
Complexity of paRtitioned
scheduling foR peRiodic tasKs

Pontus EKbeRg
Uppsala UniveRsity

Sanjoy BaRuah
Washington UniveRsity in Saint Louis

MAPSP’22



PeRiodic tasKs

A periodic task τi is given by (Oi,Ci,Di, Ti) ∈ N4, where
• Oi is the initial offset,
• Ci is the worst-case execution time,
• Di is the relative deadline, and
• Ti is the period.
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Common RestRictions

Let T = {τ1, . . . , τn} be a set of tasks.

We say that T has

• implicit deadlines, if Di = Ti for all τi ∈ T,
• constrained deadlines, if Di ⩽ Ti for all τi ∈ T,
• arbitrary deadlines, otherwise.

Also, T is

• synchronous, if Oi = Oj for all τi, τj ∈ T,
• asynchronous, otherwise.
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PaRtitioned scheduling

T = {τ1, . . . , τn}

Proc. 1 Proc. 2

· · ·

Proc. m

τ2
τ7τ13

τ6
τ21

τ1
τ4
τ17

τ5

A A A

Instance: ⟨T,m⟩, where T is a set of tasks and m is the
number of processors.
Question: Is there a partitioning (T1, . . . ,Tm) of T such
that each Ti is schedulable by A on a single processor?

paRtitioned A-schedulability
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Simultaneous CongRuences

The Simultaneous Congruences Problem (scp):

Example: A = {(2, 4), (4, 6), (3, 8), (0, 3)}, k = 2
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(2, 4)

(4, 6)

(3, 8)

(0, 3)

scp is NP-complete (Leung and Whitehead, 1982)

6



Simultaneous CongRuences

The Simultaneous Congruences Problem (scp):

Example: A = {(2, 4), (4, 6), (3, 8), (0, 3)}, k = 2

0 2 4 6 8 10 12 14 16 18 20

(2, 4)

(4, 6)

(3, 8)

(0, 3)

scp is NP-complete (Leung and Whitehead, 1982)

6



Simultaneous CongRuences

The Simultaneous Congruences Problem (scp):

Example: A = {(2, 4), (4, 6), (3, 8), (0, 3)}, k = 2

0 2 4 6 8 10 12 14 16 18 20

(2, 4)

(4, 6)

(3, 8)

(0, 3)

scp is NP-complete (Leung and Whitehead, 1982)

6



Simultaneous CongRuences

The Simultaneous Congruences Problem (scp):

Example: A = {(2, 4), (4, 6), (3, 8), (0, 3)}, k = 2

0 2 4 6 8 10 12 14 16 18 20

(2, 4)

(4, 6)

(3, 8)

(0, 3)

scp is NP-complete (Leung and Whitehead, 1982)

6



Simultaneous CongRuences

The Simultaneous Congruences Problem (scp):

Example: A = {(2, 4), (4, 6), (3, 8), (0, 3)}, k = 2

0 2 4 6 8 10 12 14 16 18 20

(2, 4)

(4, 6)

(3, 8)

(0, 3)

scp is NP-complete (Leung and Whitehead, 1982)

6



Simultaneous CongRuences

The Simultaneous Congruences Problem (scp):

Example: A = {(2, 4), (4, 6), (3, 8), (0, 3)}, k = 2

0 2 4 6 8 10 12 14 16 18 20

(2, 4)

(4, 6)

(3, 8)

(0, 3)

scp is NP-complete (Leung and Whitehead, 1982)

6



Simultaneous CongRuences

The Simultaneous Congruences Problem (scp):

Example: A = {(2, 4), (4, 6), (3, 8), (0, 3)}, k = 2

0 2 4 6 8 10 12 14 16 18 20

(2, 4)

(4, 6)

(3, 8)

(0, 3)

scp is NP-complete (Leung and Whitehead, 1982)

6



Let’s geneRalize scp!

paRtitioned scp

Example: A = {(2, 4), (4, 6), (3, 8), (0, 3), . . .}, k, m

A1 A2 · · · Am

⟨A1, k⟩ ̸∈ scp ⟨A2, k⟩ ̸∈ scp · · · ⟨Am, k⟩ ̸∈ scp

geneRalized
gRaph coloRing paRtitioned scp

Some partitioned
schedulability

problems
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HaRdness of paRtitioned scp

geneRalized
gRaph coloRing

ΣP
2 -complete with two colors
and H is a complete graph

(Rutenburg, 1986)

G
H

paRtitioned scp

v1 v2

(a2, b2)(a1, b1)

(a3, b3)

(a4, b4)
(a5, b5)

(a6, b6)

(a7, b7)

(a8, b8)

This method from
Leung and Whitehead, 1982

(a2, b2)(a1, b1)

(a3, b3)

(a4, b4)
(a5, b5)

(a6, b6)

(a7, b7)

(a8, b8)

#colliding congruences (k) = |H |
#partitions (m) = #colors

ΣP
2 -complete

8



HaRdness of paRtitioned scp

geneRalized
gRaph coloRing

ΣP
2 -complete with two colors
and H is a complete graph

(Rutenburg, 1986)

G
H

paRtitioned scp

v1 v2

(a2, b2)(a1, b1)

(a3, b3)

(a4, b4)
(a5, b5)

(a6, b6)

(a7, b7)

(a8, b8)

This method from
Leung and Whitehead, 1982

(a2, b2)(a1, b1)

(a3, b3)

(a4, b4)
(a5, b5)

(a6, b6)

(a7, b7)

(a8, b8)

#colliding congruences (k) = |H |
#partitions (m) = #colors

ΣP
2 -complete

8



HaRdness of paRtitioned scp

geneRalized
gRaph coloRing

ΣP
2 -complete with two colors
and H is a complete graph

(Rutenburg, 1986)

G
H

paRtitioned scp

v1 v2

(a2, b2)(a1, b1)

(a3, b3)

(a4, b4)
(a5, b5)

(a6, b6)

(a7, b7)

(a8, b8)

This method from
Leung and Whitehead, 1982

(a2, b2)(a1, b1)

(a3, b3)

(a4, b4)
(a5, b5)

(a6, b6)

(a7, b7)

(a8, b8)

#colliding congruences (k) = |H |
#partitions (m) = #colors

ΣP
2 -complete

8



HaRdness of paRtitioned scp

geneRalized
gRaph coloRing

ΣP
2 -complete with two colors
and H is a complete graph

(Rutenburg, 1986)

G
H

paRtitioned scp

v1 v2

(a2, b2)(a1, b1)

(a3, b3)

(a4, b4)
(a5, b5)

(a6, b6)

(a7, b7)

(a8, b8)

This method from
Leung and Whitehead, 1982

(a2, b2)(a1, b1)

(a3, b3)

(a4, b4)
(a5, b5)

(a6, b6)

(a7, b7)

(a8, b8)

#colliding congruences (k) = |H |
#partitions (m) = #colors

ΣP
2 -complete

8



HaRdness of paRtitioned scp

geneRalized
gRaph coloRing

ΣP
2 -complete with two colors
and H is a complete graph

(Rutenburg, 1986)

G
H

paRtitioned scp

v1 v2

(a2, b2)(a1, b1)

(a3, b3)

(a4, b4)
(a5, b5)

(a6, b6)

(a7, b7)

(a8, b8)

This method from
Leung and Whitehead, 1982

(a2, b2)(a1, b1)

(a3, b3)

(a4, b4)
(a5, b5)

(a6, b6)

(a7, b7)

(a8, b8)

#colliding congruences (k) = |H |
#partitions (m) = #colors

ΣP
2 -complete

8



HaRdness of paRtitioned scp

geneRalized
gRaph coloRing

ΣP
2 -complete with two colors
and H is a complete graph

(Rutenburg, 1986)

G
H

paRtitioned scp

v1 v2

(a2, b2)(a1, b1)

(a3, b3)

(a4, b4)
(a5, b5)

(a6, b6)

(a7, b7)

(a8, b8)

This method from
Leung and Whitehead, 1982

(a2, b2)(a1, b1)

(a3, b3)

(a4, b4)
(a5, b5)

(a6, b6)

(a7, b7)

(a8, b8)

#colliding congruences (k) = |H |
#partitions (m) = #colors

ΣP
2 -complete

8



HaRdness of paRtitioned scp

geneRalized
gRaph coloRing

ΣP
2 -complete with two colors
and H is a complete graph

(Rutenburg, 1986)

G
H

paRtitioned scp

v1 v2

(a2, b2)(a1, b1)

(a3, b3)

(a4, b4)
(a5, b5)

(a6, b6)

(a7, b7)

(a8, b8)

This method from
Leung and Whitehead, 1982

(a2, b2)(a1, b1)

(a3, b3)

(a4, b4)
(a5, b5)

(a6, b6)

(a7, b7)

(a8, b8)

#colliding congruences (k) = |H |
#partitions (m) = #colors

ΣP
2 -complete

8



HaRdness of paRtitioned scp

geneRalized
gRaph coloRing

ΣP
2 -complete with two colors
and H is a complete graph

(Rutenburg, 1986)

G
H

paRtitioned scp

v1 v2

(a2, b2)(a1, b1)

(a3, b3)

(a4, b4)
(a5, b5)

(a6, b6)

(a7, b7)

(a8, b8)

This method from
Leung and Whitehead, 1982

(a2, b2)(a1, b1)

(a3, b3)

(a4, b4)
(a5, b5)

(a6, b6)

(a7, b7)

(a8, b8)

#colliding congruences (k) = |H |
#partitions (m) = #colors

ΣP
2 -complete

8



HaRdness of paRtitioned scp

geneRalized
gRaph coloRing

ΣP
2 -complete with two colors
and H is a complete graph

(Rutenburg, 1986)

G
H

paRtitioned scp

v1 v2

(a2, b2)(a1, b1)

(a3, b3)

(a4, b4)
(a5, b5)

(a6, b6)

(a7, b7)

(a8, b8)

This method from
Leung and Whitehead, 1982

(a2, b2)(a1, b1)

(a3, b3)

(a4, b4)
(a5, b5)

(a6, b6)

(a7, b7)

(a8, b8)

#colliding congruences (k) = |H |
#partitions (m) = #colors

ΣP
2 -complete

8



HaRdness of paRtitioned scp

geneRalized
gRaph coloRing

ΣP
2 -complete with two colors
and H is a complete graph

(Rutenburg, 1986)

G
H

paRtitioned scp

v1 v2

(a2, b2)(a1, b1)

(a3, b3)

(a4, b4)
(a5, b5)

(a6, b6)

(a7, b7)

(a8, b8)

This method from
Leung and Whitehead, 1982

(a2, b2)(a1, b1)

(a3, b3)

(a4, b4)
(a5, b5)

(a6, b6)

(a7, b7)

(a8, b8)

#colliding congruences (k) = |H |
#partitions (m) = #colors

ΣP
2 -complete

8



HaRdness of paRtitioned scp

geneRalized
gRaph coloRing

ΣP
2 -complete with two colors
and H is a complete graph

(Rutenburg, 1986)

G
H

paRtitioned scp

v1 v2

(a2, b2)(a1, b1)

(a3, b3)

(a4, b4)
(a5, b5)

(a6, b6)

(a7, b7)

(a8, b8)

This method from
Leung and Whitehead, 1982

(a2, b2)(a1, b1)

(a3, b3)

(a4, b4)
(a5, b5)

(a6, b6)

(a7, b7)

(a8, b8)

#colliding congruences (k) = |H |
#partitions (m) = #colors

ΣP
2 -complete

8



HaRdness of paRtitioned scp

geneRalized
gRaph coloRing

ΣP
2 -complete with two colors
and H is a complete graph

(Rutenburg, 1986)

G
H

paRtitioned scp

v1 v2

(a2, b2)(a1, b1)

(a3, b3)

(a4, b4)
(a5, b5)

(a6, b6)

(a7, b7)

(a8, b8)

This method from
Leung and Whitehead, 1982

(a2, b2)(a1, b1)

(a3, b3)

(a4, b4)
(a5, b5)

(a6, b6)

(a7, b7)

(a8, b8)

#colliding congruences (k) = |H |
#partitions (m) = #colors

ΣP
2 -complete

8



HaRdness of paRtitioned scp

geneRalized
gRaph coloRing

ΣP
2 -complete with two colors
and H is a complete graph

(Rutenburg, 1986)

G
H

paRtitioned scp

v1 v2

(a2, b2)(a1, b1)

(a3, b3)

(a4, b4)
(a5, b5)

(a6, b6)

(a7, b7)

(a8, b8)

This method from
Leung and Whitehead, 1982

(a2, b2)(a1, b1)

(a3, b3)

(a4, b4)
(a5, b5)

(a6, b6)

(a7, b7)

(a8, b8)

#colliding congruences (k) = |H |
#partitions (m) = #colors

ΣP
2 -complete

8



HaRdness of paRtitioned scp

geneRalized
gRaph coloRing

ΣP
2 -complete with two colors
and H is a complete graph

(Rutenburg, 1986)

G
H

paRtitioned scp

v1 v2

(a2, b2)(a1, b1)

(a3, b3)

(a4, b4)
(a5, b5)

(a6, b6)

(a7, b7)

(a8, b8)

This method from
Leung and Whitehead, 1982

(a2, b2)(a1, b1)

(a3, b3)

(a4, b4)
(a5, b5)

(a6, b6)

(a7, b7)

(a8, b8)

#colliding congruences (k) = |H |
#partitions (m) = #colors

ΣP
2 -complete

8



Let’s geneRalize scp!
paRtitioned scp

Example: A = {(2, 4), (4, 6), (3, 8), (0, 3), . . .}, m, k

A1 A2 · · · Am

⟨A1, k⟩ ̸∈ scp ⟨A2, k⟩ ̸∈ scp · · · ⟨Am, k⟩ ̸∈ scp

geneRalized
gRaph coloRing paRtitioned scp

Some partitioned
schedulability

problems

ΣP
2 -complete,

Rutenburg, 1986 ΣP
2 -complete ΣP

2 -hard

9



Let’s geneRalize scp!
paRtitioned scp

Example: A = {(2, 4), (4, 6), (3, 8), (0, 3), . . .}, m, k

A1 A2 · · · Am

⟨A1, k⟩ ̸∈ scp ⟨A2, k⟩ ̸∈ scp · · · ⟨Am, k⟩ ̸∈ scp

geneRalized
gRaph coloRing paRtitioned scp

Some partitioned
schedulability

problems

ΣP
2 -complete,

Rutenburg, 1986 ΣP
2 -complete ΣP

2 -hard

9



Complexity foR asynchRonous peRiodic tasKs

Any work-conserving
scheduler with

constrained deadlines

FP

Problems that can be
efficiently formulated

as ILP or SAT
EDF with

implicit deadlines

EDF with
constrained or

arbitrary deadlines

P

NP coNP

ΣP
2 ΠP

2

ΣP
3 ΠP

3

...
...

10



Complexity foR asynchRonous peRiodic tasKs

Any work-conserving
scheduler with

constrained deadlines

FP

Problems that can be
efficiently formulated

as ILP or SAT
EDF with

implicit deadlines

EDF with
constrained or

arbitrary deadlines

P

NP coNP

ΣP
2 ΠP

2

ΣP
3 ΠP

3

...
...

10



Complexity foR asynchRonous peRiodic tasKs

Any work-conserving
scheduler with

constrained deadlines

FP

Problems that can be
efficiently formulated

as ILP or SAT
EDF with

implicit deadlines

EDF with
constrained or

arbitrary deadlines

P

NP coNP

ΣP
2 ΠP

2

ΣP
3 ΠP

3

...
...

10



Complexity foR asynchRonous peRiodic tasKs

Any work-conserving
scheduler with

constrained deadlines

FP

Problems that can be
efficiently formulated

as ILP or SAT
EDF with

implicit deadlines

EDF with
constrained or

arbitrary deadlines

P

NP coNP

ΣP
2 ΠP

2

ΣP
3 ΠP

3

...
...

10



Complexity foR asynchRonous peRiodic tasKs

Any work-conserving
scheduler with

constrained deadlines

FP

Problems that can be
efficiently formulated

as ILP or SAT
EDF with

implicit deadlines

EDF with
constrained or

arbitrary deadlines

P

NP coNP

ΣP
2 ΠP

2

ΣP
3 ΠP

3

...
...

10



Complexity foR asynchRonous peRiodic tasKs

Any work-conserving
scheduler with

constrained deadlines

FP

Problems that can be
efficiently formulated

as ILP or SAT

EDF with
implicit deadlines

EDF with
constrained or

arbitrary deadlines

P

NP coNP

ΣP
2 ΠP

2

ΣP
3 ΠP

3

...
...

10



Complexity foR asynchRonous peRiodic tasKs

Any work-conserving
scheduler with

constrained deadlines

FP

Problems that can be
efficiently formulated

as ILP or SAT
EDF with

implicit deadlines

EDF with
constrained or

arbitrary deadlines

P

NP coNP

ΣP
2 ΠP

2

ΣP
3 ΠP

3

...
...

10



Complexity foR spoRadic / synchRonous peRiodic tasKs

FP with
arbitrary deadlines

Problems that can be
efficiently formulated

as ILP or SAT

EDF with
implicit deadlines

EDF with
constrained or

arbitrary deadlines

FP with implicit or
constrained deadlines

P

NP coNP

ΣP
2 ΠP

2

ΣP
3 ΠP

3

...
...

11



Complexity foR spoRadic / synchRonous peRiodic tasKs

FP with
arbitrary deadlines

Problems that can be
efficiently formulated

as ILP or SAT

EDF with
implicit deadlines

EDF with
constrained or

arbitrary deadlines

FP with implicit or
constrained deadlines

P

NP coNP

ΣP
2 ΠP

2

ΣP
3 ΠP

3

...
...

11



Complexity foR spoRadic / synchRonous peRiodic tasKs

FP with
arbitrary deadlines

Problems that can be
efficiently formulated

as ILP or SAT

EDF with
implicit deadlines

EDF with
constrained or

arbitrary deadlines

FP with implicit or
constrained deadlines

P

NP coNP

ΣP
2 ΠP

2

ΣP
3 ΠP

3

...
...

11



Complexity foR spoRadic / synchRonous peRiodic tasKs

FP with
arbitrary deadlines

Problems that can be
efficiently formulated

as ILP or SAT

EDF with
implicit deadlines

EDF with
constrained or

arbitrary deadlines

FP with implicit or
constrained deadlines

P

NP coNP

ΣP
2 ΠP

2

ΣP
3 ΠP

3

...
...

11



Complexity foR spoRadic / synchRonous peRiodic tasKs

FP with
arbitrary deadlines

Problems that can be
efficiently formulated

as ILP or SAT

EDF with
implicit deadlines

EDF with
constrained or

arbitrary deadlines

FP with implicit or
constrained deadlines

P

NP coNP

ΣP
2 ΠP

2

ΣP
3 ΠP

3

...
...

11



Complexity foR spoRadic / synchRonous peRiodic tasKs

FP with
arbitrary deadlines

Problems that can be
efficiently formulated

as ILP or SAT

EDF with
implicit deadlines

EDF with
constrained or

arbitrary deadlines

FP with implicit or
constrained deadlines

P

NP coNP

ΣP
2 ΠP

2

ΣP
3 ΠP

3

...
...

11



Complexity foR spoRadic / synchRonous peRiodic tasKs

FP with
arbitrary deadlines

Problems that can be
efficiently formulated

as ILP or SAT

EDF with
implicit deadlines

EDF with
constrained or

arbitrary deadlines

FP with implicit or
constrained deadlines

P

NP coNP

ΣP
2 ΠP

2

ΣP
3 ΠP

3

...
...

11



Conclusions

New complexity bounds for partitioned schedulability.

• Some problems are exactly pinpointed.
• Some are provably† beyond the corresponding uniprocessor case.
• Some are essentially the same as the uniprocessor case!
• Some can not be formulated as ILP in polynomial time.
• Interesting open problems! ,

†: Unless the polynomial hierarchy collapses
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∀Thank you!
⋄

∃Questions?


