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1 Introduction

We consider the partitioned scheduling of a set of periodic tasks T = {τ1, . . . , τn}
on m identical processors. A periodic task τi = (oi, ci, di, pi) ∈ N4 releases a job
at each time point oi + kpi for k ∈ N. Every job released by τi has an execution
time requirement of ci time units and a deadline di time units after its release.

We say that T is synchronous if oi = 0 for all τi (and asynchronous otherwise).
We say that T has implicit deadlines if di = pi for all τi and has constrained
deadlines if di ⩽ pi for all τi (and has arbitrary deadlines otherwise).

We want to understand the complexity of the following family of decision prob-
lems.

Definition 1 (partitioned A-schedulability).
Instance: ⟨T,m⟩, where T is a set of periodic tasks and m is the number of pro-
cessors.

Question: Is there an m-partitioning T1, . . . ,Tm of T such that each partition Ti

is schedulable by scheduling algorithm A on a single processor with no deadline
misses?

Partitioned scheduling is a very commonly used strategy for real-time systems.
It reduces overhead costs by disallowing migrations between processors and im-
portantly allows the reuse of mature results for single-processor scheduling in a
multiprocessor setting.

It is not difficult to see that partitioned A-schedulability generalizes
bin packing in most settings and is NP-hard, but other previously known lower
bounds on its complexity are only the ones for the corresponding single-processor
A-schedulability problems. We want to narrow down the complexity, which among
other things lets us find a distinction between the partitioned schedulability prob-
lems can efficiently be formulated as ILP or SAT instances, and which cannot
unless the polynomial hierarchy collapses. To find better bounds we first define a
partitioned version of a helpful number-theoretic decision problem that has been
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used for several hardness results for periodic tasks in single processor systems, the
Simultaneous Congruences Problem.

2 Partitioned simultaneous congruences

The Simultaneous Congruences Problem (scp) concerns finding a set of congruence
classes that all share some element. The scp was shown to be NP-complete by
Leung and Whitehead [3] (and was later shown to be so in the strong sense by
Baruah et al. [1]).

Definition 2 (scp).
Instance: ⟨A, k⟩, where A = {(a1, b1), . . . , (an, bn)} is a set of pairs of non-negative
integers satisfying ai < bi for each i, and k is a positive integer.

Question: Is there an integer x and an A′ ⊆ A such that |A′| = k and

x ≡ ai (mod bi)

for each (ai, bi) ∈ A′?

We define partitioned scp as a natural generalization to the scp.

Definition 3 (partitioned scp).
Instance: ⟨A, k,m⟩, where A = {(a1, b1), . . . , (an, bn)} is a set of pairs of non-
negative integers satisfying ai < bi for each i, and k and m are positive integers.

Question: Is there an m-partitioning A1, . . . , Am of A such that ⟨Ai, k⟩ ̸∈ scp for
each partition Ai?

Through a reduction from generalized graph coloring [4] we can pin-
point the complexity of partitioned scp. The reduction is closely inspired by
Leung and Whitehead’s reduction from clique to scp [3] and works by assigning
congruences classes to vertices such that a set of congruences classes have a joint
element if and only if the corresponding set of vertices form a clique.

Theorem 4. partitioned scp is ΣP
2 -complete, even when m = 2.

3 Asynchronous tasks

For asynchronous periodic tasks we find a new general lower bound by reducing
from partitioned scp in a fairly straight-forward manner.

Theorem 5. The partitioned A-schedulability problem for asynchronous periodic
tasks with constrained (or arbitrary) deadlines is ΣP

2 -hard for any work-conserving
scheduler A (preemptive or non-preemptive), even when restricted to m = 2 pro-
cessors and task sets with

∑
τi∈T

ci
pi

< φ for any constant φ > 0.

When A is an optimal preemptive single-processor scheduling algorithm, such
as Earliest Deadline First (EDF), this can be shown to be a tight bound.



Theorem 6. The partitioned EDF-schedulability problem for asynchronous peri-
odic tasks with constrained (or arbitrary) deadlines is ΣP

2 -complete.

In contrast, for preemptive Fixed Task Priority (FP) scheduling we still have
a gap to the lower bound of Theorem 5.

Theorem 7. The partitioned FP-schedulability problem for asynchronous periodic
tasks is in ΣP

3 . This holds both if we are given the priority ordering or are asked
to find one.

The partitioned EDF-schedulability problem with implicit deadlines is essen-
tially just plain bin packing and is NP-complete. However, FP-scheduling with
implicit deadlines can be shown to be harder than EDF when we are given a
predefined priority ordering.

Theorem 8. The partitioned FP-schedulability problem for asynchronous peri-
odic tasks is ΣP

2 -hard if we are given a priority ordering, even when restricted to
implicit-deadline tasks, m = 2 processors and task sets with

∑
τi∈T

ci
pi

< φm for
any constant φ > 1/2.

It is an open problem if this remains ΣP
2 -hard if we are instead asked if the set

of tasks is FP-schedulable with any priority ordering.

4 Synchronous tasks

There is relatively less to say about synchronous periodic tasks at this time, but
we have the following observations.

Theorem 9. With synchronous periodic tasks, partitioned EDF-schedulability with
implicit deadlines and partitioned FP-schedulability with implicit or constrained
deadlines are NP-complete.

The above follows directly from observing that the corresponding single pro-
cessor problems are in NP. However, EDF-schedulability with constrained or ar-
bitrary deadlines is not contained in the first level of the polynomial hierarchy
(unless it collapses), but is contained in the second.

Theorem 10. Partitioned EDF-schedulability of synchronous periodic tasks with
constrained or arbitrary deadlines is both NP- and coNP-hard, and is in ΣP

2 .

FP-schedulability with arbitrary deadlines has a larger gap still. (Here even
the single processor case is not yet pinpointed!)

Theorem 11. Partitioned FP-schedulability of synchronous periodic tasks with
arbitrary deadlines is NP-hard, and is in ΣP

3 .



We do suspect that the partitioned EDF-schedulability problem with con-
strained or arbitrary deadlines (as in Theorem 10) is in fact ΣP

2 -complete, just
as with asynchronous tasks, but have yet been unable to show this. It seems sig-
nificantly more difficult to construct a reduction from partitioned scp here due
to the lack of the tasks’ offset parameters oi, which in many ways mirror the ai
parameters in partitioned scp. Still, such a reduction has been done from scp to
the single processor synchronous case [2], so there is still hope that partitioned
scp can help in resolving this important outstanding problem.
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