Complexity of partitioned scheduling for periodic tasks

Pontus Ekberg Uppsala University

SANJOY BARUAH Washington University in Saint Louis

MAPSP'22

- O_i is the initial offset,
- *C_i* is the worst-case execution time,
- D_i is the relative deadline, and
- T_i is the period.

- *O_i* is the initial offset,
- *C_i* is the worst-case execution time,
- D_i is the relative deadline, and
- T_i is the period.

$$\tau_i = (O_i, C_i, D_i, T_i) = (4, 3, 6, 10)$$

- *O_i* is the initial offset,
- *C_i* is the worst-case execution time,
- D_i is the relative deadline, and
- T_i is the period.

- *O_i* is the initial offset,
- *C_i* is the worst-case execution time,
- D_i is the relative deadline, and
- T_i is the period.

COMMON RESTRICTIONS

Let $\mathfrak{T} = \{\tau_1, \ldots, \tau_n\}$ be a set of tasks.

We say that T has

- *implicit deadlines*, if $D_i = T_i$ for all $\tau_i \in \mathcal{T}$,
- constrained deadlines, if $D_i \leq T_i$ for all $\tau_i \in \mathcal{T}$,
- *arbitrary deadlines*, otherwise.

Also, \mathcal{T} is

- synchronous, if $O_i = O_j$ for all $\tau_i, \tau_j \in \mathcal{T}$,
- asynchronous, otherwise.

$$\mathfrak{T} = \{\tau_1, \ldots, \tau_n\}$$

Proc. 1

Proc. 2

Proc. m

partitioned \mathcal{A} -schedulability

Instance: $\langle \mathfrak{T}, m \rangle$, where \mathfrak{T} is a set of tasks and *m* is the number of processors.

Question: Is there a partitioning $(\mathcal{T}_1, \ldots, \mathcal{T}_m)$ of \mathcal{T} such that each \mathcal{T}_i is schedulable by \mathcal{A} on a single processor?

THE POLYNOMIAL HIERARCHY

Simultaneous Congruences

Simultaneous Congruences

The Simultaneous Congruences Problem (SCP):

Example:
$$A = \{(2,4), (4,6), (3,8), (0,3)\}, \quad k = 2$$

The Simultaneous Congruences Problem (SCP):

Example: $A = \{(2,4), (4,6), (3,8), (0,3)\}, \quad k = 2$

Simultaneous Congruences

The Simultaneous Congruences Problem (SCP):

Example: $A = \{(2,4), (4,6), (3,8), (0,3)\}, \quad k = 2$

SCP is NP-complete (Leung and Whitehead, 1982)

SCP is NP-complete (Leung and Whitehead, 1982)

SCP is NP-complete (Leung and Whitehead, 1982)

Example:
$$A = \{(2,4), (4,6), (3,8), (0,3), \ldots\}, k, m$$

PARTITIONED SCP

 $\begin{array}{c} \text{GENERALIZED} \\ \text{GRAPH COLORING} \end{array} \longrightarrow \text{PARTITIONED SCP} \end{array}$

LET'S GENERALIZE SCP!

PARTITIONED SCP

GENERALIZED GRAPH COLORING

Η

PARTITIONED SCP

#colliding congruences (k) = |H|#partitions (m) = #colors

#colliding congruences (k) = |H|#partitions (m) = #colors

LET'S GENERALIZE SCP!

PARTITIONED SCP

GENERALIZED GRAPH COLORING → PARTITIONED SCP → Schedulability problems

LET'S GENERALIZE SCP!

PARTITIONED SCP

 $\begin{array}{c} \mbox{GENERALIZED}\\ \mbox{GRAPH COLORING} &\longrightarrow \mbox{PARTITIONED SCP} &\longrightarrow \begin{array}{c} \mbox{Some partitioned}\\ \mbox{schedulability}\\ \mbox{problems} \end{array} \end{array} \\ \begin{array}{c} \mbox{Some partitioned}\\ \mbox{schedulability}\\ \mbox{problems} \end{array} \\ \begin{array}{c} \mbox{\Sigma}_2^{\mathsf{P}}\mbox{-complete},\\ \mbox{Rutenburg, 1986} \end{array} \\ \begin{array}{c} \mbox{\Sigma}_2^{\mathsf{P}}\mbox{-complete} \end{array} \end{array} \\ \begin{array}{c} \mbox{Some partitioned}\\ \mbox{schedulability}\\ \mbox{problems} \end{array} \\ \begin{array}{c} \mbox{Some partitioned}\\ \mbox{schedulability}\\ \mbox{problems} \end{array} \\ \end{array}$

New complexity bounds for partitioned schedulability.

New complexity bounds for partitioned schedulability.

• Some problems are exactly pinpointed.

New complexity bounds for partitioned schedulability.

- Some problems are exactly pinpointed.
- Some are provably[†] beyond the corresponding uniprocessor case.

New complexity bounds for partitioned schedulability.

- Some problems are exactly pinpointed.
- Some are provably[†] beyond the corresponding uniprocessor case.
- Some are essentially the same as the uniprocessor case!

New complexity bounds for partitioned schedulability.

- Some problems are exactly pinpointed.
- Some are provably[†] beyond the corresponding uniprocessor case.
- Some are essentially the same as the uniprocessor case!
- Some can not be formulated as ILP in polynomial time.

New complexity bounds for partitioned schedulability.

- Some problems are exactly pinpointed.
- Some are provably[†] beyond the corresponding uniprocessor case.
- Some are essentially the same as the uniprocessor case!
- Some can not be formulated as ILP in polynomial time.
- Interesting open problems! ☺

∀Thank you!↓∃Questions?