Complexity of partitioned SCHEDULING FOR PERIODIC TASKS

Pontus Ekberg
Uppsala University

Sanjoy Baruah

Washington University in Saint Louis

MAPSP'22

Periodic tasks

A periodic task τ_{i} is given by $\left(O_{i}, C_{i}, D_{i}, T_{i}\right) \in \mathbb{N}^{4}$, where

- O_{i} is the initial offset,
- C_{i} is the worst-case execution time,
- D_{i} is the relative deadline, and
- T_{i} is the period.

Periodic tasks

A periodic task τ_{i} is given by $\left(O_{i}, C_{i}, D_{i}, T_{i}\right) \in \mathbb{N}^{4}$, where

- O_{i} is the initial offset,
- C_{i} is the worst-case execution time,
- D_{i} is the relative deadline, and
- T_{i} is the period.

$$
\tau_{i}=\left(O_{i}, C_{i}, D_{i}, T_{i}\right)=(4,3,6,10)
$$

Periodic tasks

A periodic task τ_{i} is given by $\left(O_{i}, C_{i}, D_{i}, T_{i}\right) \in \mathbb{N}^{4}$, where

- O_{i} is the initial offset,
- C_{i} is the worst-case execution time,
- D_{i} is the relative deadline, and
- T_{i} is the period.

Periodic tasks

A periodic task τ_{i} is given by $\left(O_{i}, C_{i}, D_{i}, T_{i}\right) \in \mathbb{N}^{4}$, where

- O_{i} is the initial offset,
- C_{i} is the worst-case execution time,
- D_{i} is the relative deadline, and
- T_{i} is the period.

Common restrictions

Let $\mathcal{T}=\left\{\tau_{1}, \ldots, \tau_{n}\right\}$ be a set of tasks.
We say that \mathfrak{T} has

- implicit deadlines, if $D_{i}=T_{i}$ for all $\tau_{i} \in \mathcal{T}$,
- constrained deadlines, if $D_{i} \leqslant T_{i}$ for all $\tau_{i} \in \mathcal{T}$,
- arbitrary deadlines, otherwise.

Also, \mathcal{T} is

- synchronous, if $O_{i}=O_{j}$ for all $\tau_{i}, \tau_{j} \in \mathcal{T}$,
- asynchronous, otherwise.

Partitioned scheduling

Partitioned scheduling

$$
\mathcal{T}=\left\{\tau_{1}, \ldots, \tau_{n}\right\}
$$

Partitioned scheduling

$$
\mathcal{T}=\left\{\tau_{1}, \ldots, \tau_{n}\right\}
$$

Proc. 1

Proc. 2

Proc. m

Partitioned scheduling

Partitioned scheduling

Partitioned scheduling

Partitioned \mathcal{A}-schedulability

Instance: $\langle\mathcal{T}, m\rangle$, where \mathcal{T} is a set of tasks and m is the number of processors.
Question: Is there a partitioning $\left(\mathcal{T}_{1}, \ldots, \mathcal{T}_{m}\right)$ of \mathfrak{T} such that each \mathcal{T}_{i} is schedulable by \mathcal{A} on a single processor?

The polynomial hierarchy

Simultaneous Congruences

Simultaneous Congruences

The Simultaneous Congruences Problem (scp):

$$
\text { Example: } \quad A=\{(2,4),(4,6),(3,8),(0,3)\}, \quad k=2
$$

Simultaneous Congruences

The Simultaneous Congruences Problem (scp):

$$
\text { Example: } \quad A=\{(2,4),(4,6),(3,8),(0,3)\}, \quad k=2
$$

Simultaneous Congruences

The Simultaneous Congruences Problem (SCP):
Example: $\quad A=\{(2,4),(4,6),(3,8),(0,3)\}, \quad k=2$

Simultaneous Congruences

The Simultaneous Congruences Problem (SCP):
Example: $\quad A=\{(2,4),(4,6),(3,8),(0,3)\}, \quad k=2$

SCP is NP-complete (Leung and Whitehead, 1982)

Simultaneous Congruences

The Simultaneous Congruences Problem (scp):

$$
\text { Example: } \quad A=\{(2,4),(4,6),(3,8),(0,3)\}, \quad k=2
$$

SCP is NP-complete (Leung and Whitehead, 1982)

Simultaneous Congruences

The Simultaneous Congruences Problem (scp):

$$
\text { Example: } \quad A=\{(2,4),(4,6),(3,8),(0,3)\}, \quad k=2
$$

scP is NP-complete (Leung and Whitehead, 1982)

Let's generalize scp!

Let's generalize scp!

PARTITIONED SCP

Example: $A=\{(2,4),(4,6),(3,8),(0,3), \ldots\}, k, m$

Let's generalize scp!

PARTITIONED SCP

Let's generalize scp!

PARTITIONED SCP

$\left\langle A_{1}, k\right\rangle \notin \mathrm{SCP}$
$\left\langle A_{2}, k\right\rangle \notin \mathrm{SCP}$
$\left\langle A_{m}, k\right\rangle \notin \operatorname{SCP}$

Let's generalize scp!

PARTITIONED SCP

$\left\langle A_{1}, k\right\rangle \notin \mathrm{SCP}$
$\left\langle A_{2}, k\right\rangle \notin \mathrm{sCP}$
$\left\langle A_{m}, k\right\rangle \notin \mathrm{scP}$

Let's generalize scp!

PARTITIONED SCP

Let's generalize scp!

PARTITIONED SCP

$$
\text { Example: } A=\{(2,4),(4,6),(3,8),(0,3), \ldots\}, \quad k, \quad m
$$

Some partitioned

GENERALIZED GRAPH COLORING

schedulability problems

Hardness of partitioned scp

GENERALIZED GRAPH COLORING

Hardness of partitioned scp

GENERALIZED GRAPH COLORING

Hardness of partitioned scp

Hardness of partitioned scp

GENERALIZED GRAPH COLORING

Hardness of partitioned scp

Hardness of partitioned scp

G

GENERALIZED GRAPH COLORING

Σ_{2}^{P}-complete with two colors and H is a complete graph (Rutenburg, 1986)

Hardness of partitioned scp

G

Σ_{2}^{P}-complete with two colors and H is a complete graph (Rutenburg, 1986)

PARTITIONED SCP

$\left(a_{1}, b_{1}\right) \quad\left(a_{2}, b_{2}\right)$

Hardness of partitioned scp

G

Σ_{2}^{P}-complete with two colors and H is a complete graph (Rutenburg, 1986)

PARTITIONED SCP

$$
\left(a_{1}, b_{1}\right) \quad\left(a_{2}, b_{2}\right)
$$

$$
\begin{array}{lll}
\left(a_{5}, b_{5}\right) & \left(a_{7}, b_{7}\right) & \left(a_{4}, b_{4}\right) \\
& \left(a_{6}, b_{8}\right) & \left(a_{3}, b_{3}\right)
\end{array}
$$

Hardness of partitioned scp

Hardness of partitioned scp

GENERALIZED
GRAPH COLORING
Σ_{2}^{P}-complete with two colors
and H is a complete graph
(Rutenburg, 1986)

PARTITIONED SCP

Hardness of partitioned scp

G

GENERALIZED

 GRAPH COLORINGΣ_{2}^{P}-complete with two colors and H is a complete graph (Rutenburg, 1986)

PARTITIONED SCP

$$
\begin{array}{lll}
\left(a_{1}, b_{1}\right) & \left(a_{2}, b_{2}\right) \\
& \left(a_{7}, b_{7}\right) & \left(a_{4}, b_{4}\right) \\
\left(a_{6}, b_{6}\right) & & \left(a_{8}, b_{8}\right)
\end{array}\left(\begin{array}{l}
\left.a_{3}, b_{3}\right)
\end{array}\right.
$$

Hardness of partitioned scp

GENERALIZED GRAPH COLORING
Σ_{2}^{P}-complete with two colors and H is a complete graph (Rutenburg, 1986)

PARTITIONED SCP

Hardness of partitioned scp

GENERALIZED
GRAPH COLORING
Σ_{2}^{P}-complete with two colors
and H is a complete graph
(Rutenburg, 1986)

PARTITIONED SCP

\#colliding congruences $(k)=|H|$
\#partitions $(m)=$ \#colors

Hardness of partitioned scp

GENERALIZED GRAPH COLORING

Σ_{2}^{P}-complete with two colors and H is a complete graph (Rutenburg, 1986)

PARTITIONED SCP

LET's generalize scp!

PARTITIONED SCP

GENERALIZED GRAPH COLORING

Some partitioned schedulability problems

LET's generalize scp!

PARTITIONED SCP

GENERALIZED GRAPH COLORING

Σ_{2}^{P}-complete,
Rutenburg, 1986

$$
\Sigma_{2}^{\mathrm{P}} \text {-complete }
$$

$$
\Sigma_{2}^{\mathrm{P}} \text {-hard }
$$

Complexity for asynchronous periodic tasks

Complexity for asynchronous periodic tasks

Complexity for asynchronous periodic tasks

Complexity for asynchronous periodic tasks

Complexity for asynchronous periodic tasks

Complexity for asynchronous periodic tasks

Complexity for asynchronous periodic tasks

Complexity for sporadic / synchronous periodic tasks

Complexity for sporadic / synchronous periodic tasks

Complexity for sporadic / synchronous periodic tasks

Complexity for sporadic / synchronous periodic tasks

Complexity for sporadic / synchronous periodic tasks

Complexity for sporadic / synchronous periodic tasks

Complexity for sporadic / synchronous periodic tasks

Conclusions

New complexity bounds for partitioned schedulability.

Conclusions

New complexity bounds for partitioned schedulability.

- Some problems are exactly pinpointed.

Conclusions

New complexity bounds for partitioned schedulability.

- Some problems are exactly pinpointed.
- Some are provably ${ }^{\dagger}$ beyond the corresponding uniprocessor case.
\dagger : Unless the polynomial hierarchy collapses

Conclusions

New complexity bounds for partitioned schedulability.

- Some problems are exactly pinpointed.
- Some are provably ${ }^{\dagger}$ beyond the corresponding uniprocessor case.
- Some are essentially the same as the uniprocessor case!
\dagger : Unless the polynomial hierarchy collapses

Conclusions

New complexity bounds for partitioned schedulability.

- Some problems are exactly pinpointed.
- Some are provably ${ }^{\dagger}$ beyond the corresponding uniprocessor case.
- Some are essentially the same as the uniprocessor case!
- Some can not be formulated as ILP in polynomial time.
\dagger : Unless the polynomial hierarchy collapses

Conclusions

New complexity bounds for partitioned schedulability.

- Some problems are exactly pinpointed.
- Some are provably ${ }^{\dagger}$ beyond the corresponding uniprocessor case.
- Some are essentially the same as the uniprocessor case!
- Some can not be formulated as ILP in polynomial time.
- Interesting open problems! $)$
\dagger : Unless the polynomial hierarchy collapses

\forall Thank you!

 \diamond \exists Questions?