
The Digraph Real-Time Task Model
Martin Stigge, Pontus Ekberg, Nan Guan, and Wang Yi

Uppsala University, Sweden
Email: {martin.stigge | pontus.ekberg | nan.guan | yi}@it.uu.se

Abstract—Models for real-time systems have to balance the
inherently contradicting goals of expressiveness and analysis
efficiency. Current task models with tractable feasibility tests
have limited expressiveness, restricting their ability to model
many systems accurately. In particular, they are all recurrent,
preventing the modeling of structures like mode switches, local
loops, etc.

In this paper, we advance the state-of-the-art with a model
that is free from these constraints. Our proposed task model is
based on arbitrary directed graphs (digraphs) for job releases.
We show that the feasibility problem on preemptive uniprocessors
for our model remains tractable. This even holds in the case of
task systems with arbitrary deadlines.

I. INTRODUCTION

In the design of real-time systems, abstract models are
used to validate non-functional properties like timing behavior
in schedulability analysis. Designers face the problem of
choosing an appropriate level of abstraction in order to satisfy
two contradicting goals. First, the model should be sufficiently
expressive to enable modeling of the system’s behavior as
precisely as possible. This contributes to easier modeling
without restrictions and to reducing wasteful resource over-
provisioning. Second, the analysis of the model should be
efficient in order to scale well with the system’s size and
provide results within a reasonable time frame.

The well-known Liu and Layland task model [1] which
characterizes task behavior by relatively few parameters (exe-
cution time and period of task activations) has been thoroughly
studied since the 1970s. It does very well on the analysis
efficiency side but it is very restrictive on the type of tasks
allowed. At the other extreme, task activations may be modeled
using formalisms as powerful as timed automata [2]. This
allows very accurate system models, but at the price of very
costly or even impossible schedulability tests.

With analysis efficiency as a major concern, researchers
have proposed increasingly expressive models over the years
(see Figure 1), for all of which feasibility analysis can be
done efficiently. The most general model is the non-cyclic
recurring real-time task model proposed in [3]. It models each
task using a directed acyclic graph (DAG). Each vertex models
the release of a new job. Different vertices represent different
types of jobs with potentially different execution time and
deadline parameters. Further, job inter-release separation times
are provided as labels on the graph edges. Recurrent behavior
is modeled by adding back edges from sink vertices to the
unique source vertex, also labeled with individual inter-release
separations. Although feasibility analysis for this model has

been shown to be tractable [3], critical restrictions for system
modeling still remain. For example, unbounded local looping
or task mode switches cannot be expressed, and models in
general are inflexible.

Liu & Layland [1]
(e, d = p)

sporadic [4]
(e, d, p)

multiframe [5]
(ei, d = p)

generalized multiframe (GMF) [6]
(ei, di, pi)

recurring RT (RRT) [7]
(DAG, p)

non-cyclic GMF [8]
(order arbitrary)

non-cyclic RRT [3]
(DAG, pi)

Digraph
(arbitrary graph)

Task Automata [2]

efficient

Fe
as

ib
ili

ty
te

st

difficult

low

E
xp

re
ss

iv
en

es
s

high

Strongly (co)NP-complete

Pseudo-Polynomial

Fig. 1. A hierarchy of task models. Arrows indicate the generalization
relationship. The higher in the hierarchy, the higher the expressiveness, but
also the more expensive the feasibility test.

To enable these features, we propose a model that allows
arbitrary directed graphs to represent the release structure of
jobs in terms of order and timing. Our digraph real-time
task model (DRT) is a significant generalization of previous
models, providing a major increase in expressiveness. This
makes DRT the most general tractable model currently known.
We show how the feasibility analysis problem can be solved in
pseudo-polynomial time, even though it becomes considerably
more difficult, since an unbounded number of paths through
the task graph needs to be handled. In particular, this paper
provides the following contributions:
• We introduce a path abstraction technique to prevent

search space explosion via dynamic programming.
• We show that the feasibility problem in our proposed

model remains tractable, i.e., can be decided in pseudo-
polynomial time for systems with bounded utilization.

• We study the extension of our model to arbitrary dead-
lines and show that feasibility remains tractable. This has
not been shown before, not even for many of the previous,
less expressive models.

A prototype implementation of our technique shows that it is
applicable to large task sets. We are able to analyze randomly
generated task sets of 100 tasks with 20 job types each and
both low and high system utilizations within a few seconds.

A. Prior Work

Early works on generalizing the Liu & Layland task model
include the sporadic [4] and the multiframe [5] task models,
which were later unified in the generalized multiframe (GMF)
model [6]. In summary, GMF decouples task periods from
deadlines, allows sporadic job releases and provides a set of
different job types (“frames”) through which the task cycles.
Despite these generalizations, feasibility analysis has been
shown to be tractable by proposing tests that run in pseudo-
polynomial time. The model was further generalized in the
recurring real-time (RRT) task model [7] by relaxing the
“linear” order in which different job types are released by
a task. RRT allows branching code to be modeled by a DAG,
thereby greatly improving modeling expressiveness. The non-
cyclic GMF proposed in [8], generalizes GMF in another
direction. Here, jobs may be released in any order, therefore
the behavior is not necessarily cyclic. An attempt to unify both
divergent generalizations has been made in recent work [3]
with the introduction of the non-cyclic RRT model. It adds
non-cyclic behavior to RRT by allowing “restarts” of the DAG
traversal to be dependent on the last job released. Using a
dynamic programming method from [9], it is shown in [3]
that feasibility can be decided in pseudo-polynomial time also
for the non-cyclic RRT model.

At the other end of the expressiveness spectrum, the task
automata model [2] allows many features such as complex
dependencies between job release times and task synchroniza-
tion. However, schedulability analysis is very expensive and is
even shown to be undecidable in certain variants of the model.

A related model for schedulability analysis is the Real-Time
Calculus (RTC) from [10]. It enables compositional analysis
of timed systems using the arrival curve model and is similar
to the demand bound function that we use in our feasibility
analysis. However, our digraph task model allows more precise
expression of timing constraints between job releases, which
have to be abstracted in the RTC.

II. THE DIGRAPH REAL-TIME TASK MODEL

A digraph real-time (DRT) task system τ = {T1, . . . , TN}
consists of N independent tasks. A task T is characterized by a
directed graph G(T). The set {v1, . . . , vn} of vertices of G(T)
represents the types of jobs that can be released by that task.
Each vertex vi is labeled with an ordered pair 〈e(vi), d(vi)〉
where e(vi) is the worst-case execution-time demand of the
corresponding job, and d(vi) its relative deadline. Both are
assumed to be positive integers. The edges of the graph
represent the order in which jobs generated by T are released.
Each edge (u, v) is labeled with a positive integer p(u, v) for
the minimum job inter-release separation time.

Note that this model is a strict generalization of the non-
cyclic RRT model of [3]. We allow arbitrary graphs for task
modeling. In particular, we allow arbitrary cycles in G(T) and
do not have distinct source and sink vertices. We do not require
a special initial vertex nor repeated revisits of a particular
vertex.

v1〈2, 5〉

v2

〈1, 8〉
v3 〈3, 8〉

v4 〈5, 10〉

v5

〈1, 5〉

10

15

20

20

20

11

10

Fig. 2. An example task containing five different types of jobs

In the first part of this paper, we assume that the task
systems satisfy the Frame Separation property1 by which all
jobs’ deadlines are constrained to not exceed the inter-release
separation times: for all vertices u and their outgoing edges
(u, v) we require d(u) 6 p(u, v). We remove this constraint
in Section VI and show that the results still hold.

Example II.1. Figure 2 shows an example of a DRT task
satisfying the Frame Separation property. We will use it as a
running example throughout the rest of the paper.

Semantics: An execution of task T corresponds to a
potentially infinite path in G(T). Each visit to a vertex along
that path triggers the release of a job with parameters specified
by the vertex labels. The job releases are constrained by inter-
release separation times specified by the edge labels. Formally,
we use a 3-tuple (r, e, d) to denote a job that is released
at (absolute) time r, with worst-case execution time e and
deadline at (absolute) time d. We assume dense time, i.e.,
r, d ∈ R>0. A job sequence σ = [(r1, e1, d1), (r2, e2, d2), . . .]
is generated by T , if and only if there is a (potentially infinite)
path π = (π1, π2, . . .) in G(T) satisfying for all i:

1) ei = e(πi),
2) di = ri + d(πi),
3) ri+1 − ri > p(πi, πi+1).

For a task set τ , a job sequence σ is generated by τ , if it is
a composition of sequences {σT }T∈τ , which are individually
generated by the tasks T of τ .

Example II.2. For the example task T in Figure 2, consider
the job sequence σ = [(5, 5, 15), (25, 1, 33), (42, 3, 50)]. It
corresponds to the path π = (v4, v2, v3) in G(T) and is
thus generated by T . Note that, while the second job in σ
(associated with v2) is released as early as possible after
the first job (v4), the same is not true for the third job (v3).
This “sporadic” behavior is valid in the semantics of our task
model.

1Strictly speaking, the l-MAD property from [6] which is a bit less
restrictive would be sufficient. However, for simplicity of presentation, we
assume d(u) 6 p(u, v) for Sections III to V and remove all constraints in
Section VI.

III. FEASIBILITY ANALYSIS

For our proposed task model, we are interested in solving
the associated feasibility problem:

Definition III.1 (Feasibility). A task set τ is preemptive
uniprocessor feasible, if and only if all job sequences ge-
nerated by τ can be executed on a preemptive uniprocessor
platform such that all jobs meet their deadlines.

In particular, for a job (r, e, d) to be scheduled successfully,
there must be an accumulated duration of e time units where
the job executes exclusively on the processor within the time
interval [r, d]. It is known that Earliest Deadline First (EDF)
is an optimal scheduling algorithm for scheduling indepen-
dent jobs on a preemptive uniprocessor. Thus, the feasibility
problem is equivalent to EDF schedulability.

In order to show an efficient decision procedure for the
DRT task model, we first introduce the general framework
(Section III-A). After that, we focus on the two main problems
to be solved during the analysis (Sections IV and V).

A. The Demand Bound Function

Our analysis uses the concept of a demand bound function
(dbf), which is an established framework in schedulability
theory. Intuitively, a dbf expresses the accumulated execution
time that a task set can demand from the processor within
any time interval of given length. In particular, it considers
each execution requirement that is both released within the
interval and needs to be finished before the end of the interval.
Formally:

Definition III.2 (Demand Bound Function). For a task T and
an interval length t, dbf T (t) denotes the maximum cumulative
execution requirement of jobs with both release time and
deadline within an interval of length t, over all job sequences
generated by T . Further, for a task set τ ,

dbf (t) :=
∑
T∈τ

dbf T (t).

By definition, dbf is tight in the sense that for each t, there
is a job sequence generated by task set τ in which some jobs
actually have an execution demand of dbf (t) within an interval
of t time units. Note that the definition of dbf (t) as the sum
of dbf T (t) of all tasks T relies on their independence of each
other. Note further that we assume time to be dense, so dbf is
defined for all t ∈ R>0. However, changes clearly only occur
at integers.

Example III.3. Consider again job sequence σ =
[(5, 5, 15), (25, 1, 33), (42, 3, 50)] from Example II.2, genera-
ted by task T from Figure 2. This sequence σ shows that in
a time interval t = 45, task T may generate a demand of
9 on the processor as follows: The first job is released at
t1 = 5 and the third job has its deadline at d3 = 50. Thus, all
three jobs of the sequence have both their release time and
deadline within time interval [5, 50] of length 45. Together,
their execution time is 5 + 1 + 3 = 9.

0 10 20 30 40 50 60
0

3

6

9

12

dbf T (t)

t

〈9, 43〉

Fig. 3. Demand bound function for the DRT task in Figure 2. The dots
depict the demand pairs of that task. Demand pairs corresponding to multiple
paths have a darker color.

In fact, there are no job sequences generated by T with
a higher demand within an interval of length 45. We can
conclude that dbf T (45) = 9 for our example task T .

A tight demand bound function can be used in a feasibility
test, thanks to the following proposition.

Proposition III.4. A DRT task system τ is preemptive unipro-
cessor feasible if and only if:

∀t > 0 : dbf (t) 6 t

A proof of this can be established in a very similar way as in
previous work, e.g. [6], and we omit it here. Intuitively, there
must be a feasible schedule for all job sequences generated by
τ if and only if, for all time interval lengths t, the execution
time demand of τ fits into that interval.

As a consequence, the feasibility of a DRT task system can
be checked by determining whether there exists a tf violating
this property, i.e., such that dbf (tf) > tf . In order to check
this, we need to solve two main problems:

1) How do we compute dbf (t) for a given t?
2) For which t do we need to compute dbf (t)?

The second problem is important since if we were to naı̈vely
check dbf (t) sequentially for all integers t, we would not
terminate when analyzing feasible task systems. In Section V
we will therefore derive a pseudo-polynomial bound for tf .

B. Demand Pairs
The first problem of how to compute dbf (t) reduces to

calculating dbf T (t) for each task T . In Figure 3, dbf T (t) for
the task in Figure 2 is (partially) shown. Note that it only
changes at certain points (“steps”). Each point corresponds to
a path π in G(T). Take for example the marked point t = 43
with dbf T (43) = 9. It corresponds to path π = (v4, v2, v3)
from Example II.2: π has an execution requirement of 9 time
units as shown in Example III.3. Further, if all jobs are released
as early as possible , the time interval between the release of
the first job and the deadline of the third job is 43 time units.
The pair 〈9, 43〉 of execution time and time interval gives
useful information in the process of calculating the demand
bound function. It can be interpreted as a generalization of
execution time demand and relative deadline from a single
job to a job sequence, as follows.

Definition III.5 (Demand Pair). For a finite path π =
(π0, . . . , πl) in G(T) we define:

Execution demand: e(π) :=

l∑
i=0

e(πi)

Deadline: d(π) :=

l−1∑
i=0

p(πi, πi+1) + d(πl)

We call 〈e(π), d(π)〉 a demand pair that corresponds to π.

For each path π in G(T) of our running example, Figure 3
contains a dot for the demand pair 〈e(π), d(π)〉. If we were
able to compute all demand pairs, we could easily compute
the demand bound function, since

dbf T (t) = max {e | 〈e, d〉 demand pair with d 6 t} .

As a motivation of this formula, recall Definition III.2 of the
demand bound function. Given a t and the demand pairs 〈e, d〉
of all paths, the value of dbf (t) is the maximal execution
demand e of all paths with a deadline d of at most t. In
particular, this also includes paths with much shorter deadline.

A naı̈ve approach could be to enumerate all paths and
compute the corresponding demand pairs. However, this would
be an exponential procedure. Next, we show how to compute
all relevant demand pairs within a pseudo-polynomial time
bound.

IV. CALCULATING DEMAND PAIRS

A key observation for calculating demand pairs efficiently
is that several different paths may correspond to the same
demand pair.

Example IV.1. In our running example from Figure 2, con-
sider the following three paths:

πA = (v3, v1, v5, v4)

πB = (v3, v1, v2, v4)

πC = (v4, v2, v3, v1)

All three paths correspond to the demand pair 〈11, 51〉.

Using demand pairs as an abstraction of concrete paths
through the task graph reduces the number of objects that
need to be tracked. In order to develop this into an efficient
iterative procedure, we need to extend the abstraction. Note
that in the above example, paths πA and πB (in contrast to
πC) not only correspond to the same demand pair, but also
end in the same vertex of G(T). Any extension of both paths
will therefore always result in the same demand pairs for both
extended paths. In an iterative procedure, only one (or rather,
an abstraction of both) of them needs to be kept. This is the
key to preventing an exponential explosion in complexity.

We formalize these observations as follows.

Definition IV.2 (Demand Triple). For a finite path π =
(π0, . . . , πl) in G(T), we call 〈e(π), d(π), πl〉 a demand triple.
We say that π corresponds to that demand triple.

t

π0

. . .

u v

d(π0) d(u) d(v)

p(u, v)

d

d′ = d− d(u) + p(u, v) + d(v)

Fig. 4. Extending a demand triple 〈e, d, u〉 by a vertex v. Let 〈e, d, u〉
correspond to a path π = (π0, . . . , πl−1, u) and 〈e′, d′, v〉 correspond to
its extension π′ = (π0, . . . , πl−1, u, v). Depicted is a job release sequence
generated by π′ in which all jobs are released as early as possible. The relation
between d and d′ is shown.

Lemma IV.3. For each constant D ∈ N, the number of
demand triples 〈e, d, v〉 with d 6 D is bounded polynomially
in D and n, the number of vertices in G(T).

Proof: We may assume e 6 d since otherwise there is
clearly a deadline violation. Thus, all demand triples are in
N6D × N6D × N6n, leaving only O(D2n) possibilities.

Using these insights, one can implement an iterative pro-
cedure for calculating dbf T (t) for a given t using a graph
traversal that stores only demand triples. We first give a high-
level description:

1) Consider all paths of length 0, i.e., all vertices of G(T),
and store their corresponding demand triples.

2) For a stored demand triple 〈e, d, u〉, consider all succes-
sor vertices v of u. For each such v, one can compute
a new demand triple 〈e′, d′, v〉 corresponding to a path
that has been extended by v. In particular,

e′ = e+ e(v) and d′ = d− d(u) + p(u, v) + d(v).

If π is a path corresponding to 〈e, d, u〉, then this
computation ensures that 〈e′, d′, v〉 corresponds to π
extended by vertex v. See Figure 4.

3) Each newly computed demand triple 〈e′, d′, v〉 is stored
only if:

• It is not stored yet, and
• d′ 6 t

4) Repeat until there are no new demand triples.
5) Using all demand triples 〈e, d, v〉 , calculate dbf T (t):

dbf T (t) = max {e | 〈e, d, v〉 demand triple with d 6 t} .

Note that the above procedure only needs to discover paths π
(or rather, the demand triple abstractions thereof) which have
a path length of at most t, since with each new vertex, d(π)
increases by at least one. We give a formal, more detailed
algorithm in Figure 5 which is based on this observation. For
simplicity of presentation, it discovers all paths in a breadth-
first manner. In particular, the sets DTk contain all demand
triples corresponding to paths of length k.

1: DT0 ← {〈e(vi), d(vi), vi〉 | vi vertex of G(T)}
2: for k = 1 to t do
3: DTk ← ∅
4: for all 〈e, d, u〉 ∈ DTk−1 do
5: for all edges (u, v) in G(T) do
6: e′ ← e+ e(v)
7: d′ ← d− d(u) + p(u, v) + d(v)
8: if d′ 6 t then
9: DTk ← DTk ∪ {〈e′, d′, v〉}

10: end if
11: end for
12: end for
13: end for
14: return max

{
e | 〈e, d, v〉 ∈

⋃
k6tDTk

}
Fig. 5. An iterative algorithm for calculating dbf T (t).

Correctness: By the intuitive reasoning above, the algo-
rithm in Figure 5 correctly tracks all paths through G(T). It
only discards paths if their deadline already is too long, or
if it discovers a path corresponding to an already considered
demand triple. The full proof of the correctness lemma is given
in Appendix A.

Lemma IV.4. The algorithm in Figure 5 is correct. In partic-
ular:

1) There is a path π in G(T) with d(π) 6 t for which e(π)
is equal to the return value.

2) There is no path π′ in G(T) with d(π′) 6 t for which
e(π′) strictly exceeds the return value.

Complexity: The demand triple abstraction makes sure
that for each k, there can be at most polynomially many
demand triples in DTk (Lemma IV.3). This bounds the number
of iterations of line 4. Further, for each demand triple, there are
at most n extensions (maximum number of successors), which
also bounds number of iterations of line 5. Finally, finding the
maximum in line 14 can be done in time linear in the set size.
We summarize the result in the following lemma.

Lemma IV.5. The runtime of the algorithm in Figure 5 is
bounded polynomially in t and n.

A. Optimizations
There are some straightforward ways in which the above

algorithm can be optimized for efficient implementations:
• If dbf T (t) is to be calculated for several different t (which

is the case for the feasibility test), demand triples need
to be calculated only once. In that case, the largest of all
t is used as a bound for both k and d, and the obtained
demand triples can be reused for all t in question.

• The sets DTk do not need to be kept separated, but can
rather be implemented as a common store of all already
visited demand triples.

This last idea makes it possible to detect that a demand
triple has already been considered some time before (possibly
representing a shorter path). More importantly, it also enables

a more sophisticated optimization as follows. The key idea
is that not only can a demand triple be abandoned if it itself
has already been considered before, but even if a different,
dominating one has already been considered. By this we
mean that the new demand triple would not contribute new
information to the calculation of dbf T (t), neither by itself
nor by any future extension. We illustrate this idea with the
following example.

Example IV.6. In our running example task T from Figure 2,
consider again path π = (v4, v2, v3) from Example II.2. We
know that it corresponds to demand triple 〈9, 43, v3〉 as we
calculated before. Another path also ending in v3 is π′ =
(v3, v1, v2, v3) and we find that it corresponds to demand triple
〈9, 44, v3〉.

Intuitively, π generates the same execution demand as π′

but during a shorter time interval. Since they both end in the
same vertex, they have the same extensions, and thus all paths
prefixed with π will always dominate those prefixed with π′.
Clearly, π′ is not critical for further considerations. Thus, even
though the demand triples are not equal, 〈9, 44, v3〉 can be
discarded directly. Each demand triple that later on would
be based on it would always have a counterpart based on
〈9, 43, v3〉 with a strictly smaller deadline.

In general, we can define this concept as follows.

Definition IV.7 (Domination). Let ξ1 = 〈e1, d1, u〉 and ξ2 =
〈e2, d2, v〉 be two demand triples. We say that ξ1 dominates
ξ2, written ξ1 < ξ2, if

e1 > e2, d1 6 d2, and u = v.

We say that ξ1 strictly dominates ξ2, written ξ1 � ξ2, if
ξ1 < ξ2 and ξ1 6= ξ2.

Definition IV.8 (Critical paths). A finite path π in G(T)
corresponding to a demand triple ξ is critical, if there is no
path π′ corresponding to a demand triple ξ′ with ξ′ � ξ. We
also say that ξ is critical.

The proposed optimization is now to discard all demand
triples which clearly are not critical because the procedure
already has discovered a dominating one. By keeping demand
triples per end vertex sorted by deadline, this optimization
can be implemented very efficiently, resulting in a highly
generalized variant of the dbf procedure presented in [9]
for DAGs. In fact, our prototype implementation showed a
huge performance improvement using this optimization (from
several minutes for large tasks down to a few seconds), since
calculating demand pairs for dbf (t) becomes roughly linear in
t instead of being quadratic. Further, correctness is guaranteed
by the following lemma. It directly implies that demand triples
corresponding to non-critical paths can be discarded, since any
extension will be non-critical as well. The proof is given in
Appendix B.

Lemma IV.9 (Optimal Substructure). For each critical path
π = (π0, . . . , πl), all prefixes π′ = (π0, . . . , πj), j 6 l are
critical as well.

V. CALCULATING THE BOUND

We will now derive a bound for tf , the supposed coun-
terexample that witnesses the falsity of the condition in
Proposition III.4 for infeasible task sets.

With such a bound D, we could run the following feasibility
test. Given a task set τ , check dbf (t) 6 t for all t 6 D.
If and only if the test succeeds for all t 6 D, then τ
can be scheduled on a preemptive uniprocessor (using EDF).
Otherwise, a counterexample tf is found and τ is shown to not
be schedulable. Further, if we can show that D is polynomially
bounded in the parameters of the task set, the sketched test is
tractable.

Utilization: A central concept we use is the utilization
of a task set. Intuitively, it describes the maximum execution
demand rate that the task set may create asymptotically.

Definition V.1 (Utilization). For a task set τ , a task T and a
cycle π = (π0, . . . , πl) in G(T), i.e., π0 = πl and l > 1, we
define their utilizations:

U(π) :=

∑l−1
j=0 e(πj)∑l−1

j=0 p(πj , πj+1)

U(T) := max {U(π) | π is a cycle in G(T)}

U(τ) :=
∑
T∈τ

U(T).

We call the cycle with utilization U(T) the most dense cycle.

(We show how to calculate U(τ) below in Section V-A.)
Cleary, if the utilization of a task set exceeds 1, then it can

not be schedulable, since after sufficiently long cycling of each
task in its most dense cycle, the system will be overloaded.
On the other hand, if the utilization is smaller than 1, we can
show that for sufficiently long intervals, the execution demand
will be strictly less than the interval size. For an intuitive
explanation, see Figure 6. Note that this does not mean that
U(τ) < 1 is sufficient for feasibility. It only guarantees the
existence of a bound D for tf .

dbf (t)

t

dbf (t)

t

Bound for dbf
(t)

Dtf

Fig. 6. Demand bound function of some task set. This task set is not
schedulable since there is tf with dbf (tf) > tf . Let’s assume there is a
bound for dbf (t) with a slope of less than 1. This bound intersects t at some
point D. Clearly, tf is at most D, so only values up to D need to be checked.
For the slope of the bound, we use the task set’s utilization.

Formally, we first derive a bound for the demand bound
function of each individual task. Each path in G(T) can be
partitioned into two types of subpaths: maximal cycles and
all remaining vertices. For all maximal cycles, their execution
demand can be bounded by the demand that the most dense
cycle could generate in the same amount of time. Further, each
vertex of G(T) belongs at most once to the remaining vertices
(otherwise, some cycle was not chosen maximal), therefore a
bound for the execution demand of the remaining vertices is
just the sum of all execution times of all vertices2.

We express this observation in the following lemma, using
esum(T) :=

∑
v∈G(T) e(v). For a formal proof, see Ap-

pendix C.

Lemma V.2. For a task T and all t,

dbf T (t) 6 t · U(T) + esum(T).

The above bound for all dbf T (t) can be used to derive an
upper bound for a witness tf with dbf (tf) > tf , as follows.

Lemma V.3. For τ with U(τ) < 1 which is not preemptive
uniprocessor feasible, there is a tf with dbf (tf) > tf such
that:

tf <

∑
T∈τ e

sum(T)

1− U(τ)

Proof: Use Lemma V.2 in tf <
∑
T∈τ dbf T (tf) and

simple arithmetics.
Thus, only all t up to the specified bound need to be

checked. Further, for task sets with U(τ) 6 c for a constant
c < 1, the bound guarantees that the feasibility problem is
tractable by using our proposed algorithm. We state our main
technical result in the following theorem.

Theorem V.4. For a DRT task set τ with U(τ) 6 c for
some constant c < 1, feasibility can be decided in pseudo-
polynomial time.

Proof: We first note that for U(τ) 6 c, we have∑
T∈τ e

sum(T)

1− U(τ)
6

∑
T∈τ e

sum(T)

1− c
.

The term on the right-hand side is clearly polynomial in the
values of the task parameters, so it is pseudo-polynomial in
the system specification.

Further, given a τ with bounded utilization, we can compute
dbf (t) for all t smaller than the bound for tf by running the
algorithm in Figure 5 for each task T . Each time it is called, it
returns dbf T (t) in time polynomial in t and n (Lemma IV.5).
From the bound for tf it follows that the whole procedure is
pseudo-polynomial.

Of course, efficient implementations can use an integrated
procedure, which calculates all demand triples up to the given
bound just once, while checking the condition dbf (t) 6 t. All
optimizations discussed at the end of Section IV apply.

2These bounds can of course be tightened, significantly improving analysis
performance. However, for simplicity of presentation, we use the presented
bound, which is already sufficient for the complexity result.

A. Calculating the Utilization
So far, we only used the utilization of tasks in definitions

and proofs, but how can it actually be computed? In con-
trast to simpler task models, this question does not have a
straightforward answer, since our notion of a task’s utilization
is inherently non-trivial. We now present an efficient way of
computing U(T) based on an iterative procedure similar to
the computation of dbf T (t) in Section IV.

In general, we need to find the maximum utilization that a
cycle π in G(T) can possibly have (Definition V.1). The main
problem is that there are potentially infinitely many cycles in
G(T), since the definition is not restricted to simple cycles
(that is, cycles which do not visit any vertex twice, except the
last one). The key observation for an efficient construction is
that it actually is sufficient to restrict the attention to simple
cycles. The reason is that any cycle can always be transformed
into a simple one with a resulting utilization of no less than
the original cycle, as follows. If it contains sub-cycles, then
either at least one of them has a higher utilization, or all sub-
cycles can be removed. We state this observation formally in
the following lemma. A full proof is given in Appendix D.

Lemma V.5. For each cycle π, there is a simple cycle π′ with
U(π′) > U(π).

Example V.6. The digraph of the example task in Figure 2
contains exactly the following simple cycles (up to rotation):

πD = (v1, v2, v3, v1), U
(
πD
)
= 6/36,

πE = (v1, v5, v4, v2, v3, v1), U
(
πE
)
= 12/76,

πF = (v2, v4, v2), U
(
πF
)
= 6/40.

According to the above lemma, no other cycle in G(T) can
have a higher utilization. Consequently, we know that the
utilization of T is U(T) = U(πD) = 3/18.

The computation of U(T) can be based on this observation,
since we can restrict the search space for the worst-case
cycle to cycles of at most length n. A naı̈ve search via
explicit enumeration would still be an exponential procedure.
However, we can reuse our path abstraction framework which
was already useful to reduce the complexity of the dbf (t)
computation. We need to adjust the demand triple abstraction
idea so that:

1) e now does not include the execution demand of the last
vertex.

2) d now does not include the deadline of the last vertex
(but it does include the last inter-release seperation).
Therefore, we call it p instead.

3) We include the start vertex, in addition to the end vertex.
Formally, we capture this as follows (see also Figure 7).

Definition V.7 (Utilization Triple). For a finite path π =
(π0, . . . , πl) in G(T), we call 〈e, p, (π0, πl)〉 a utilization
triple, if

e =

l−1∑
i=0

e(πi) and p =

l−1∑
i=0

p(πi, πi+1).

t

π0

. . .

πl−1 πl

d(π0) d(πl−1) d(πl)

p(πl−1, πl)

p

Fig. 7. Illustration of p in a utilization triple 〈e, p, (π0, πl)〉 corresponding
to path π = (π0, . . . , πl). Note that if π0 = πl, then π is a cycle and p is
the duration of that cycle.

Example V.8. Consider path π = (v4, v2, v3) from the
running example in Figure 2. For calculating the utilization, it
would be abstracted as the utilization triple 〈6, 35, (v4, v3)〉.

Using this abstraction, we are particularly interested in
utilization triples 〈e, p, (u, v)〉 where start and end vertex are
the same, u = v. In that case, they abstract a cycle and e/p
is the utilization of that cycle.

For computing U(T), we can run the algorithm from
Figure 5 with the utilization triple abstraction instead. Apart
from changing initialization and update procedures of sets
UTk (replacing DTk) accordingly, we run the outermost loop
just for k = 1, . . . , n and return the following:

max
{
e
p | 〈e, p, (u, v)〉 ∈

⋃
0<k6n UTk and u = v

}
(If the set is empty, i.e., no cycles exist, we return 0.)

Clearly, this procedure generates utilization triples corre-
sponding to all paths of length k 6 n. These must include
all simple paths and therefore all simple cycles. Their uti-
lizations can be directly derived from the utilization triples,
and the maximum is returned. Finally, the procedure clearly
has pseudo-polynomial runtime complexity. All optimizations
discussed at the end of Section IV can be used for efficient
implementations of this procedure as well.

VI. ARBITRARY DEADLINES

We now relax the deadline constraints, allowing d(u) >
p(u, v) for the edges (u, v) in G(T). We assume no additional
restrictions, i.e., jobs may execute as soon as they are released.
In particular, they do not have to wait until preceding jobs are
finished.

This extended setting imposes an additional analysis chal-
lenge, illustrated by the following example.

Example VI.1. Consider the DRT task in Figure 8. Since
d(v2) > p(v2, v3) + d(v3), the (absolute) deadline of a job
may be after the deadline of its succeeding job. An example of
this is the job sequence that is sketched in Figure 8 as well.

v1

〈5, 7〉

v2

〈1, 10〉

v3

〈2, 5〉
8 3

1000

t
0 2 4 6 8 10 12 14 16 18

v1 v2 v3

d(v1)

d(v2)

d(v3)

Fig. 8. A DRT task with arbitrary deadlines and a possible job release
sequence. Note that (absolute) deadline order does not equal release order.

In this example, path (v1, v2, v3) corresponds to two de-
mand pairs:

• 〈7, 16〉, because within 16 time units, all three jobs are
released, but only the first and third are having their
deadlines. Together, they have an execution demand of
7 time units.

• 〈8, 18〉, since with additional 2 time units, also the
second job has its deadline within the considered interval.
Thus, all three job execution demands have to be added,
resulting in 8 time units.

We see from this example that our procedure from Sec-
tion IV needs to be extended in order to deal with arbitrary
deadlines. We can no longer implicitly assume that the last
job of each finite job sequence also has the latest deadline.

For dealing with the general case, we first augment the no-
tion of a path. The extra information we add should represent
the subset of its vertices that we consider when calculating
execution demand and deadline for a demand pair.

Definition VI.2 (Marked Path). For a path π = (π0, . . . , πl)
in G(T), we call a function α a marking of its vertices, if
α(0) = • and α(j) ∈ {•, ◦} for all remaining j. A path π
together with its marking α is a marked path π̂ := (π, α).

As shorthand notation, we attach to each vertex its in-
dividual marking when writing the path. For example, the
path corresponding to the first demand pair 〈7, 16〉 from
Example VI.1 can be written as (v•1 , v

◦
2 , v
•
3), since v2 was

not considered for 〈7, 16〉 and is thus marked with ◦.
In order to determine the corresponding demand pair for a

marked path π̂, we now only consider its •-marked vertices3.
The execution demand e(π̂) is the sum of their individual
execution demands. The deadline d(π̂) is derived from the
latest deadline among all •-marked vertices. Formally, we
define both as follows.

3Note that the initial vertex is always •-marked, which is a technicality for
simplification of presentation without loss of generality.

Definition VI.3. For a marked path π̂, let α−1(•) denote the
positions of the •-marked vertices in π̂. Using this, we define:

e(π̂) :=
∑

j∈α−1(•)

e(πj),

d(π̂) := max
j∈α−1(•)

{
j−1∑
i=0

p(πi, πi+1) + d(πj)

}
.

As before, 〈e(π̂), d(π̂)〉 denotes a demand pair.

With these notions, we now show how to extend the
procedures from Sections IV and V for calculating both dbf (t)
and the bound for tf .

Calculating Demand Pairs: The additional challenge
when calculating demand pairs is the problem of dealing
with different markings of the same path. As in Section IV,
we would like to apply the iterative generation using de-
mand triples by having each demand triple now correspond
to a marked path. Consider for example a path π =
(π•0 , π

◦
1 , π
•
2 , π
◦
3 , π
◦
4) which we want to extend with another ver-

tex v. There are two possibilities, π′ = (π•0 , π
◦
1 , π
•
2 , π
◦
3 , π
◦
4 , v
•)

and π′′ = (π•0 , π
◦
1 , π
•
2 , π
◦
3 , π
◦
4 , v
◦). Thus, given a demand triple

ξ for π, we have to generate one for π′ and one for π′′.
However, this can not be done directly from ξ. It includes
only a deadline (of either π0 or π2, whichever comes later).
What is lost is the information about when the job triggered
by π4 is released, but we need this information in order to be
able to generate the demand triple for π′.

Our solution for this is to extend the abstraction to demand
quadruples.

Definition VI.4 (Demand Quadruple). For a marked path π̂ =
(π0, . . . , πl) in G(T), we define its duration as

p(π̂) :=

l−1∑
i=0

p(πi, πi+1).

With e(π̂) and d(π̂) from Definition VI.3, we call
〈e(π̂), d(π̂), p(π̂), πl〉 a demand quadruple.

Clearly, there are only pseudo-polynomially many demand
quadruples with e, d, p 6 D for some bound D. Thus, we
can use the iterative algorithm from Figure 5 in Section IV
with the demand quadruple abstraction in order to obtain
a pseudo-polynomial procedure for calculating dbf T (t). For
each 〈e, d, p, u〉 chosen in line 4 and edge (u, v) from line 5,
we create two new demand quadruples: 〈e′, d′, p′, v〉 for exten-
sion with a •-marked v and 〈e′′, d′′, p′′, v〉 for a ◦-marked v.
Their calculation is straightforward:

e′ = e+ e(v) e′′ = e

d′ = max(d, p+ p(u, v) + d(v)) d′′ = d

p′ = p+ p(u, v) p′′ = p+ p(u, v)

It can be easily shown that with these changes, the procedure
is still correct. Further, with a suitable domination relation �,
all optimizations discussed in Section IV-A can be applied for
efficient implementations.

Example VI.5. Consider the DRT task from Figure 8. Vertex
v1 can be interpreted as a marked 0-path (v•1) and thus
corresponds to demand quadruple 〈5, 7, 0, v1〉. We can ex-
tend it with v2, which gives the possibilities 〈6, 18, 8, v2〉
and 〈5, 7, 8, v2〉, corresponding to marked paths (v•1 , v

•
2) and

(v•1 , v
◦
2), respectively. Note that if we extend both of these with

a •-marked v3, we get the demand quadruples 〈8, 18, 11, v3〉
and 〈7, 16, 11, v3〉 from which both demand pairs in Exam-
ple VI.1 are derived.

Calculating the Bound: The bound for tf that we derived
in Section V turns out to hold also for the case of arbitrary
deadlines. A first observation is that the bound in Lemma V.2
does not depend on any deadlines.

More formally, given a task T , we transform it into a task T ′

where we reduce the deadlines such that T ′ now satisfies the
Frame Separation property4. Clearly, dbf T (t) 6 dbf T ′(t) for
all t. Further, we know that U(T) = U(T ′) and esum(T) =
esum(T ′) since both their definitions are independent from
deadlines. It follows directly that Lemma V.2 holds even for
arbitrary-deadline task sets.

Finally, this implies that also Lemma V.3 must hold. We
summarize all insights from this section in the following
theorem.

Theorem VI.6. For a DRT task set τ with arbitrary deadlines
and U(τ) 6 c for some constant c < 1, feasibility can be
decided in pseudo-polynomial time.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a new task model that allows
high expressiveness when modeling real-time systems. It over-
comes restrictions of previous models that prevent appropriate
modeling of many systems. In order to approach the feasibility
problem, we have introduced a path abstraction framework that
allows efficient calculation of not only a task set’s execution
demand, but also of its utilization. Our technique further ap-
plies to the analysis of arbitrary deadline systems, and allows
non-trivial optimizations to significantly increase analysis effi-
ciency in implementations. We have shown that our proposed
method has pseudo-polynomial complexity for task systems
with bounded utilization, which is considered tractable by the
real-time scheduling community. By presenting a significant
generalization of the non-cyclic RRT (previously being the
most general of all tractable models), our model is therefore
the most general tractable model currently known.

As future work, we seek to evaluate our techniques on
real-world case studies using more optimized implementations.
Further, we wish to determine where the feasibility problem
of models becomes strongly NP - or coNP -hard. Beyond
this border, it provably cannot be solved both efficiently and
precisely anymore (assuming P 6= NP). Our ongoing work
indicates that the DRT model already is very close.

4This may lead to e(v) > d(v) for some vertices v in T ′, but does not
cause any technical difficulty, since we do not demand equivalence of T and
T ′ in terms of schedulability.

REFERENCES

[1] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment,” J. ACM, vol. 20, no. 1, pp.
46–61, 1973.

[2] E. Fersman, P. Krcal, P. Pettersson, and W. Yi, “Task automata: Schedu-
lability, decidability and undecidability,” Inf. Comput., vol. 205, no. 8,
pp. 1149–1172, 2007.

[3] S. K. Baruah, “The non-cyclic recurring real-time task model,” in RTSS
2010, to appear.

[4] A. K. Mok, “Fundamental design problems of distributed systems for the
hard-real-time environment,” Cambridge, MA, USA, Tech. Rep., 1983.

[5] A. K. Mok and D. Chen, “A multiframe model for real-time tasks,”
IEEE Trans. Softw. Eng., vol. 23, no. 10, pp. 635–645, 1997.

[6] S. Baruah, D. Chen, S. Gorinsky, and A. Mok, “Generalized multiframe
tasks,” Real-Time Syst., vol. 17, no. 1, pp. 5–22, 1999.

[7] S. K. Baruah, “Dynamic- and Static-priority Scheduling of Recurring
Real-time Tasks,” Real-Time Syst., vol. 24, no. 1, pp. 93–128, 2003.

[8] N. Tchidjo Moyo, E. Nicollet, F. Lafaye, and C. Moy, “On schedulability
analysis of non-cyclic generalized multiframe tasks,” in ECRTS 2010,
pp. 271–278.

[9] S. Chakraborty, T. Erlebach, and L. Thiele, “On the complexity of
scheduling conditional real-time code,” in WADS 2001, pp. 38–49.

[10] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in ISCAS 2000, vol. 4.

APPENDIX

A. Proof of Lemma IV.4
Proof: For the first part, let e be the output of our

algorithm in Figure 5 given input t. We want to show that
there is a path π in G(T) with e(π) = e and d(π) 6 t. From
the return statement (line 14) it follows that there must have
been a demand triple 〈e, d, v〉 ∈ DTk for some k 6 t with
d 6 t. It is thus sufficient to show that for each demand triple
in each DTk, there is a corresponding path of length k in
G(T). This can be shown by induction on k:
k = 0: All demand triples in DT0 are generated in line 1

directly from the vertices of G(T) which are 0-paths.
k − 1 k: Given 〈e′, d′, v〉 ∈ DTk, it must have been

added to DTk in line 9. The demand triple 〈e, d, u〉
from which it was created must have been chosen in
line 4 from DTk−1. By induction hypothesis, there
is a path π = (π0, . . . , πk−2, u) of length k − 1 in
G(T) corresponding to 〈e, d, u〉. Further, there is an
edge (u, v) in G(T) that has been chosen in line 5.
Thus, π′ = (π0, . . . , πk−2, u, v) is a path of length
k in G(T). Finally, the calculations in lines 6 and 7
ensure that π′ corresponds to 〈e′, d′, v〉.

For the second part, it is sufficient to show that all paths
π of length k in G(T) with a deadline of at most t have a
corresponding demand triple 〈e, d, v〉 in DTk. Again, we show
this by induction on k.
k = 0: For all 0-paths, i.e., all vertices, all demand triples

are included in DT0 via line 1.
k − 1 k: Given a path π = (π0, . . . , πk−2, u, v) of

length k with deadline d(π) 6 t, we know by
induction hypothesis that π′ = (π0, . . . , πk−2, u)
of length k − 1 has a corresponding demand triple
〈e, d, u〉 in DTk−1. This demand triple is eventually
chosen in line 4 and also the edge (u, v) in line 5.
Finally, lines 6 and 7 calculate the corresponding
demand triple for π which will be added to DTk
in line 9 since d′ = d(π) 6 t by assumption.

B. Proof of Lemma IV.9
Proof: Intuitively, if some prefix πpfx of a critical path π

is not critical, then πpfx is dominated by another path π′. This
π′ could replace πpfx in π, resulting in a path that dominates
π (and thus contradicts that π is critical).

Formally, we show this by induction on the path length l.
l = 0: A 0-path has no prefixes except itself.
l − 1 l: Given a critical path π = (π0, . . . , πl), assume

that its (l − 1)-prefix πpfx = (π0, . . . , πl−1) is not
critical. Then there must be a π′ = (π′0, . . . , π

′
k) such

that

〈e(π′), d(π′), π′k〉 �
〈
e(πpfx), d(πpfx), πl−1

〉
.

In particular, π′k = πl−1. We can now use π′ to
replace the prefix πpfx of π. Consider the new path

π′′ = (π′0, . . . , π
′
k︸ ︷︷ ︸

π′

, πl).

We have that

e(π′′) = e(π′) + e(πl) > e(π
pfx) + e(πl) = e(π),

d(π′′) = d(π′)− d(π′k) + p(π′k, πl) + d(πl)

6 d(πpfx)− d(π′k) + p(π′k, πl) + d(πl)

= d(πpfx)− d(πl−1) + p(πl−1, πl) + d(πl)

= d(π).

Consequently, the new path π′′ dominates π, i.e.,

〈e(π′′), d(π′′), πl〉 � 〈e(π), d(π), πl〉 .
This contradicts that π is critical. Thus, πpfx must be
critical as well. By induction hypothesis, all prefixes
of πpfx are also critical, which completes the proof
for all prefixes of π.

C. Proof of Lemma V.2
Proof: For a given t, let π be a path with maximal

execution demand during any interval of length t, i.e., e(π) =
dbf T (t) and d(π) 6 t. If π is simple, we have e(π) 6 esum(T)
and are done. Otherwise, we first identify all cycles in π
as follows. For each vertex v in G(T), let m(v) denote the
number of occurrences of v in π. Find the first vertex πi in
π with m(πi) > 1. Let πj be the last occurrence of πi in π.
We have i < j and call π(1) = (πi, . . . , πj) the first cycle in
π. We remove it from π by considering the new path

π′ = (π0, . . . , πi, πj+1, . . . , πl).

Note that we cut away the edges of π(1) from π which only
leaves the start vertex πi (that equals πj) of π(1) in π.

We repeat this procedure until no new cycles are found.
Let π(j) denote the j-th cycle found by this procedure and π∗

the resulting path (π with all cycles removed). Clearly, π∗ is
simple. Note that the π(j) do not need to be simple, i.e., they
may contain sub-cycles.

For each π(j), let lj denote its length. By construction, we
know now (via reordering) that

e(π) = e(π∗) +
∑
j

lj−1∑
i=0

e
(
π
(j)
i

)
. (1)

Clearly, e(π∗) 6 esum(T) since π∗ is simple. Further, for all
cycles π(j) we have

lj−1∑
i=0

e
(
π
(j)
i

)
= U

(
π(j)

)
·
lj−1∑
i=0

p
(
π
(j)
i , π

(j)
i+1

)
6 U(T) ·

lj−1∑
i=0

p
(
π
(j)
i , π

(j)
i+1

)
.

This holds because U(T) is the maximal utilization over all
cycles. Summing over all cycles of π, we get∑

j

lj−1∑
i=0

e
(
π
(j)
i

)
6 U(T) ·

∑
j

lj−1∑
i=0

p
(
π
(j)
i , π

(j)
i+1

)
︸ ︷︷ ︸

6d(π)6t

6 U(T) · t.

Finally, we apply this to Equation (1) and we get

dbf T (t) = e(π) 6 t · U(T) + esum(T).

D. Proof of Lemma V.5
Proof: Given a cycle π = (π0, . . . , πl), we show the

existence of a simple cycle π′ with U(π′) > U(π) by induction
on l. Clearly, a cycle of length l = 1 is simple, so the base
case is trivial. For the induction step, we first identify the sub-
cycles π(j) as in the proof of Lemma V.2. (To be precise, this
time m(v) does not consider the end vertex of π.) If there are
no sub-cycles, we are done, since π must be simple in that
case. Otherwise, there are two cases for the utilizations of the
sub-cycles:

First case: ∃j : U
(
π(j)

)
> U(π). In this case, since π(j) is

shorter than π, we know by induction hypothesis that
there is a simple cycle π′ with U(π′) > U

(
π(j)

)
and

we are done.
Second case: ∀j : U

(
π(j)

)
< U(π). We now know that all

sub-cycles of π have a lower utilization than π itself.
Thus, we construct π′ by removing all sub-cycles,
i.e., π′ is the π∗ from the procedure of identifying
the sub-cycles. For all j, let lj denote the length of
π(j) as before, and ij denote the position of the first
vertex of π(j) in π. With this we can write

π′ = (π0, . . . , πi1 , πi1+l1+1, . . . , πl).

For its utilization, we get

U(π′) =

∑l−1
i=0 e(πi)−

∑
j

∑ij+lj−1
i=ij

e(πi)∑l−1
i=0 p(πi, πi+1)−

∑
j

∑ij+lj−1
i=ij

p(πi, πi+1)

>

∑l−1
i=0 e(πi)∑l−1

i=0 p(πi, πi+1)
= U(π).

Note that the last inequality holds since for all a, b, ci, di ∈
N>0 with a >

∑
i ci > 0 and b >

∑
di > 0:[

∀i : a
b
>
ci
di

]
=⇒

a−
∑
i ci

b−
∑
i di
>
a

b

