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ABSTRACT
We consider the schedulability analysis problem of a set of
sporadic tasks which are subject to self-suspension, using a
fixed-priority scheduler on a preemptive uniprocessor. We
show that this problem is coNP-hard in the strong sense
even in the simple case when only the lowest-priority task is
self-suspending. Also, it is shown that the problem is weakly
coNP-hard even if that self-suspending task has only a single
suspension interval. In addition, we propose an efficient me-
thod for schedulability analysis of self-suspending tasks that
are subject to interference from higher-priority tasks without
self-suspension. The method works on the basis of an itera-
tive approach which begins with an abstraction of the task
set and improves the analysis results by refinement steps as
needed. Our evaluation shows that this method significantly
improves the scalability of the existing approaches.

CCS Concepts
•Software and its engineering→ Real-time schedula-
bility; •Computer systems organization → Real-time
systems;

1. INTRODUCTION
Many real-time and embedded systems involve situations

in which a task is suspended until receiving some result from
a component which is not necessarily running on the same
processor [1]. This scenario arises, for instance, when a task
uses an external device, such as a digital signal processor
(DSP), to offload some complex computations [2]. Dur-
ing such intervals, the suspended task, which is called self-
suspending, is blocked until receiving the respective result,
while other tasks can continue to be executed normally.

The switching behavior of self-suspending tasks implies a
complicated behavior which causes that the existing meth-
ods for timing and schedulability analysis of ordinary real-
time tasks cannot be easily applied to this task model. For
instance, for ordinary (non-self-suspending) sporadic tasks
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and under fixed-priority scheduling, it is known that the crit-
ical instant of a task, namely the scheduling instant at which
the task has its worst-case response time, happens when
all the higher priority tasks are released synchronously with
that one and the jobs are separated by the minimum allowed
separation time [3]. As a result, by simply simulating the
task set behavior for this release scenario, which is called the
synchronous release sequence, one can perform schedulabil-
ity analysis in pseudo-polynomial-time. It has been shown
that the critical instant of a self-suspending task is not nec-
essarily generated by a synchronous release sequence [4]. In
particular, it is shown that the synchronous release pat-
tern does not always lead to the worst-case response time
(WCRT) of a self-suspending task even when the task con-
tains only one suspension region and all other tasks are non-
self-suspending. In [4], an algorithm with an exponential
running time is presented for the problem. Meanwhile, the
computational complexity of the schedulability problem is
not established.

In this paper, we consider the problem of uniprocessor
fixed-priority schedulability analysis of a task set contain-
ing one self-suspending task which has the lowest priority.
We provide a lower bound for the computational complexity
of the problem for the basic case where the self-suspending
task consists of only one suspension interval. We show that
the problem is (at least) weakly coNP-hard through a re-
duction from the Partition problem. We also show that
when the self-suspending task is subject to multiple suspen-
sion intervals (while other tasks are simple sporadic tasks)
the schedulability problem is coNP-hard in the strong sense.
This is shown by a reduction from the 3-Partition problem.

In addition to these complexity results, we propose a me-
thod to improve the efficiency of schedulability analysis of
the task set by avoiding unnecessary exploration of the prob-
lem state space. The method uses an abstraction refinement
technique which begins with an over-approximation of the
task set behavior providing an upper bound for the task re-
sponse time. In each step, if the calculated upper bound is
larger than the deadline, we refine the abstraction one level
to obtain more accurate descriptions, and thus, more accu-
rate value of the response time. This procedure is repeated
until reaching a concrete (namely exact) release sequence
which shows unschedulability of the task set or making sure
that no possible behavior can lead to a deadline miss.

In the remainder of this section, the previous work re-
lated to the current study is reviewed. The system model
and the schedulability problem considered in this paper are
formally specified in Section 2. Then, the complexity results
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for the case of a single and multiple suspension intervals are
presented in Section 3 and Section 4, respectively. Our ab-
straction refinement approach is presented in Section 5 and
is evaluated in Section 6. A summary of the paper as well
as a discussion on the related open problems is provided in
Section 7.

1.1 Related Work
The problem of response-time analysis for a set of spo-

radic tasks, which are special case of self-suspending tasks,
has been studied by Eisenbrand and Rothvoß [5]. While it
is shown that the problem is NP-hard in the weak sense,
they did not address the schedulability problem for this task
model. In the realm of self-suspending tasks, the compu-
tational complexity of the feasibility problem for a set of
multiple self-suspending tasks has been studied in [6]. In
that work, it is shown that the problem is NP-hard in the
strong sense. In comparison to that work, in this paper we
focus on the fixed-priority schedulability problem and show
that it is coNP-hard in the strong sense even for a more
restricted case of a single self-suspending task.

Regarding timing analysis of self-suspending tasks under
fixed-priority scheduling, Palencia and Harbour [12] suggest
to model self-suspending tasks as a set of tasks with re-
lease jitters and offsets. In this way, they propose a me-
thod to compute an over-approximation of the tasks re-
sponse time. In addition, an approximation method for
schedulability analysis of self-suspending tasks has been pro-
posed in [1]. It is shown that the considered fixed-priority
scheduling algorithm has a processor speed-up factor of M2

with M = max(2, pmax), where pmax is the maximum num-
ber of computation segments (which are separated by sus-
pension regions) of the self-suspending tasks. In contrast,
our schedulability analysis approach presented in Section 5
treats an exact analysis of the problem.

The task model considered in this paper has been recently
studied in [4]. It has been shown, in contrary to ordinary
sporadic tasks, that synchronous arrival sequence does not
necessarily generate a critical instant even when there is
only one self-suspending task in the task set which has the
lowest priority. Then, an algorithm with exponential run-
ning time is presented for calculating the response-time of
a self-suspending task which is scheduled based on a fixed-
priority scheduling policy under the interference of a set of
normal non-self-suspending sporadic tasks. Meanwhile, the
computational complexity of this problem was not studied.
In addition, the method suffers from a state-space explosion
problem which restricts its scalability. We use the method
proposed in [4], which has been proposed for WCRT analy-
sis, in an abstraction and refinement framework to avoid ex-
ploring unnecessary branches in the problem search space.

2. TASK MODEL AND PROBLEM DEFINI-
TION

We assume a set of n tasks, denoted by {τ1, . . . , τn}, in
which τ1, . . . , τn−1 are ordinary (i.e., non-self-suspending)
sporadic tasks, while τn is a self-suspending one. Each task
τi, for 1 ≤ i ≤ n, is specified by a worst-case execution time
(WCET) Ci and a minimum inter-release time (period) Ti.
All the tasks are subject to implicit deadlines which means
that the relative deadlines are equal to the periods. The task
set is scheduled with a fixed priority preemptive scheduling

policy assuming that τn is of the lowest priority.
The execution of the self-suspending task is divided into a

set of p computation segments which are separated by p− 1
suspension intervals. The j-th segment is denoted by τn,j
and has a WCET of Cn,j . Also, the length of the j-th sus-
pension interval is denoted by Sn,j . The first computation
segment can be executed as soon as the respective job is re-
leased. In contrast, τn,j , for 2 ≤ j ≤ p, becomes eligible for
execution (or is released) whenever the previous suspension
interval, i.e., the j− 1-th one, is finished. The problem is to
determine schedulability of such a task set.

Problem 1 (Schedulability Problem). Take a task
set with the above description with a fixed-priority preemp-
tive scheduler. The problem is to determine whether the task
set is schedulable.

It is supposed that schedulability analysis of the non-self-
suspending tasks is accomplished using existing methods [8].
As a result, in the subsequent discussions, we restrict our
focus to schedulability analysis of the self-suspending task.

A critical instant for the self-suspending task is defined
as a release scenario of the higher priority tasks in which τn
has its maximum response time. Here, we review a known
result with regard to the critical instant of a self-suspending
task. For this goal, we first define a notation, Syncj . For a
specified release sequence of jobs containing one job of τn,
we denote by Syncj the set of those (higher priority) tasks
which have a job released synchronously with τn,j .

Lemma 1 ([4]). For any self-suspending task set with
the above description, there exists at least one release sce-
nario in which any task τi, for 1 ≤ i ≤ n− 1, belongs to at
least one Syncj and the response time of τn is maximized.

3. COMPLEXITY RESULT FOR A BASIC
CASE

We show that Problem 1 is (at least) coNP-hard in the
weak sense even when the self-suspending task contains only
one suspension interval. This result implies that the problem
for more general cases is also at least weakly coNP-hard.

The proof is by a polynomial-time transformation of the
well-known Partition problem. In the following, we first
review this problem. Then, the transformation method and
the hardness proof are presented.

Definition 1 (Partition Problem). Given is a set
of n items A = {a1, . . . , an} and a size function s : A 7→ N
such that ∑

ai∈A

s(ai) = 2S. (1)

The problem is to determine whether A can be partitioned
into two sets A1 and A2 such that∑

ai∈A1

s(ai) =
∑
ai∈A2

s(ai) = S. (2)

A given instance of the problem is a positive one if such a
partition exists, and is a negative one otherwise.

3.1 Transformation
In this section, we describe a method for transforming a

given instance of the Partition problem to an instance of



the schedulability problem, i.e., Problem 1, assuming that
the self-suspending task is subject to only one suspension
interval. It will be shown that the Partition problem in-
stance is a positive one, namely the set can be partitioned
into two sets which satisfy Eq. (2), if and only if the con-
structed task set is unschedulable.

Let A = {a1, . . . , an} be the given set in the Partition
problem. We construct a task set with n+ 2 tasks, denoted
by τ = {τ0, τ1, . . . , τn, τn+1}, where τn+1 is a self-suspending
task. The WCET of each sporadic (non-self-suspending)
task is determined as

Ci =

{
1, i = 0,
s(ai), 1 ≤ i ≤ n. (3)

In addition, the minimum inter-release time of these tasks
is specified as

Ti =

{
S + 2, i = 0,
2(3S + 7), 1 ≤ i ≤ n. (4)

For τn+1, we assume two computation segments and one
suspension interval. Specifically, the parameters of τn+1 are
set as follows

Cn+1,1 = 2,
Cn+1,2 = 2,
Sn+1,1 = S,
Tn+1 = 3S + 7,

(5)

It is supposed that tasks are indexed according to their
priority. As a result, τ0 has the highest priority, while τn+1

is of the lowest priority.

3.2 Hardness Proof
The goal is to show that the obtained task set is schedula-

ble, if and only if the given instance of the Partition prob-
lem is negative. First, we note, according to the specified
parameters for the tasks, that τ0, . . . , τn are always schedu-
lable. This holds for τ0 since it is of the highest priority, and
thus, its response time is always equal to its execution time
which is less than the deadline. Also, to see that other tasks
τi, for 1 ≤ i ≤ n, are schedulable we consider their respec-
tive critical instant which is obtained by a synchronous re-
lease sequence (since all of them are normal sporadic tasks).
According to the assigned period values, each task τi, for
1 ≤ i ≤ n, observes no more than six instances of τ0 before
its deadline. Also, it will be interfered by one job from each
of the higher priority tasks τ1, . . . , τi−1. Hence, the total
interfering workload from the higher priority tasks plus its
own execution time is at most 6 +

∑
1≤j≤i s(aj), which is

upper bounded by 6 + 2S. Then, since 6 + 2S is less than
2(7 + 3S) = Ti, which is the task relative deadline, the task
is schedulable. As a result, in the following, our focus is only
on the schedulability of τn+1.

In order to investigate the schedulability of τn+1 we first
present two lemmas. The first one specifies the maximum
interfering workload which can be experienced by the com-
putation segments of τn+1 from τ1, . . . , τn. The second one
describes the respective interfering workload from τ0.

Lemma 2. The maximum overall interference of τ1, . . . , τn
on one job of τn+1 is no larger than 2S.

Proof. Based on Lemma 1, only release sequences where
each τ1, . . . , τn is in (at least) one of Sync1 or Sync2 are con-
sidered. Regarding this, each instance of τn+1 can observe

at most one instance (i.e., job) of τi, for 1 ≤ i ≤ n. This
is because the relative deadline of τn+1 is 3S + 7, and the
minimum inter-release time of τi, for 1 ≤ i ≤ n, has been
set to 2(3S+7). As a result, the maximum interfering work-
load observed by the computation segments of τn+1 from the
higher priority tasks τ1, . . . , τn can be computed as (using
Eqs. (3) and (1)) ∑

1≤i≤n

Ci = 2S. (6)

Lemma 3. Let W0 denote the maximum workload from τ0
that can interfere with one job of τn+1. The value of W0 is
determined according to the following criteria:

• W0 is equal to 4 if the interfering workload from τi,
for 1 ≤ i ≤ n, calculated in Lemma 2, on the two com-
putation segments of τn+1 are equally dispatched, i.e.,
the interfering workload on any of the two segments is
exactly equal to S.

• W0 = 3, otherwise.

In other words, W0 = 4 if and only if∑
1≤i≤n
τi∈Sync1

Ci =
∑

1≤i≤n
τi∈Sync2

Ci = S. (7)

Proof. A schematic view of the first case is depicted in
Fig. 1. In this case, as the sum of the execution time of
tasks τi ∈ Sync1 is equal to S, only one unit of time can
be allocated to execute the first computation segment of
τn+1 before the second release of τ0. As a result, completion
of τn+1,1 is postponed to the point after execution of the
second job of τ0. As a result, τn+1,1 observes two instances
of τ0. A similar situation occurs for the second computation
segment of τn+1. Consequently, in total, τn+1 experiences
four instances of τ0 in the specified circumstances. Then,
since Cn+1 = 1, it is implied that W0 = 4.

For the second case, it is observed that if the interfering
load from τ1, . . . , τn on one of the segments of τn+1 is less
than S, then that segment can be affected by at most one
instance of τn+1. Besides, the other segment experiences at
most two instances of τn+1. To see this, consider Fig. 2.
This figure shows the extreme case of such scenario. It is
seen that even in this case, where all τis (for 1 ≤ i ≤ n)
interfere with the first segment of τn+1, this segment still
cannot observe more than two instances of τ0 since

2 + 2S + 2 = 2S + 4 ≤ 2T0, (8)

which means that the execution of the first computation
segment of τn+1 finishes before the third release of τ0. From
this, it follows that W0 = 3.

Now, we elaborate the duality between the scheduling
problem of the real-time task set and the Partition prob-
lem.

Lemma 4. In the Partition problem, the given set of
items can be partitioned into two sets with equal total size of
elements if and only if the task set obtained from the trans-
formation is unschedulable.



t0 1 S+2 S+4 2S+4 3S+6

τ0
τn+1

τ0 τ0 τ0

τi ∈ Sync1 suspension region τi ∈ Sync2

S

S

Deadline of τn+1

τ0 τn+1

Figure 1: The situation in which W0 = 4, which causes the self-suspending task (i.e., τn+1) to miss its deadline.

t0 1 S+2 S+3 2S+2 2S+4 3S+4 3S+5

τ0
τn+1

τ0 τ0

τi ∈ Sync1 τi ∈ Sync1 suspension region

S + 1 S − 1

Deadline of τn+1

τ0 τn+1

Figure 2: The workload from τ1, . . . , τn on the two segments of τn+1 is not equal. In such situation, the first segment of τn+1

observes at most two instances of τ0 even in the extreme case, as shown in the figure, which implies W1 = 3.

Proof. We first assume that in the Partition problem
instance, the set A can be divided into two sets the sum
of elements of which is equal to S. As a result, the set
of tasks {τ1, . . . , τn} can be divided into two subsets such
that the sum of WCET of the tasks in each subset is equal
to S. Consider a scenario in which the jobs of one subset
are released simultaneously with the first segment of τn+1,
while the jobs of the other subset are released synchronously
with the second segment (this scenario is depicted in Fig. 1).
According to Lemma 3, this leads toW0 = 4. As a result, the
total interference experienced by τn+1 from higher priority
tasks will be equal to

W0 +
∑

1≤i≤n

Ci = 4 + 2S (9)

As the WCET of τn+1 is assumed to be 2 + 2 = 4, the total
execution demand before the deadline of τn+1 sums up to
2S + 8. In addition, there is a suspension interval of length
S in the middle. The execution demand plus this suspension
interval length will be equal to 3S + 8 which is larger than
the relative deadline of τn+1, namely 3S + 7. This means
that the task set is unschedulable.

Now, we consider the other direction assuming that the
set A cannot be partitioned into two sets with equal sum
of elements. As a result, the sum of the interfering work-
load from τ1, . . . , τn on one of the two segments of the self-
suspending task is less than S. This leads to the second case
in Lemma 3, which results in W0 = 3. Consequently, the to-
tal execution requirement in the interval between a release
of τn+1 and its deadline is 2S+ 3 + 4 = 2S+ 7, which means
that τn+1 meets its deadline. As the set of tasks {τ0, . . . , τn}
is already known to be schedulable, this result leads to the

schedulability of the whole task set, which completes the
proof.

Theorem 1. The problem of deciding whether a set of
sporadic tasks as described in Section 2 is fixed-priority schedu-
lable is at least coNP-hard in the weak sense when the self-
suspending task contains one suspension interval.

Proof. Based on Lemma 4, a Partition problem is a
positive instance if and only if the corresponding problem
of self-suspending task set schedulability is a negative one.
As the Partition problem is (weakly) NP-hard and the
transformation can be computed in polynomial time, the
considered schedulability problem turns out to be (weakly)
coNP-hard.

4. COMPLEXITY FOR THE CASE OF MUL-
TIPLE SUSPENSION INTERVALS

The goal of this section is to show that the schedulability
problem of the task set specified in Section 2 is coNP-hard in
the strong sense1. The proof is based on a polynomial time
reduction from the 3-Partition problem, reviewed below.

Definition 2 (3-Partition Problem). An instance of
the 3-Partition problem consists of a set of 3m elements
A = {a1, . . . , a3m}, a bound B ∈ N, and a size function
s : A 7→ N which satisfies

•
∑3m
i=1 s(ai) = mB, and

• ∀ai ∈ A : B/4 < s(ai) < B/2.

1 Similar result is obtained in [10] in parallel to our work.



The problem is to partition the elements of A into m sets
Pj, 1 ≤ j ≤ m, such that for all j ∈ {1, . . . ,m}:∑

ai∈Pj

s(ai) = B. (10)

An instance of the problem is a positive one if such a parti-
tion exists, and a negative one otherwise.

The 3-Partition problem is known to be NP-hard in the
strong sense [9]. In the following, we first provide a brief
overview of the proof approach, and then, present the de-
tails.

4.1 Proof Overview
The idea is to construct a task set (containing one self-

suspending task) for any given instance of 3-Partition such
that the task set is unschedulable if and only if the instance
of 3-Partition is a positive one. Towards this, consider
an arbitrary instance of the 3-Partition problem with a
set of 3m elements A = {a1, . . . , a3m}. We associate to
each element ai ∈ A a sporadic task, denoted by τi, for
1 ≤ i ≤ 3m. The execution time of τi is specified as

Ci = s(ai), 1 ≤ i ≤ 3m (11)

We also consider one additional ordinary sporadic task and
one self-suspending task withm computation segments which
are described shortly.

The periods of the tasks will be assigned such that the
following two properties are satisfied:

• at most one job of each task τi can interfere with a
single job of the self-suspending task,

• τi is schedulable for 1 ≤ i ≤ 3m.

The first property above guarantees that each task τi can
be contained by only one Syncj (recall that Syncj denotes
the set of tasks released synchronously with the j-th seg-
ment of the self-suspending task). Assume that the sum of
the execution time of the tasks in Syncj is denoted by Bj ,
namely,

Bj =
∑

1≤i≤3m
τi∈Syncj

Ci, for 1 ≤ j ≤ m (12)

For the proof, we verify two claims:

1. The 3-Partition instance is a positive one if and only
if there exists a release sequence of the tasks for which

Bj = B, for 1 ≤ j ≤ m. (13)

2. There exists a release sequence which satisfies (13) if
and only if the task set is unschedulable.

In the following, we first present the details of our method
for task set construction by determining timing parameters
of the constructed tasks in Section 4.2. The validity of the
first claim is then established in Section 4.3. The second
claim is validated in Section 4.4.

4.2 Task Set Construction
As specified earlier, for each element ai in the 3-Partition

instance, we consider a task τi with a WCET of Ci = s(ai).

In addition, we augment the task set with a specific task τ0
with the WCET and period of

C0 = 1,
T0 = (m− 1)B + 2.

(14)

The intuition behind defining such a task is to control the
workload released before and after the suspension region, as
discussed more precisely in the next sections.

We also consider a self-suspending task, denoted as τn+1,
with m computation segments and m − 1 suspension inter-
vals, with the following characteristics:

Cn+1,j = (m− 2)B + 2, 1 ≤ j ≤ m
Sn+1,j = (m− 1)B, 1 ≤ j ≤ m− 1

Tn+1 = (2m− 1)T0 + 1.

Accordingly, the total execution demand and the total sus-
pension time of any single job of τn+1 are computed, respec-
tively, as

Cn+1 = mCn+1,j

= m(m− 2)B + 2m, (15)

and

Sn+1 = (m− 1)Sn+1,j

= (m− 1)2B. (16)

In addition, the period of τi, for 1 ≤ i ≤ 3m, is specified as

Ti = 2Tn+1, (17)

which guarantees the following property.

Property 1. According to the specified timing parame-
ters, at most one job of each task τi can have an interfer-
ence on a job of τn+1. In other words, each task τi, for
1 ≤ i ≤ 3m, can exist in only one Syncj.

According to this observation, the worst-case overall in-
terfering workload of the tasks τi, for 1 ≤ i ≤ 3m, on τn+1,
denoted by I3m, is

I3m =
∑

1≤i≤3m

Ci = mB. (18)

The highest priority is assigned to τ0, while τn+1 has the
lowest priority. The priority of tasks τi for 1 ≤ i ≤ 3m is
assigned to be lower than τ0 and higher than τn+1. The
relative priority of τi and τj for 1 ≤ i, j ≤ 3m with respect
to each other has no influence on our results. A graphical
illustration of the created task set and a sample schedule is
seen in Fig. 3.

4.3 Restating the 3-Partition Problem
In this section, we show that a given 3-Partition in-

stance is positive if and only if the corresponding task set
can generate a release sequence which satisfies (13).

Lemma 5. Any given 3-Partition problem instance is a
positive one if and only if tasks τi can release a job sequence
of which the corresponding sets Syncj satisfy (13).

Proof. Assume that the given instance of 3-Partition
is a positive one, which means that there exists a partition
of the items into m bins of size B. Let τi ∈ Syncj if and
only if ai is associated with the j-th bin. Then, according
to (11), the sum of WCETs of the tasks in each Syncj for



t0 1 T0=
(m−1)B+2

(2m−3)T0 (2m−2)T0

τi ∈ Sync1 suspension region . . . suspension region τi ∈ Syncm

τ0
τn+1

τ0 τ0 τ0 τ0 τ0

B (m− 1)B (2m−1)T0

Deadline
τ0 τn+1

Figure 3: Illustration of the critical instant for the self-suspending task.

1 ≤ j ≤ m is equal to B which completes the first part of
the proof.

In the other direction, if (13) holds, then, according to
Property 1, we have a partition of the numbers Ci, or equiv-
alently a partition of s(ai)s, which satisfies (10). By defini-
tion, this means that the 3-Partition problem is a positive
instance, which completes the proof.

4.4 Duality of the Two Problems
In this section, we show that Condition (13) holds if and

only if the self-suspending task (and hence, the whole task
set) is unschedulable. For this purpose, we first compute the
maximum interference of τ0 on a single computation segment
of the self-suspending task.

Lemma 6. Consider an arbitrary computation segment of
the self-suspending task, e.g., τn+1,j. Then, for any release
pattern of the higher priority tasks in which τn+1,j observes
k instances of τ0, there exists one release pattern in which

• all of the higher priority tasks except for τ0 has the
same release pattern,

• τ0 is released synchronously with τn+1,j, and

• τn+1,j observes at least k instances of τ0.

Proof. The proof is by construction. Assume that τn+1,j

is eligible for execution at time t. Then, consider a scenario
in which τn+1,j has a response time of r and τ0 is not released
synchronously with τn+1,j . In other words, the first job of
τ0 in the scheduling window of τn+1,j is released at time
t+ δ for some δ > 0. As τ0 has the highest priority and its
WCET is one unit, the last job of τ0 released before t has
been finished before the release time of τn+1,j . As a result,
it does not have any interference on τn+1,j . Now, consider a
release pattern obtained by the supposed scenario with this
modification that all instances of τ0 which are released in
interval [t, t + r] in the initial scenario, now are released δ
time units earlier. This means that in the new scenario, τ0 is
released synchronously with τn+1,j . In this modified release
pattern, the number of instances of τ0 which are released in
[t, t+r] is not reduced. Also, the other (non-self-suspending)
tasks have exactly the same release pattern. As a result, the
observed workload by τn+1,j in an interval [t, t1] for any t1 ∈
[t, t+ r] is not smaller than the one observed in the original
scenario. Thus, τn+1,j has at least the same response time in
this modified scenario and observes at least the same number
of instances of τ0. Therefore, the described scenario satisfies
all the three conditions indicated by the lemma.

Lemma 7. Let B′ denote the total interference made by
tasks τi, for 1 ≤ i ≤ 3m, on one computational segment of
τn+1, e.g, τn+1,j. The maximum number of instances of τ0
which is observed by τn+1,j is 1 if B′ < B and is 2 otherwise.

Proof. First, let B′ < B. Accordingly, the total work-
load demand, assuming one instance of τ0, will be equal to
C0 + B′ + Cn+1,j = 1 + B′ + (m − 2)B + 2 which is not
larger than T0 = (m − 1)B + 2. According to Lemma 6,
the maximum number of instances observed by τn+1,j dur-
ing this interval happens when τ0 is released synchronously
with τn+1,j , which implies that the second instance of τ0
is released after the completion time of the segment. As a
result, the segment observes only one instance of τ0.

Now, we consider the other case in which B′ ≥ B. First,
it is noted that when B′ = B, according to the above dis-
cussion, τn+1,j can execute for (m − 2)B + 1 time units
before the release of the second instance of τ0. The remain-
ing execution demand, however, is executed immediately
after the execution of that second instance. As a result,
the segment observes exactly two instances of τ0. On the
other side, the maximum value of B′ is mB. As a result,
with a similar argument used for the case of B′ < B, it is
seen that the total execution demand before the third re-
lease of τ0 is at most 2C0 +mB + Cn+1,j which equates to
2 +mB+ (m− 2)B+ 2 = 4 + 2(m− 1)B = 2T0. Hence, the
maximum number of instances of τ0 seen by τn+1,j is 2.

Now, we elaborate the relationship between the satisfaction
of Eq. (13) and unschedulability of the self-suspending task.

Lemma 8. Consider a set of tasks obtained by the de-
scribed reduction method. There exists a release sequence
generated by the task set which satisfies Eq. (13), if and
only if the self-suspending task is unschedulable.

Proof. For the proof, we first show that if the considered
condition holds, then the self-suspending task is unschedu-
lable. Next, we show that if the tasks cannot release a se-
quence of jobs which satisfy (13), then the self-suspending
task meets its deadline.

=⇒ : Figure 3 shows a situation in which the interference
of the higher priority tasks τi, for 1 ≤ i ≤ 3m, on any
segment of τn+1 is exactly equal to B and τ0 is released
synchronously with all computation segments of τ0. Under
such circumstances, according to Lemma 7, the interference
of τ0 on each segment τn+1,j , for 1 ≤ j ≤ m, is equal to 2.
As a result, the total response time of τn+1 can be calculated
as (Iτ0 denotes the total interference of τ0 on τn+1)

R(τn+1) = Cn+1 + Sn+1 + Iτ0 + I3m

= m(m− 2)B + 2m+ (m− 1)2B + 2m+mB

= m(m− 1)B + 2m+ (m− 1)2B + 2m

= (2m− 1)(m− 1)B + 4m

= (2m− 1)T0 + 2

> Tn+1 (19)



which means that τn+1 misses its deadline. (recall that we
assume implicit deadlines.) As a result, the task set is un-
schedulable under the assumed condition.
⇐=: For proving the other direction of the lemma, we

show that for any release sequence where Bj 6= B for some
j, the self-suspending task meets its deadline. We first no-
tice that if Bj 6= B, then there exists k ∈ {1, . . . ,m} for
which Bk < B. Based on Lemma 7, this implies that τn+1,k

experiences at most one instance of τ0. Besides, according
to the same lemma, the maximum interference of τ0 on the
other computation segments of τn+1 is at most 2. As a re-
sult, the total interference of τ0 on τn+1 in this situation is
not larger than 1 + 2(m− 1), that is Iτ0 ≤ 2m− 1. Now we
calculate the WCRT of τn+1 as

R(τn+1) = Cn+1 + Sn+1 + Iτ0 + I3m

≤ Cn+1 + Sn+1 + 2m− 1 + I3m. (20)

Regarding (15), (16), and (18), we have

Cn+1 + Sn+1 + I3m = B [(m− 1)(2m− 1)] + 2m.

Using this relation in (20), we get

R(τn+1) ≤ B [(m− 1)(2m− 1)] + 4m− 1

= (2m− 1) [B(m− 1) + 2] + 1

= (2m− 1)T0 + 1, (21)

which means R(τn+1) ≤ Tn+1. Hence, the self-suspending
task meets its deadline and the proof is completed.

5. SCHEDULABILITY ANALYSIS USING
ABSTRACTION AND REFINEMENT

In this section, we deal with the problem of exact schedu-
lability analysis of the task set described in Section 2 us-
ing an abstraction and refinement technique. Schedulability
analysis of the non-self-suspending tasks can be done using
the well-known response-time analysis methods, such as the
one proposed in [8], which run in pseudo-polynomial time
worst-case complexity. Hence, we only focus on schedula-
bility analysis of the self-suspending task assuming that the
set of higher priority tasks {τ1, . . . , τn−1} is schedulable.

The idea is based on constructing an abstraction of the
task set behavior by which an over-approximation (i.e., an
upper bound) for the actual WCRT of the self-suspending
task can be calculated. The procedure begins with the high-
est level of abstraction, which is an over-approximation of
all possible behaviors. If this abstraction reveals schedu-
lability of the task set, then we can safely conclude that
the task set is schedulable. Otherwise, we proceed with one
step of refinement by refining the abstraction made for one
of the tasks, which reveals a set of less abstract behaviors.
Then, we need to check schedulability for all of the refined
behaviors to make sure that the task set is schedulable. Dur-
ing this procedure, whenever we reach an abstract behavior
under which the self-suspending task is schedulable, then
we do not need to perform more refinements for that spe-
cific abstraction. On the other hand, if an abstraction im-
plies unschedulability, we need to refine one step more by
again selecting a task to be refined. This procedure of re-
finement and schedulability test is repeated for all of the
created branches. If during this exploration we reach the
lowest level of abstraction for which the task is unschedu-
lable, then we have reached an actual counter example in

τi ∈ Sync1,2

τi ∈ Sync1 τi ∈ Sync2

Figure 4: Refinement of a single task.

which the task misses its deadline. As a result, the proce-
dure is terminated. Meanwhile, if we never reach a concrete
scenario under which the task misses its deadline, we can
infer schedulability of the task.

In the following, we elaborate on the details of this ap-
proach. For simplicity, we first describe our method for a
basic case of a self-suspending task with one suspension re-
gion in Section 5.1. Then, in Section 5.2, we specify how
the method can be used for the case of multiple suspension
intervals. Before that, we point out a lemma used later.

Lemma 9. Take a set of sporadic non-self-suspending tasks
τ and also a task set τ ′ containing the same tasks with this
difference that some jobs released by τ ′ are permitted to vio-
late the minimum inter-release time requirement specified by
τ . Then, the WCRT of a self-suspending task under τ ′ as
the set of interfering tasks is larger than or equal to the one
obtained under τ .

Proof. The proof is based on the observation that any
release sequence generated by τ can also be generated by
τ ′. As a result, any critical instant obtained under τ can be
achieved by τ ′, revealing the same response time for the self-
suspending task. Therefore, the WCRT of this task when
interfered with τ ′ is at least as large as the one obtained
with τ .

5.1 Analysis Method for the Case of One Sus-
pension Interval

In this section, we assume that the self-suspending task,
denoted as τn, has one suspension interval and two com-
putation segments τn,1 and τn,2. According to Lemma 1,
there exists a critical instant for τn in which, for any higher
priority task τi, at least one the following conditions hold:
(i) τi ∈ Sync1; (ii) τi ∈ Sync2. Now, consider a scenario
in which at the moment of τn,2’s release time, we can ig-
nore the minimum inter-release separation requirement of
a higher priority task τi. As a result, τi can be released
synchronously with both τn,1 and τn,2. We denote this sit-
uation by τi ∈ Sync1,2. According to Lemma 9, the actual
interfering workload generated by τi is never greater than
the workload which can be generated in this imaginary sce-
nario. As a consequence, this release scenario provides an
upper bound on the maximum interference of τi on τn, as-
suming a fixed behavior for the other tasks. We refer to this
scenario as an abstraction of the actual behavior of τi.

Referring to the described abstraction method, an ab-
stract scenario for τi, which is denoted by τi ∈ Sync1,2, can
be refined into two actual (concrete) scenarios: τi ∈ Sync1
and τi ∈ Sync2. Figure 4 illustrates the abstraction refine-
ment of a task τi based on this method.

Our abstraction refinement approach for schedulability
analysis begins with the most abstract level where all the
higher priority tasks are in Sync1,2. In each step of refine-
ment, one task is selected and is refined to provide a more
accurate description of the task set behavior. The pseudo-
code of this approach is shown in Algorithm 1. As seen,



Algorithm 1 Schedulability test using abstraction refine-
ment

1: procedure SchedTest(τ)
2: A[i]← S1,2, ∀i ∈ {1, . . . , n− 1} . Set τi ∈ Sync1,2
3: store.add(A)

4: Nup [i]←
⌈

WCRT(τn,1)

Ti

⌉
, ∀i ∈ {1, . . . , n− 1}

5: while store is not empty do
6: A← store.pop()
7: if RT(τn, A,N

up) > D then
8: if A is abstract then . Do a refinement
9: A1 ← A

10: A2 ← A
11: i← arg maxi{Ci/Ti | A[i] = S1,2}
12: A1[i]← S1 . τi ∈ Sync1
13: A2[i]← S2 . τi ∈ Sync2
14: store.push(A1)
15: store.push(A2)
16: else
17: return False
18: end if
19: end if
20: end while
21: return True
22: end procedure

Lines 2 and 3 perform an initialization by assigning each
task the highest abstraction level (A[i] is used to store the
abstraction level of τi) and storing this assignment in a stack.
Line 4 computes an upper bound on the maximum number
of jobs of each higher priority task which can interfere with
τn,1. (WCRT (τn,1 ) denotes the WCRT of τn,1 which can
be obtained by conventional WCRT analysis methods for
sporadic tasks). This upper bound is given as an input to
the response-time analysis algorithm explained later. Line 7
compares the WCRT of the self-suspending task with its rel-
ative deadline, denoted as D. If the WCRT is larger than
the deadline and A indicates at least one abstracted task,
we need to perform a step of refinement. Lines 9 to 15 de-
note the refinement step in which a selected task, e.g. τi,
is refined. Different criteria can be used for selecting a task
to be refined. We use the task utilization as a measure of
determining which task should be picked up. The intuition
is that the abstraction of a task with a higher utilization
is expected to provide a more inaccurate approximation of
the actual task behavior. As a result, refining a task with
higher utilization probably helps the method to achieve the
ultimate result in earlier steps.

A schematic representation of the refinement process is
demonstrated in Fig. 5. The selected task for refinement
in each step is colored in red. Further, the newly assigned
abstraction level to each task is seen in blue.

For schedulability analysis on the basis of the described
approach, we need a method to compute the WCRT of
the self-suspending task for a given set of higher priority
tasks, some of which are abstracted. For this, we adopt
the response-time analysis algorithm proposed in [4]. Algo-
rithm 2 (invoked in Line 7 of Algorithm 1) shows the pseu-
docode of the algorithm adapted to be used in our frame-
work. As seen, the algorithm first computes the maximum
response time of τn,1 (Line 7) based on a given maximum
number of permitted jobs for each higher priority task (in-

A : [S1,2,S1,2, . . . ,S1,2]

[S1,2,S1, . . . ,S1,2] [S1,2,S2, . . . ,S1,2]

[S1,S1, . . . ,S1,2] [S2,S1, . . . ,S1,2]

Figure 5: A part of the hierarchy of abstraction refinement.

dicated by array Nup) such that the release restrictions,
which are specified by the input argument Syn, are pre-
served. Then, in order to respect the inter-release time re-
quirements, an offset is calculated to determine the release
time of the first job of each task in the scheduling window
of τn,2 (Lines 18 to 24). In order to adjust that method to
our case, the first job in the mentioned scheduling window
of the tasks in Sync1,2 do not need to respect the minimum-
inter release time restriction. As a result, the offset of those
tasks is set to be zero (Line 20). The remaining part of the
algorithm remains unchanged.

5.2 Extension to Multiple Suspension Regions
In this section, we point out how our abstraction refine-

ment approach can be extended to the case of a self-suspending
task with multiple suspension regions. The idea is based on
the observation that the result of Lemma 9 is valid for the
general case of multiple suspension intervals, as specified in
the following.

Assume that a higher priority task is allowed to be re-
leased synchronously with all of the computation segments
of the self-suspending task irrespective of its specified min-
imum inter-release separation time. When computing the
WCRT of the self-suspending task under this assumption, we
will obtain an upper bound on its actual WCRT. As a result,
a specification of the higher priority task which allows this
situation can be considered as an abstraction of that task
which can be used in our abstraction refinement framework.
In this case, we will denote an abstraction by the notion of
τi ∈ Sync1,...,p. Then, each refinement step consists of re-
placing the abstraction of a task τi ∈ Sync1,...,p with its p
distinct possible choices, i.e., τi ∈ Sync1, . . . , τi ∈ Syncp.

5.3 Method Run-Time Complexity
Regarding the computational complexity of the presented

method, as argued in [4], there are two sources of exponen-
tial complexity. One is related to the exponentially many
number of ways that one can partition the sporadic tasks
into sets Syncj . The second one is rooted in different num-
ber of jobs from higher priority tasks interfering with τn,1
for which the response time must be calculated. (explored
by the last for loop in Algorithm 2.) Our algorithm also
suffers from the same complexity in the worst case. Despite
this, as shown in the next section, the method exhibits an
acceptable efficiency for moderate-size task sets.

6. EVALUATION
In order to evaluate the proposed method for schedula-

bility analysis we have performed three sets of experiments.



Algorithm 2 Response time analysis (adopted from [4],
modified to be used in our schedulability analysis method)

1: procedure RT(τ , Syn, Nup)
2: if already invoked for the given Syn and Nup then
3: return 0
4: end if
5: N ← Nup

6: Rbss,1 ← 0

7: Rss,1 ← Cn,1 +
∑n−1
i=1 N

up [i]Ci
8: while Rbss,1 6= Rss,1 do

9: Rbss,1 ← Rss,1

10: for i← 1 to n− 1 do
11: if Syn[i] = S2 and N [i] >

Rss,1+Sn,1

Ti
then

12: N [i]← N [i]− 1
13: end if
14: end for
15: Rss,1 ← Cn,1 +

∑n−1
i=1 min(N [i],

⌈
Rss,1

Ti

⌉
)Ci

16: N [i]← min (N [i],
⌈
Rss,1

Ti

⌉
), ∀i ∈ {1, . . . , n− 1}

17: end while
18: for i← 1 to n− 1 do
19: if Syn = S1,2 then
20: O[i]← 0
21: else
22: O[i]← max (0, N [i]Ti −Rss,1 − Sn,1)
23: end if
24: end for
25: Rss,2 ← Cn,2 +

∑n−1
i=1

⌈
Rss,2−O[i]

Ti

⌉
Ci . Fixed point

26: Rss ← Rss,1 + Sn,1 +Rss,2

27: if Rss < UBss and Rss,2 < UBss,2 then
28: for i← 1 to n− 1 do
29: if N [i] > 0 then
30: N ′ ← N
31: N ′[i]← N [i]− 1
32: Rss ← max(Rss , RT(τ , Syn, N ′))
33: end if
34: end for
35: end if
36: return Rss

37: end procedure

For generating a set of random utilization values we used
the UUniFast algorithm [11]. Further, the period of each
task is chosen from [10, 200] with a uniform distribution.
The execution time of each task is then calculated based on
the corresponding value of its utilization and period. In each
task set, a self-suspending task was considered with one sus-
pension interval. Again, we use the UUniFast algorithm for
partitioning the calculated execution time for the task into
three parts to be assigned to the two computation segments
and the single suspension interval. In our experiments, we
have considered only those task sets in which the n− 1 non-
self-suspending tasks are schedulable. Each data point in
the reported results is obtained by averaging the results for
500 random experiments.

We have compared the results of our method with those
obtained by a method, called Exhaustive, which searches
the concrete combinations without any abstraction. By a
concrete combination, we mean any specific partition of the
non-self-suspending tasks into two sets of Sync1 and Sync2.
The Exhaustive method begins with an arbitrary concrete
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Figure 6: Number of tested combinations for n = 10.

case and proceeds until the first counter example showing a
deadline miss. Therefore, for a schedulable task set, it will
check all the possible concrete cases. It is worth noting that,
for a task set of size n, there are 2n−1 such concrete cases.

Fig. 6 depicts the average number of tested combinations
for task sets of size 10. As seen, the Exhaustive method does
not perform well in low utilizations. This is because in this
situation, a task set is schedulable with a high probability,
the situation in which the method needs to check all possible
combinations to make sure that the task set is schedulable.
Also, if a task set is unschedulable, it is unlikely to find a
counter example in early steps as there are probably not
many combinations which lead to a deadline miss.

In contrast, the proposed abstraction refinement method
works efficiently in low utilizations. This is because, in low
utilizations, the WCRT of the self-suspending task is ex-
pected to be far from the relative deadline, introducing a
large amount of slack for the task. Hence, even an inac-
curate over-approximation of the tasks, which is related to
higher abstraction levels, can reveal the schedulability of the
task set. This lets the method skip many combinations.

Further, it is seen that the method exhibits a relatively
small number of checked combinations in very high utiliza-
tions. The reason is that in such circumstances, it turns out
to be easy to find a counter example. More precisely, in this
case, it is highly probable to find a concrete counter exam-
ple in which the task is unschedulable in early steps of the
procedure. As a result, the method does not need to explore
a large number of combinations.

In order to study the scalability of the proposed method
with respect to the number of tasks, we have reported the
average running time of the methods in Fig. 7. As seen, in
general, the Exhaustive method is more than one order of
magnitude slower than the other method. This result indi-
cates that, while the abstraction refinement method can be
as slow as the other method in the worst-case, it is notice-
ably faster in most cases.

Also, in order to investigate the scalability of the method
in different utilizations, we have performed an experiment
with changing the utilization for different number of tasks.
As shown in Fig. 8, by increasing the number of tasks, the
phase change behavior of the method (which occurs around
utilization 0.8) becomes sharper. One reason for this can be
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Figure 7: Running time of the two methods when number
of tasks ranges from n = 6 to n = 14.

due to the rapidly increased total number of combinations
for higher number of tasks. On the other hand, for relatively
low or very high utilizations, still there is a good chance for
the abstraction refinement method to achieve an ultimate
result and terminate in early steps.

7. CONCLUSION
In this paper, we considered a set of sporadic tasks con-

taining a self-suspending task which has the lowest prior-
ity. We studied the problem of uniprocessor schedulabil-
ity analysis of such a task set under the preemptive fixed-
priority scheduling policy. We showed that the problem is
coNP-hard in the weak sense when the self-suspending task
contains only one suspension interval and coNP-hard in the
strong sense if the task is subject to multiple suspension
intervals. Our results provide a lower bound on the compu-
tational complexity of these problems. Therefore, the ob-
tained results are valid for more general cases including the
case in which the self-suspending task is not necessarily the
lowest priority one, or task systems with more than one self-
suspending task. It is worth mentioning that, for the case
of a task set with a single self-suspending task with multiple
suspension regions and with the lowest priority, an algorithm
with exponential running time has been previously proposed
[4]. Consequently, there exists also an upper bound for the
problem complexity. Meanwhile, the exact computational
complexity of the problem still is not known.

There are a number of problems closely related to this
work which are still open. First, whether the obtained bound
for the case of a single suspension region is tight is a re-
lated question. The same question exists when there are
non-self-suspending tasks with priority lower than the self-
suspending one.

Also, regarding the abstraction refinement approach, one
can think of its extension to more general cases. It is intu-
itively expected that if there exists some results with respect
to the critical instant of the tasks like the one expressed in
Lemma 1, then a similar approach can be applied.
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