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Abstract When designing a real-time system, a schedulability problem must be
solved in order to show that it will meet all timing constraints at runtime. These
are decision problems that, given a model of the system as input, answer whether
all timing constraints will be met using a particular combination of scheduling al-
gorithm and computer platform. Creating efficient algorithms for solving schedula-
bility problems is a major focus of real-time systems research, but many of these
problems are computationally intractable to varying degrees. Here we will review
what is currently known about the computational complexity of schedulability prob-
lems for some common task models and scheduling algorithms on uniprocessors.

Introduction

For a given combination of task model M, scheduling algorithm A and computer
platform C, the corresponding schedulability problem is the following decision prob-
lem.

Input: A task set τ specified in task model M.
Output: Yes, if A schedules τ on platform C in such a way that all timing con-
straints of τ are guaranteed to be met. No, otherwise.

For fixed M and C, the corresponding feasibility problem instead asks whether τ

is schedulable by any scheduling algorithm A.
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In this chapter we will review what is currently known about the computational
complexity of such problems, when C is a preemptive uniprocessor and A is either
the Earliest Deadline First (EDF) or the Fixed-Priority (FP) scheduling algorithm.
EDF and FP are, by far, the most popular and widely-studied scheduling algorithms
in this context.

We will consider a number of task models M, but will necessarily limit the scope
to a subset of the wealth of task models that have been proposed in the literature.
We choose to first take a closer look at the common basic task models: sporadic
and periodic tasks. Then we consider more general task models that still generate
simple independent jobs, such as the Generalized Multiframe (Baruah et al. 1999)
and Digraph Real-Time (Stigge et al. 2011b) task models.

Sporadic and periodic tasks

A periodic task τi is specified by a quadruple of positive integers τi = (Oi,Ci,Di,Ti),
where Oi is its initial offset, Ci its worst-case execution time, Di its relative deadline,
and Ti its period, respectively. Each task generates an unbounded sequence of jobs
〈Ji,1,Ji,2, . . .〉, where each job is a basic unit of work given by a triple (r,c,d) of
release time r, worst-case execution time c, and absolute deadline d.

For a periodic task τi, the k’th job Ji,k = (ri,k,ci,k,di,k) in its generated job se-
quence satisfies

• ri,k = Oi +(k−1)Ti,
• ci,k = Ci,
• di,k = ri,k +Di.

A periodic task set τ is a collection of periodic tasks τ = {τ1, . . . ,τn}. We say that
τ is synchronous in the special case where Oi = 0 for all τi ∈ τ . To avoid any am-
biguity we always say that it is asynchronous in the general case. For synchronous
task sets we often omit the offset parameter O.

Closely related are sporadic tasks. Such a task τi is specified by a triple of positive
integers τi = (Ci,Di,Ti). A sporadic task non-deterministically generates any of an
infinite number of distinct sequences of jobs, 〈Ji,1,Ji,2, . . .〉, where the k’th job Ji,k =
(ri,k,ci,k,di,k) satisfies

• ri,k ≥ ri,k−1 +Ti, if k > 1,
• ci,k = Ci,
• di,k = ri,k +Di.

Further, all the above task models are commonly considered in the following
special cases.

• If Di = Ti for all τi ∈ τ , then we say that τ has implicit deadlines.
• If Di ≤ Ti for all τi ∈ τ , then we say that τ has constrained deadlines.
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To avoid any ambiguity, we say that a task set has arbitrary deadlines when none of
the above restrictions are enforced.

For any periodic or sporadic task set τ , its utilization U(τ) is defined as

U(τ)
def
= ∑

τi∈τ

Ci

Ti
, (1)

and its hyper-period P(τ) as

P(τ)
def
= lcm{Ti | τi ∈ τ}. (2)

It is well-known that for both EDF and FP on a preemptive uniprocessor, the
worst-case job sequence that can be generated by a set of sporadic tasks τ is exactly
the same job sequence that is generated by the synchronous periodic task set τ ′ with
the same parameters (Baruah et al. 1990a; Lehoczky 1990). It follows that the FP-
and EDF-schedulability problems coincide for synchronous periodic and sporadic
tasks on preemptive uniprocessors. As EDF is optimal in this setting (Dertouzos
1974), their feasibility problems also coincide. As such, we first consider both these
task models jointly, and then asynchronous periodic tasks.

Sporadic and synchronous periodic tasks

The preemptive uniprocessor scheduling of sporadic and synchronous periodic tasks
is likely the most well-studied problem in real-time scheduling theory, with classic
algorithms for establishing schedulability with both FP and EDF. The table in Fig-
ure 1 summarizes the current state-of-the-art in the complexity of these problems.

Upper bounds

First we briefly summarize the most important results that yield upper bounds on the
computational complexity of these problems. For EDF, upper bounds are provided
by Liu and Layland (1973) for implicit deadlines and Baruah et al. (1990a) for
constrained and arbitrary deadlines.

Theorem 1 (Liu and Layland (1973)). A task set τ of sporadic or synchronous
periodic implicit-deadline tasks is EDF-schedulable (or, equivalently, feasible) on a
preemptive uniprocessor if and only if U(τ)≤ 1.

Theorem 2 (Baruah et al. (1990a)). A task set τ of sporadic or synchronous pe-
riodic arbitrary-deadline tasks is EDF-schedulable (or, equivalently, feasible) on a
preemptive uniprocessor if and only if U(τ)≤ 1 and

∀` ∈ {0,1, . . . ,B}, dbf(τ, `) ≤ `. (3)
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Fig. 1: State-of-the-art in the complexity of preemptive schedulability problems for
sporadic or synchronous periodic tasks. Darker cells have open problems.

where

dbf(τ, `) def
= ∑

τi∈τ

max
{

0,
⌊
`−Di

Ti

⌋
+1
}

Ci (4)

is the demand bound function of τ in time interval lengths ` and where

B def
= min{B1,B2}, (5)

B1
def
= P(τ)+max{Di | τi ∈ τ}, (6)

B2
def
=

U(τ)

1−U(τ)
max{Ti−Di | τi ∈ τ}. (7)

From Theorem 1 we clearly have a trivial polynomial time schedulability test for
task sets with implicit deadlines.

For constrained or arbitrary deadlines, we note that Theorem 2 yields an expo-
nential time test because B1 is bounded by an exponential function in the size of the
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representation of τ and dbf(τ, `) can be evaluated in polynomial time for a given
value of ` in the range {0,1, . . . ,B}. However, when B2 is defined we often have
B2� B1. In particular, if we restrict attention to task sets τ with U(τ)≤ c for some
constant c < 1, then B2 is bounded by a multi-variable polynomial function in the
size of the representation of τ and its largest numerical parameter. In this special
case, Theorem 2 therefore yields a pseudo-polynomial time test. Finally, from The-
orem 2 it is clear that the EDF-schedulability problem is in coNP because a single
value of ` for which the inequality in Eq. 3 does not hold serves as a polynomial-
time verifiable witness of unschedulability.

For FP, on the other hand, upper bounds are provided by Joseph and Pandya
(1986) for implicit and constrained deadlines and by Lehoczky (1990) for arbitrary
deadlines. Liu and Layland (1973) provides an upper bound for a special case.

Theorem 3 (Joseph and Pandya (1986)). Let τ = {τ1, . . . ,τn} be a synchronous
periodic or sporadic task set with implicit or constrained deadlines indexed by
decreasing priority, so that τi has higher priority than τ j if i < j. Then τ is FP-
schedulable on a preemptive uniprocessor if and only if for all τi ∈ τ

Ri ≤ Di, (8)

where the worst-case response time Ri of task τi is the smallest positive fixed point
to the recurrence relation

Ri = Ci +
i−1

∑
j=1

⌈
Ri

Tj

⌉
C j. (9)

Theorem 4 (Lehoczky (1990)). Let τ = {τ1, . . . ,τn} be a synchronous periodic or
sporadic task set with arbitrary deadlines indexed by decreasing priority, so that
τi has higher priority than τ j if i < j. Then τ is FP-schedulable on a preemptive
uniprocessor if and only if for all τi ∈ τ

∀k ∈ {1,2, . . . ,Ni}, Wi(k,(k−1)Ti +Di) ≤ 1, (10)

where

Wi(k,x)
def
= min

t≤x

((
kCi +

i−1

∑
j=1

⌈
t
Tj

⌉
C j

)
/t

)
(11)

and

Ni
def
= min{k |Wi(k,kTi)≤ 1}. (12)

Theorem 5 (Liu and Layland (1973)). A task set τ = {τ1, . . . ,τn} of sporadic
or synchronous periodic implicit-deadline tasks is FP-schedulable with the rate-
monotonic (RM) priority ordering on a preemptive uniprocessor if and only if
U(τ)≤ n(21/n−1).
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From Theorem 3 we have a test for task sets with implicit or constrained dead-
lines. Because we do not need to consider any Ri where Ri > Di, we can evaluate
this test in pseudo-polynomial time. From Theorem 3 it is also clear that the FP-
schedulability problem for implicit or constrained deadlines is in NP because a col-
lection of small fixed points for Eq. 9 serves as a polynomial-time verifiable witness
of schedulability.

For arbitrary deadlines, there are no pseudo-polynomial time tests known, but
Theorem 4 provides a test that can be evaluated in exponential time because Ni will
never be larger than the number of jobs from τi in a single hyper-period assuming
U(τ) ≤ 1 and for Eq. 11 it is enough to consider integer values of t. While not
stated by Lehoczky (1990), it is not difficult to see from Theorem 4 that the FP-
schedulability problem with arbitrary deadlines must be in the complexity class Π P

2
at the second level of the polynomial hierarchy. (To see this, note that a task set τ is
schedulable if for all τi ∈ τ and for all k ≤ Ni there exists a value for t such that the
expression in Eq. 11 is small enough.)

It can be noted that these upper bounds hold both if we ask ask about the FP-
schedulability of a task set τ with a given priority ordering or if we ask whether
there exists a priority ordering with which τ is FP-schedulable. The reason the up-
per bounds hold in both cases is because it is possible to identify a priority order-
ing for which a task set is FP-schedulable with little overhead if one exists. In the
case with implicit or constrained deadlines, we know that RM and DM are optimal,
respectively (Liu and Layland 1973; Leung and Whitehead 1982). With arbitrary
deadlines we can use the general method of Audsley (1991) together with the test
from Theorem 4 to generate a priority ordering.

Theorem 5 gives a polynomial time test for the narrow special case of task sets
with implicit deadlines, RM priority ordering and utilization bounded from above
by limn→∞ n(21/n−1) = ln2≈ 0.693.

Lower bounds

We will now summarize the lower bounds known on the complexity of these
problems. For EDF-schedulability, these lower bounds come from Ekberg and Yi
(2015b) and Ekberg and Yi (2015a), where the former deals with the general case
and the latter with the special case with bounded utilization. (The first of these sub-
sumes prior results by Eisenbrand and Rothvoß (2010)).

Theorem 6 (Ekberg and Yi (2015b)). The problem of deciding whether a task
set of synchronous periodic or sporadic tasks with constrained or arbitrary dead-
lines is EDF-schedulable (or, equivalently, feasible) on a preemptive uniprocessor
is strongly coNP-hard.

Theorem 7 (Ekberg and Yi (2015a)). The problem of deciding whether a task set
of synchronous periodic or sporadic tasks with constrained or arbitrary deadlines
and utilization bounded by any constant c, where 0 < c < 1, is EDF-schedulable
(or, equivalently, feasible) on a preemptive uniprocessor is weakly coNP-hard.
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The above result of Ekberg and Yi (2015b) was achieved by relating the EDF-
schedulability problem to the Simultaneous Congruences Problem (SCP). SCP is a
number theoretic decision problem that was first used by Leung and Whitehead
(1982) to show lower bounds on the complexity of FP-schedulability for asyn-
chronous periodic tasks. Leung and Whitehead (1982) showed that SCP is weakly
NP-complete by a reduction from CLIQUE, but this result was later improved by
Baruah et al. (1990b) who showed that SCP is in fact strongly NP-complete by
an alternative reduction from 3-SAT. Ekberg and Yi (2015b) presented a pseudo-
polynomial transformation (as defined by Garey and Johnson (1978)) from SCP to
the complement of the EDF-schedulability problem, which demonstrated the strong
coNP-hardness of EDF-schedulability. This holds even if all tasks have unit ex-
ecution times (that is, Ci = 1 for all τi ∈ τ). Combined with the upper bound pro-
vided by Theorem 2, we can conclude that this problem is strongly coNP-complete.
Eisenbrand and Rothvoß (2010) had previously shown weak coNP-hardness for the
EDF-schedulability problem by relating it to inapproximability results of Diophan-
tine approximation.

The strong coNP-hardness of the EDF-schedulability problem for constrained
and arbitrary deadlines means it cannot have a pseudo-polynomial time test un-
less P = NP. However, from Theorem 2 we know that this problem does have a
pseudo-polynomial time test in the special case restricted to task sets with utiliza-
tion bounded by a constant c, where c < 1. Ekberg and Yi (2015a) showed that
this restricted case is weakly coNP-hard for any choice of c such that 0 < c < 1,
and therefore that the pseudo-polynomial time test is in a sense the best possible
unless P = NP. This result was achieved by reducing the general case of the EDF-
schedulability problem to the restricted case with bounded utilization. This reduc-
tion causes an exponential blowup of numerical task parameters, which is why it
shows only weak coNP-hardness for the special case even though the general case
is strongly coNP-hard.

For FP, the best known lower bounds come from Ekberg and Yi (2017).

Theorem 8 (Ekberg and Yi (2017)). The problem of deciding whether a task set of
synchronous periodic or sporadic tasks is FP-schedulable on a preemptive unipro-
cessor is weakly NP-hard, even if restricted to either of the following special cases.

1. Implicit deadlines and RM priority ordering.
2. Constrained deadlines, DM priority ordering and utilization bounded by con-

stant c, such that 0 < c < 1.

This result was found by reducing the special case of the EDF-schedulability
problem with bounded utilization to the complement of the FP-schedulability prob-
lem, exploiting a duality which exists between the conditions in Eqs. 3 and 8 when
tasks have pairwise coprime periods. An intermediate result of Ekberg and Yi (2017)
was to show that the EDF-schedulability problem with bounded utilization remains
hard when restricted to such periods.

As the RM and DM priority orderings are optimal in these settings, a corollary
of the above is that the FP-schedulability problem is NP-hard also if we ask if there
exists a priority ordering with which the task set is schedulable.
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From Theorem 8 and Theorem 3 we can conclude that the FP-schedulability
problem is weakly NP-complete for implicit and constrained deadlines. We can
therefore conclude that the pseudo-polynomial time test yielded by Theorem 3 is in
a sense the best possible. Membership in NP is not known for arbitrary deadlines,
so in that case there is a gap between upper and lower bounds. Theorem 8 also
tells us that FP-schedulability remains hard even with bounded utilization as long
as deadlines are constrained or arbitrary, mirroring the case for EDF.

For the case with implicit deadlines and utilization bounded by a constant c,
Theorem 5 gives a trivial polynomial time algorithm for FP-schedulability when
c≤ ln2 and RM priority ordering is used. It remains open if it can also be solved in
polynomial time for ln2 < c < 1 or for other priority orderings.

Other results

In addition to the upper and lower bounds described above, there are many other
interesting results known. Here we review some of them.

Eisenbrand and Rothvoß (2008) showed that for FP-scheduling, it is not even
possible to approximate the worst-case response time (i.e., the smallest fixed point
Ri in Eq. 9) of a given task within a constant factor unless P = NP. However, this
does not imply the NP-hardness of FP-schedulability testing (though this was later
shown to be NP-hard by Ekberg and Yi (2017)) as the reduction used to show the
hardness of such approximation can construct higher-priority tasks that are them-
selves clearly unschedulable.

For another type of approximation, where the approximated quantity is the speed
of the processor, Albers and Slomka (2004) and Fisher and Baruah (2005) gave
fully polynomial time approximation schemes for schedulability testing with EDF
and FP, respectively. Given a task set of n tasks and a constant ε , where 0 < ε < 1,
these tests correctly identify in time bounded by a polynomial in n/ε any task sets
that are unschedulable on a unit-speed processor as well as any task sets that are
schedulable on a slower processor of speed 1− ε . Task sets that are schedulable on
a unit-speed processor but not on a (1− ε)-speed processor may be misclassified as
unschedulable.

Task sets are called harmonic if for each pair of tasks, the period of one task
divides the period of the other. Bonifaci et al. (2013) presented polynomial time
schedulability tests for both EDF and FP for harmonic task sets with constrained
deadlines.

Asynchronous periodic tasks

As asynchronous periodic tasks are a generalization of synchronous periodic tasks,
their schedulability problems must be at least as hard, and therefore all the lower
bounds from the previous section carry over here.



Complexity of Uniprocessor Scheduling Analysis 9

Implicit
deadlines
(Di = Ti)

Constrained
deadlines
(Di ≤ Ti)

Arbitrary
deadlines

(Di, Ti unrelated)
FP

Arbitrary
utilization

In EXP

Weakly NP-hard and
strongly coNP-hard

In EXP

Weakly NP-hard and
strongly coNP-hard

In EXP

Weakly NP-hard and
strongly coNP-hard

Utilization
bounded by
a constant c

In EXP

In P for c≤ ln2
and RM priorities

In EXP

Weakly NP-hard and
strongly coNP-hard

for 0 < c < 1

In EXP

Weakly NP-hard and
strongly coNP-hard

for 0 < c < 1

E
D

F
/f

ea
si

bi
lit

y

Arbitrary
utilization In P

Strongly
coNP-complete

Strongly
coNP-complete

Utilization
bounded by
a constant c

In P
Strongly

coNP-complete
Strongly

coNP-complete

Fig. 2: State-of-the-art in the complexity of preemptive schedulability problems for
asynchronous periodic tasks. Darker cells have open problems.

At the same time, we know that the job sequence generated by a synchronous
periodic task set is at least as difficult to schedule for both EDF and FP as the job
sequence generated by a corresponding asynchronous periodic task set on a pre-
emptive uniprocessor. By a corresponding asynchronous task set we mean a task set
with exactly the same parameters, except it may have non-zero offsets. From this
is follows that any schedulability test for synchronous periodic (or sporadic) tasks
is still sufficient, but not necessarily exact, for asynchronous periodic tasks. In fact,
the only test described in the previous section that remains exact for asynchronous
periodic tasks is that of Theorem 1 for EDF-schedulability of task sets with im-
plicit deadlines. (We know it must be sufficient, and its condition clearly remains
necessary.)

For EDF-schedulability with constrained and arbitrary deadlines, Baruah et al.
(1990b) also gave an exact test for the asynchronous case that is very similar to the
test of Theorem 2 for synchronous periodic and sporadic tasks.
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Theorem 9 (Baruah et al. (1990b)). A task set τ of asynchronous periodic arbitrary-
deadline tasks is EDF-schedulable (or, equivalently, feasible) on a preemptive
uniprocessor if and only if U(τ)≤ 1 and

∀t1, t2 ∈ {0,1, . . . ,B} such that t1 < t2, dbf(τ, t1, t2) ≤ t2− t1. (13)

where

dbf(τ, t1, t2)
def
= ∑

τi∈τ

max
{

0,
⌊

t2−Oi−Di

Ti

⌋
−max

{
0,
⌈

t1−Oi

Ti

⌉}
+1
}

Ci (14)

is the demand bound function of τ in the time interval [t1, t2] and where

B def
= max{Oi | τi ∈ τ}+2P(τ). (15)

This theorem clearly demonstrates that the EDF-schedulability problem for asyn-
chronous periodic tasks is also in coNP. A major difference between Theorem 9 and
Theorem 2 is that we here have to consider all possible time intervals contained in
[0,B], while for Theorem 2 we implicitly only considered time intervals starting at
time point zero. In terms of our complexity classification, however, the important
difference is that the value of B here is not bounded by any polynomial function in
the size of the representation of τ and its largest numerical parameter, which is the
case in Theorem 2 when restricted to the special case of task sets with utilization
bounded by a constant c < 1. Theorem 9 therefore does not provide any pseudo-
polynomial time test, even in the case with bounded utilization. Indeed, Baruah
et al. (1990b) showed that even the bounded case of this problem is strongly coNP-
hard. Leung and Merrill (1980) had already shown that it was weakly coNP-hard
by reducing the Simultaneous Congruences Problem (SCP) to the complement of
it. At the time, SCP was only known to be weakly NP-hard, but this was improved
to strong NP-hardness by Baruah et al. (1990b). In combination with the previous
reduction of Leung and Merrill (1980), which do not cause exponential blowup of
numerical parameters, the strong coNP-hardness of the EDF-schedulability prob-
lem followed.

Theorem 10 (Leung and Merrill (1980); Baruah et al. (1990b)). The problem of
deciding whether a task set of asynchronous periodic tasks with constrained or arbi-
trary deadlines and utilization bounded by any constant c, where 0 < c < 1, is EDF-
schedulable (or, equivalently, feasible) on a preemptive uniprocessor is strongly
coNP-complete.

For FP, the complexity of the schedulability problems in all the cases in Fig-
ure 2 are still open, though we have some bounds already. Because Theorem 5 must
still provide a sufficient condition, the case with implicit deadlines and utilization
bounded by a constant c remains easy as long as we have RM priorities and c≤ ln2.
All other cases in Figure 2 must be NP-hard as the lower bounds of Ekberg and Yi
(2017) are carried over from the synchronous periodic case.
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In addition, these same problems are also coNP-hard, as was shown by Leung
and Whitehead (1982). Similar to the case with EDF, Leung and Whitehead (1982)
first demonstrated weak coNP-hardness by a reduction from SCP. Their result is
easily improved to strong coNP-hardness given that Baruah et al. (1990b) have
since shown SCP to be strongly NP-hard. While not stated by Leung and Whitehead
(1982), it is not difficult to see from their proofs that their results apply also to the
case with bounded utilization if deadlines are constrained or arbitrary.

Theorem 11 (Leung and Whitehead (1982); Baruah et al. (1990b)). The problem
of deciding whether a task set of asynchronous periodic tasks is FP-schedulable with
a given priority ordering on a preemptive uniprocessor is strongly coNP-hard, even
if restricted to (i) implicit deadlines or (ii) constrained deadlines and utilization
bounded by a constant c, such that 0 < c < 1.

As seen above, most of the FP-schedulability problems for asynchronous pe-
riodic tasks are both NP-hard and coNP-hard. It therefore seems unlikely any
of them are NP- or coNP-complete as that would imply NP = coNP.1 The FP-
schedulability of asynchronous periodic tasks can be tested in exponential time,
even for arbitrary deadlines as shown by Goossens (1999). For a task set τ , this
essentially amounts to computing the response times of all jobs up to time point
max{Oi | τi ∈ τ}+2P(τ).

Task models with complex job-release patterns

Here we consider task models where tasks can generate more complex job se-
quences than those generated by sporadic tasks, but where each job J is still an
independent unit of work expressed by a release time r, a worst-case execution time
c, and an absolute deadline d.

The task models considered in this section form of hierarchy with respect to
their expressiveness. We say that a task model MA generalizes a task model MB if
there exists a (total) function f mapping tasks from model MB to model MA, such
that for any task τ of model MB, the set of possible job (sub-)sequences generated
by τ and f (τ) are exactly the same, modulo dummy jobs with zero execution time.
Intuitively, this means that anything that can be modeled in MB can also be modeled
in MA, making the latter at least as expressive. Such a generalization relation must
be transitive.

For any pair of the task models considered in this section where such a mapping
f is known, f can easily be computed in polynomial time. Consequently, if MA gen-
eralizes MB, any upper bounds on the computational complexity of schedulability
problems for MA can also be applied to MB, while any lower bound for MB can be
applied to MA.

1 It is unknown if NP = coNP, but it is generally conjectured that NP 6= coNP.
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Fig. 3: A hierarchy of task models. Here we have lifted some restrictions on the rela-
tion between different task parameter values, and also assume that those parameters
are natural numbers. Figure adapted from Stigge (2014).

The following is a list of the task models that we fit into a hierarchy, with the
abbreviations that we will use for them. The list does not try to be exhaustive with
respect to the task models than could be included.

MF The Multiframe task model (Mok and Chen 1997)
GMF The Generalized Multiframe task model (Baruah et al. 1999)
ncGMF The Non-Cyclic GMF task model (Tchidjo Moyo et al. 2010)
RB The Recurring Branching task model (Baruah 1998)
RRT The Recurring Real-Time task model (Baruah 2003)
ncRRT The Non-Cyclic RRT task model (Baruah 2010)
DRT The Digraph Real-Time task model (Stigge et al. 2011b)
EDRT The Extended DRT task model (Stigge et al. 2011a)

We will not describe the syntax and semantics of each of these task models. Most of
them can be readily understood as graph-based task models restricted to particular
classes of graphs. We refer the reader to the survey of Stigge and Yi (2015) for more
details.

In addition, we include sporadic tasks with implicit, constrained and arbitrary
deadlines. We also include a restricted case of EDRT, called k-EDRT, which only
allows tasks with at most k “global” constraints, for a constant k. The k-EDRT task
model is relevant because it is the most general in this hierarchy that has efficient
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schedulability tests in some settings (Stigge et al. 2011a). Another interesting prop-
erty of k-EDRT is that it generalizes RRT already for k = 1.

The hierarchy of task models is captured by Figure 3, where an arrow from task
model MB to MA means that MA generalizes MB. For the sake of brevity, we have
here lifted restrictions on the relation of task parameter values that were assumed
in some of the original formulations of these task models, so that most of them
here generalize arbitrary-deadline sporadic tasks. We assume that the numerical task
parameters in all models are natural numbers. Some were originally specified with
real numbers as parameters, but this is not a good choice if we want to reason about
their related computational problems.

EDF-schedulability

Because tasks in all these task models generate independent jobs in a way that is un-
affected by scheduling decisions, EDF is still an optimal scheduling algorithm (Der-
touzos 1974). Many of the papers in which these task models are presented also give
EDF-schedulability tests, but thanks to the hierarchy in Figure 3, a few of those sub-
sume the rest in terms of complexity classification. Most of the EDF-schedulability
tests use some variant of the test in Theorem 2 based on demand bound functions,
with a bound on the time intervals to test that is basically an extension of B2 in
Eq. 7. This often provides pseudo-polynomial time tests when restricted to task sets
τ with U(τ) ≤ c, for a constant c < 1. However, for many of the task models there
is no alternative presented to bound B1 in Theorem 2. As a consequence, these tests
only target the case with bounded utilization, and may not work at all if U(τ) = 1
where a bound like B2 is not defined. In the following, for the complexity of EDF-
schedulability we only consider the case that is restricted to task sets with utilization
bounded by a constant c, where 0 < c < 1.

Figure 4 shows the best known upper and lower bounds on the complexity of the
EDF-schedulability problem with bounded utilization for task models in the hierar-
chy. The upper bounds can be found in three places (subsuming previous bounds).
First, there is the (trivial) polynomial time test of Liu and Layland (1973) for im-
plicit deadline sporadic tasks. Second, there is the pseudo-polynomial time test for
k-EDRT task sets for any constant k by Stigge et al. (2011a), which yields tests
of the same complexity for all task sets generalized by k-EDRT. Last, the EDF-
schedulability problem for RB task sets is in coNP. This was not stated by Baruah
(1998), but follows easily from the test described. It is an open problem whether
the EDF-schedulability problems for more general task models are also in coNP.
The bounds for P and coNP in Figure 4 would hold also without the restriction
to bounded utilization, but the bound for pseudo-polynomial time would not hold
assuming P 6= NP.

The lower bounds on the complexity of the EDF-schedulability problem with
utilization bounded by c come from two sources. First, Stigge et al. (2011a) show
that it is strongly coNP-hard for the EDRT task model, for any c where 0 < c < 1. It
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Fig. 4: Currently best-known upper bounds (left) and lower bounds (right) on the
complexity of the EDF-schedulability problem (or, equivalently, the feasibility prob-
lem) when restricted to task sets with utilization bounded by a constant c < 1.

can be noted that this result also holds when the EDRT task model is restricted to the
equivalent of constrained deadlines. Second, from Ekberg and Yi (2015a) we know
that the problem is weakly coNP-hard already for constrained-deadline sporadic
task sets and for any 0 < c < 1 (see Theorem 7). From Ekberg and Yi (2015b) we
also know that the EDF-schedulability problem is strongly coNP-hard already for
constrained-deadline sporadic task sets and up if we do not bound the utilization by
a constant.

FP-schedulability

Schedulability testing for FP is generally harder than for EDF because exact tests
seemingly need to consider a large number of combinations of concrete job se-
quences. In contrast to EDF, where the local worst case for each task is easily com-
bined to a global worst case for the task set (e.g., by the summation in Eq. 4), exact
FP-schedulability tests that have been presented for more general task models must
try different combinations of per-task behaviors. This generally leads to tests with
very high worst-case complexity.

The best known upper and lower bounds for FP-schedulability is shown in Fig-
ure 5. For upper bounds, we have mainly the results from Theorem 3, which show
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Fig. 5: Currently best-known upper bounds (left) and lower bounds (right) on the
complexity of the FP-schedulability problem.

that the problems for implicit- and constrained-deadline sporadic tasks are in NP
and can be solved in pseudo-polynomial time. For the remaining task models, their
FP-schedulability problems can be seen to be in EXP by arguments of exhaustive
simulation.

The lower bounds come from two sources. Ekberg and Yi (2017) show weak
NP-hardness already for implicit-deadline sporadic tasks (see Theorem 8). Stigge
(2014) show strong coNP-hardness for the MF task model by a reduction from the
complement of the strongly NP-complete 3-PARTITION problem. As can be seen
in Figure 5, the FP-schedulability problem for many task models are both NP- and
coNP-hard, and therefore cannot be in NP or coNP unless NP = coNP.

Despite the high complexity of some of these task models, Stigge and Yi (2013)
presented an FP-schedulability test for constrained-deadline DRT task sets based on
the technique of iterated abstraction refinement. While this test has a high worst-
case complexity, empirical evaluations by Stigge and Yi (2013) show that it in prac-
tice outperforms the pseudo-polynomial time test for EDF-schedulability for the
same task model.

Conclusions

In this chapter we have reviewed the current state-of-the-art in classifying the com-
plexity of schedulability problems on preemptive uniprocessors. For the sake of
brevity, the focus was on task models that generate simple independent jobs. This
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only represents a part of the task models that have been considered in the litera-
ture, however. Task models with locked mutually exclusive resources or with self-
suspensions are examples of models not considered here, although some results re-
garding their complexity are also known.

A take-away from this review is the observation that almost all real-time schedu-
lability problems—even very basic ones—are computationally intractable in some
sense. Even so, many of these are routinely solved exactly. For example, the
FP-schedulability problem for implicit-deadline sporadic tasks is (weakly) NP-
complete, but despite this, very few seem to think that the response-time analy-
sis of Theorem 3 is impractically slow, at least for offline analysis. Also EDF-
schedulability of constrained-deadline sporadic tasks—a strongly coNP-complete
problem—is often solved without any problems by practitioners who have never
considered restricting themselves to task sets with utilization bounded by a con-
stant.

It seems therefore as if we should not automatically settle for approximate so-
lutions to problems that we know are NP- or coNP-hard out of a concern for effi-
ciency. Some of these problems are likely genuinely difficult to solve also in prac-
tice, but others may well allow practically efficient exact solutions.

Another take-away is that complexity does not end at NP or coNP. Many of the
problems seen in this chapter, such as FP-schedulability for asynchronous periodic
tasks or for task models that generalize the Multiframe model, are known to be
both NP- and coNP-hard at the same time. Assuming a widely held conjecture in
complexity theory (i.e., NP 6= coNP) these problems are not in NP or coNP. They
may be hard for larger complexity classes, such as PSPACE or higher levels of
the polynomial hierarchy. Actually pinpointing the complexity of these problems
should be considered a worthwhile effort.
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