d, p, e′, d′, p′)

41 Function is-valid-task-set(T):
42 if U(T,LO)6 0.99 ∧ U(T,HI)6 0.99 ∧ SEDF(T, LO) ∧ SEDF(T, HI) then
43 return true
44 return false

Schedulability Analysis of a Graph-Based Task Model for Mixed-Criticality Systems 29

Appendix B: A Larger System Example

Burns (2014) recently attempted to unify various notions of mode changes that has
been used in the literature, in particular various general mode changes and criticality
mode changes. He provides a high-level description of an example cruise-control
system in a car that is complicated by having, at the same time, different types of
modes and mode change protocols. As another motivation for MS-DRT, we outline
in this section how it can be used to model that example system. First, we briefly
summarize the terminology of Burns (2014), starting with the three main types of
modes that he identifies.

Normal functional modes are modes that are switched between as part of the regu-
lar operation of the system.

Exceptional functional modes are modes that are entered as a response to some rare
events.

Degraded functional modes are modes entered as a consequence of some error or
fault in the system, where some normal functionalities may be shed in order to
give priority to safety-critical functions.

Further, Burns characterizes three main types of mode changes:

Immediate mode changes cause old jobs to be suspended or aborted, and new jobs
from the new mode to be started immediately.

Bounded mode changes wait until there are no active jobs from the old mode and
then switch cleanly to the new mode.

Phased mode changes let old jobs finish, and new jobs may be released within some
bounded time, even if all old jobs have not finished.

Immediate/bounded: . . . u

(e,d,µi)

v

(0,0,µ j)

w

(e′,d′,µ j)

. . .0

Phased: . . . x

(e,d,µi)

y

(e′,d′,µ j)

z

(e′′,d′′,µ j)

. . .
delay

Fig. 13 Simple modeling of transitions for different mode change types.

Transitions for the above three types of mode changes can be modeled with
MS-DRT, for example as in Figure 13. Note that transitions for immediate and bounded
mode changes are modeled in the same way, but with different interpretations of the
semantics. For immediate transitions, we interpret the mode switch event as being
propagated immediately, causing any active job to be dropped (by setting its execu-
tion time budget to 0 in vertex v) and a new job to be released immediately at w.

30 Pontus Ekberg, Wang Yi

On the other hand, for bounded transitions we interpret the mode switch event to oc-
cur when all old jobs have finished, at which point no job from u is dropped at the
transition to v. For the schedulability analysis, these two scenarios look identical. In
a phased transition, old active jobs are brought along to the new mode (though we
allow changing their parameters in the process), and new jobs may be released before
all of them are finished.

The cruise-control system described by Burns consists of two normal functional
modes, standby (SB) and speed control (SC), and one exceptional mode, collision
avoidance (CA). According to Burns, transitions between SB and SC should be either
bounded or phased, and transitions from either of them to CA should be immediate.
We pick phased transitions between SB and SC to make the example more interesting.

In addition, the system software is partitioned into two criticality levels, called
SIL2 and SIL4. Code for SIL4 has two WCET estimates, one lower measurement-
based estimate that is valid at SIL2 and one higher static-analysis based valid at SIL4.
If at any time some WCET estimate at SIL2 turns out to be invalid, the system should
enter some form of degraded mode where more time is given to the most critical tasks
at the expense of the less critical. For the critical tasks, this would imply some kind
of phased transition where execution-time budgets of active jobs get immediately
inflated. In effect, we get six modes in total, the three modes SB, SC and CA using
SIL2 WCET assumptions, and degraded versions of the same modes valid at SIL4.
We call the modes SB2, SC2 and CA2 in SIL2, and SB4, SC4 and CA4 in SIL4. With
these names we can form the mode structure of the system as in Figure 14.

SB2 SC2

CA2

SB4 SC4

CA4

Fig. 14 Mode structure of the cruise-control system.

Recall that MS-DRT does not impose any minimum separation delays between
mode switches, other than what is explicitly put into the tasks themselves. This means
that the schedulability analysis described earlier is valid for all possible sequences of

Schedulability Analysis of a Graph-Based Task Model for Mixed-Criticality Systems 31

SB
g
2

(4,50, SB2)

SBw
2

(4,50, SB2)

100
50 SC

g
2

(4,50, SC2)

SCw
2

(4,50, SC2)

100
50

CA
g
2

(0,0,CA2)

CAw
2 (4,30,CA2)

0

30

SB
g
4 (7,50, SB4)SBw

4

(7,50, SB4)

100
50 SC

g
4(7,50, SC4) SCw

4

(7,50, SC4)

100
50

CA
g
4

(0,0,CA4)

CAw
4 (7,30,CA4)

0

30

Fig. 15 The proximity analysis task.

mode switches, including complex situations such as a transition to CA2 happening
in the middle of a phased transition between SB2 and SC2, closely followed by a
transition to CA4. This was identified by Burns as a difficult problem.

In the system description given for this example, one particular task was also
outlined. This is a sporadic task responsible for proximity analysis. It is stated that it
should run in all three modes, but have a smaller period in CA. We assume that it is
meant to have the same parameters in both SB and SC. Additionally, we assume that
it belongs to the higher criticality level (SIL4), and therefore should run also in the
degraded modes with a larger execution time budget. In Figure 15 we have modeled
this task. As no parameter values were given by Burns, we have arbitrarily picked
some. We picked a WCET of 4 time units at SIL2 and 7 time units at SIL4. For the
period we chose 50 time units in the various SB and SC modes, and 30 time units in

32 Pontus Ekberg, Wang Yi

the CA modes. The delay associated with the phased transition between SB and SC is
set to 100. All deadlines are implicit.

This particular task was easy to model with only two vertices per mode. One
work vertex per mode, with the name of the mode superscripted by “w”, captures
the sporadic behavior of the task in that mode. Another gate vertex, superscripted
instead by “g”, captures mode transition logic between modes at either SIL2 or SIL4
in the manner showed in Figure 13. When switching from some mode at SIL2 to the
corresponding one at SIL4 (e.g., from SB2 to SB4) the mode switching logic is that
control is just moved to a mirrored version of the same vertex in the higher criticality
level. We have intentionally omitted a mode switching edge from CA

g
2 to CA

g
4 with

the interpretation that no time ever passes before moving on from CA
g
2 to CAw

2 .
In Burns’ description, there is no mention of mode changes being possible in

order to go back from a CA mode to a SB or SC mode, but this seems like a desirable
feature and may have been unintentionally omitted from the description. Adding this
feature to a task such as the one in Figure 15 is not difficult. Additionally, it would be
possible to model mode switches from a SIL4 mode back to the corresponding SIL2
mode, resulting in the strongly connected mode structure in Figure 16. The easiest
way to model this would be with bounded transitions and the interpretation that such
a mode switch can happen at any idle time, but it is also possible to model something
more elaborate, e.g., as in Example 2.

SB2 SC2

CA2

SB4 SC4

CA4

Fig. 16 An extended mode structure that is strongly connected.

We note that the task in Figure 15 is quite large. Manually crafting such tasks
certainly puts a burden on the system designer and would likely be error-prone. We
envision that large tasks in practice should be synthesized by some model-based de-
sign tool or, at least, be manually modeled using some higher-level representation
with syntactic sugar for common constructs.

Schedulability Analysis of a Graph-Based Task Model for Mixed-Criticality Systems 33

Appendix C: Proof of Lemma 3

To prove Lemma 3, we first define a relation on demand pairs and prove an auxiliary
lemma.

Definition 5 (Cover relation) A demand pair 〈e,d〉 covers another demand pair
〈e′,d′〉, denoted 〈e,d〉Q 〈e′,d′〉, if and only if

e > e′ and e− e′ > d−d′.

Figure 17 illustrates the cover relation. The intuition behind the cover relation is that
a demand pair should cover all other demand pairs that are no more problematic from
a scheduling point of view.

(3,5)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

e

d

Fig. 17 The demand pair (3,5) covers all pairs in the shaded area.

The subset of demand pairs used to define tdbf?µ j→µi
(τ, `) covers the set of de-

mand pairs used to define tdbfub
µ j→µi

(τ, `), as shown in the following lemma.

Lemma 5 For each demand pair 〈e,d〉 ∈ ncoµ j→µi(τ)
⋃

coµ j→µi(τ) there exist an
〈e?,d?〉 ∈ ncoµ j→µi(τ)

⋃
co?µ j→µi

(τ) such that 〈e?,d?〉Q 〈e,d〉.

Proof The lemma trivially holds for each 〈e,d〉 ∈ ncoµ j→µi(τ) because the cover
relation is reflexive.

We consider instead a demand pair 〈e,d〉 ∈ coµ j→µi(τ). From Eq. (11) it is evident
that 〈e,d〉 = pairco(u,π,x) for some (u,π,x) ∈ Vals. We split the proof into three
cases.

Case 1 (x > e(u)):
Let 〈e?,d?〉= pairco(u,π,e(u)). Clearly, 〈e?,d?〉 ∈ co?µ j→µi

(τ). We calculate

e = ẽco(u,π,x)

= eco(u,π1,x)+ ẽ(π2···|π|)

= eco(u,π1,e(u))+ ẽ(π2···|π|)

= ẽco(u,π,e(u))

= e?

and d = d̃co(u,π,x)> d̃co(u,π,e(u)) = d?. It follows that 〈e?,d?〉Q 〈e,d〉.

34 Pontus Ekberg, Wang Yi

Case 2 (x 6 e(u)− e(π1)):
Let 〈e?,d?〉= pairnco(π2···|π|). Because either |π2···|π||= 0 or π2 ∈firstµ j→µi(τ),
we have 〈e?,d?〉 ∈ ncoµ j→µi(τ). Further,

e = ẽco(u,π,x)

= eco(u,π1,x)+ ẽ(π2···|π|)

= 0+ ẽ(π2···|π|)

= e?

and d = d̃co(u,π,x)> d̃(π2···|π|) = d?. It follows that 〈e?,d?〉Q 〈e,d〉.
Case 3 (e(u)− e(π1)< x < e(u)):

Again, let 〈e?,d?〉= pairco(u,π,e(u)). Now,

e = ẽco(u,π,x)

= eco(u,π1,x)+ ẽ(π2···|π|)

= eco(u,π1,e(u))− e(u)+ x+ ẽ(π2···|π|)

= ẽco(u,π,e(u))− e(u)+ x

= e?− e(u)+ x.

Similarly,

d = d̃co(u,π,x)

> d̃co(u,π,e(u))− e(u)+ x

= d?− e(u)+ x.

It follows that e? > e and e? − e = e(u)− x > d? − d, and therefore that
〈e?,d?〉Q 〈e,d〉.

ut

We can now prove Lemma 3.

Proof of Lemma 3 From Eq. (12) and (14) we know that tdbf?µ j→µi
(τ, `) is defined

by a subset of the set of demand pairs defining tdbfub
µ j→µi

(τ, `). It follows directly that

tdbf?µ j→µi
(τ, `)6 tdbfub

µ j→µi
(τ, `), and the⇐= direction of the lemma holds.

We instead consider the =⇒ direction. From Eq. (12) it is clear that if there exists
an `1 > 0 such that ∑τ∈T tdbfub

µ j→µi
(τ, `1) > `1, then for each τ ∈ T there must exist

demand pairs 〈eτ ,dτ〉 ∈ ncoµ j→µi(τ)
⋃

coµ j→µi(τ) such that

∑
τ∈T

eτ > `1 and max
τ∈T

(dτ)6 `1. (17)

From Lemma 5 we know that for each of the demand pairs 〈eτ ,dτ〉 there exists some
demand pair 〈e?τ ,d?

τ 〉 ∈ ncoµ j→µi(τ)
⋃

co?µ j→µi
(τ) such that 〈e?τ ,d?

τ 〉 Q 〈eτ ,dτ〉. By
Definition 5 we have

∑
τ∈T

e?τ − ∑
τ∈T

eτ > max
τ∈T

(d?
τ)−max

τ∈T
(dτ). (18)

Schedulability Analysis of a Graph-Based Task Model for Mixed-Criticality Systems 35

From Eq. (17) and (18) it follows that

∑
τ∈T

e?τ > max
τ∈T

(d?
τ). (19)

Let `2 = maxτ∈T (d?
τ). From the existence of the demand pairs 〈e?τ ,d?

τ 〉 and Eq. (14)
and (19) we know that

∑
τ∈T

tdbf?µ j→µi
(τ, `2) > ∑

τ∈T
e?τ > `2. ut

Appendix D: Table of Notations Used for the Analysis

τ ∈ T An MS-DRT task τ in task set T
µi ∈M(T) A mode µi in the set of modes of T
V (τ) Job types (vertices) of task τ

Ecf(τ) Control-flow edges of task τ

Ems(τ) Mode-switch edges of task τ

e(v),d(v),µ(v) Execution time, relative deadline and mode of job type v
G(T) Mode structure of task set T
predG(T)(µi) Modes that can precede µi in G(T)
DRTµi(τ) The subgraph in (V (τ),Ecf(τ)) corresponding to mode µi
Πµi(τ) Set of finite paths through DRTµi(τ)
πn The n-th vertex on path π

|π| Length (in number of vertices) of path π

πn···m Subpath of π between the n-th and m-th vertices (inclusive)
ẽ(π) Cumulative execution time of job types on path π

d̃(π) Smallest interval size that fits jobs from all vertices on path π

Eµ j→µi(τ) Mode-switch edges from µ j to µi in task τ

firstµ j→µi(τ) Vertices in V (τ) that can directly follow a switch from µ j to µi
eco(u,v,x) Max execution left of carry-over job at (u,v) ∈ Ems(τ), given x
dco(u,v,x) Remaining scheduling window size of carry-over job, given x
pco(u,v,w,x) Min delay from mode switch to edge (v,w) ∈ Ecf(τ), given x
ẽco(u,π,x) As eco(u,v,x), generalized to path π

d̃co(u,π,x) As dco(u,v,x), generalized to path π

ncoµ j→µi(τ) Set of demand pairs for paths not starting with a carry-over job
coµ j→µi(τ) Set of demand pairs for paths starting with a carry-over job
co?µ j→µi

(τ) Subset of coµ j→µi(τ) of “critical” demand pairs
idbfµi(T, `) Exact internal demand bound function of T
tdbfµ j→µi(T, `) Exact transitional demand bound function of T
tdbfub

µ j→µi
(τ, `) Over-approximate transitional demand bound function of τ

idbf?µi
(τ, `) Exact internal demand bound function of τ

tdbf?µ j→µi
(τ, `) Simplified version of tdbfub

µ j→µi
(τ, `), preserving schedulability

DRTµ j→µi(τ) DRT task with demand bound function equal to tdbf?µ j→µi
(τ, `)

SEDF(T, µi) Internal schedulability of T in µi, equivalent to S?EDF(T, µi)
SEDF(T, µ j→ µi) Transitional schedulability of µi when reached from µ j
S?EDF(T, µ j→ µi) Implies SEDF(T, µ j→ µi) when µ j is schedulable

36 Pontus Ekberg, Wang Yi

References

Baruah, S. (2012). Certification-cognizant scheduling of tasks with pessimistic frequency specification. In
SIES, pages 31–38.

Baruah, S., Bonifaci, V., D’Angelo, G., Li, H., Marchetti-Spaccamela, A., van der Ster, S., and Stougie, L.
(2012). The preemptive uniprocessor scheduling of mixed-criticality implicit-deadline sporadic task
systems. In ECRTS, pages 145–154.

Baruah, S., Bonifaci, V., D’Angelo, G., Marchetti-Spaccamela, A., van der Ster, S., and Stougie, L.
(2011a). Mixed-criticality scheduling of sporadic task systems. In ESA, pages 555–566.

Baruah, S., Burns, A., and Davis, R. (2011b). Response-time analysis for mixed criticality systems. In
RTSS, pages 34 –43.

Baruah, S., Chen, D., Gorinsky, S., and Mok, A. (1999). Generalized multiframe tasks. Real-Time Systems,
17:5–22.

Baruah, K., S., Bonifaci, V., D’Angelo, G., Li, H., Marchetti-Spaccamela, A., Megow, N., and Stougie, L.
(2011c). Scheduling real-time mixed-criticality jobs. IEEE Transactions on Computers.

Burns, A. (2014). System mode changes - general and criticality-based. In WMC.
Burns, A. and Baruah, S. (2013). Towards a more practical model for mixed criticality systems. In WMC.
Burns, A. and Davis, R. (2015). Mixed criticality systems: A review (fifth edition). Available online at

http://www-users.cs.york.ac.uk/~burns/review.pdf.
Easwaran, A. (2013). Demand-based scheduling of mixed-criticality sporadic tasks on one processor. In

RTSS, pages 78–87.
Ekberg, P. and Yi, W. (2012). Bounding and shaping the demand of mixed-criticality sporadic tasks. In

ECRTS, pages 135–144.
Ekberg, P. and Yi, W. (2014). Bounding and shaping the demand of generalized mixed-criticality sporadic

task systems. Real-Time Systems, 50(1):48–86.
Guan, N., Ekberg, P., Stigge, M., and Yi, W. (2011). Effective and efficient scheduling of certifiable

mixed-criticality sporadic task systems. In RTSS, pages 13–23.
Harel, D. (1987). Statecharts: a visual formalism for complex systems. Science of Computer Programming,

8(3):231 – 274.
Huang, P., Giannopoulou, G., Stoimenov, N., and Thiele, L. (2014). Service adaptions for mixed-criticality

systems. In ASP-DAC, pages 125–130.
Jan, M., Zaourar, L., and Pitel, M. (2013). Maximizing the execution rate of low-criticality tasks in mixed

criticality system. pages 43–48.
Li, H. and Baruah, S. (2010). An algorithm for scheduling certifiable mixed-criticality sporadic task

systems. In RTSS, pages 183 –192.
Santy, F., Raravi, G., Nelissen, G., Nelis, V., Kumar, P., Goossens, J., and Tovar, E. (2013). Two protocols

to reduce the criticality level of multiprocessor mixed-criticality systems. In RTNS, pages 183–192.
Stigge, M., Ekberg, P., Guan, N., and Yi, W. (2011). The digraph real-time task model. In RTAS, pages

71–80.
Stigge, M. and Yi, W. (2013). Combinatorial abstraction refinement for feasibility analysis. In RTSS, pages

340–349.
Su, H. and Zhu, D. (2013). An elastic mixed-criticality task model and its scheduling algorithm. In DATE,

pages 147–152.
Vestal, S. (2007). Preemptive scheduling of multi-criticality systems with varying degrees of execution

time assurance. In RTSS, pages 239–243.
Zhang, T., Guan, N., Deng, Q., and Yi, W. (2014). On the analysis of EDF-VD scheduled mixed-criticality

real-time systems. In SIES, pages 179–188.

http://www-users.cs.york.ac.uk/~burns/review.pdf

	Introduction
	Model
	Analysis
	Tuning
	Conclusions
	Some Preliminary Experiments
	A Larger System Example
	Proof of Lemma 3
	Table of Notations Used for the Analysis

