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COMMON RESTRICTIONS

Let T = {71,..., 7Ty} be a set of tasks.
We say that T has

e implicit deadlines, if D; = T; for all 7; € T,
® constrained deadlines, if D; < T;for all 7; € 7,

e arbitrary deadlines, otherwise.

Also, T is

® synchronous, if O; = O;jfor all 7, 7; € T,

® asynchronous, otherwise.
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PARTITIONED A-SCHEDULABILITY

Instance: (T, m), where T is a set of tasks and m is the
number of processors.

Question: Is there a partitioning (71,...,7,) of T such
that each J; is schedulable by A on a single processor?
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New complexity bounds for partitioned schedulability.

Some problems are exactly pinpointed.

® Some are provably' beyond the corresponding uniprocessor case.
® Some are essentially the same as the uniprocessor case!

® Some can not be formulated as ILP in polynomial time.

e Interesting open problems! ©
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