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Abstract—One method of showing that a hard-real-time system
is schedulable is to present a “certificate” of its schedulability —
e.g., a (static) schedule which can be verified to always meet all
deadlines. We identify some widely-studied real-time systems for
which short (i.e., polynomial-sized) certificates of schedulability
exist that can be verified in polynomial time, and apply ideas and
results from computational complexity theory to identify other
systems for which such certificates are unlikely to exist.

Index Terms—Periodic Task Systems; Schedulability; Polynomial-
time Verification

I. INTRODUCTION

Cyclic-executive (CE) [1], [2] based approaches have proved
to be a successful means of demonstrating that a safety-critical
real-time system will meet all its timing constraints. In such
approaches, the system developer provides the certification
authority (CA) with a lookup table, called the CE, that explicitly
enumerates which task will execute at each instant; the CA
checks that repeated execution of this table assigns adequate
computing to each task to allow all its timing constraints to be
met (provided, of course, that no task executes for a duration
exceeding its worst-case execution time or WCET).
When used in this manner, we can think of the CE as a
certificate of the schedulability of the system. For periodic task
systems [3], [4] the size of the CE is proportional to the hyper-
period and may therefore in general be of size exponential
in the representation of the task system under consideration.
Furthermore, verifying the correctness of such a certificate
takes the CA time at least linear in the size of the certificate;
i.e., exponential in the representation of the task system.
In this work we adopt a more expansive notion of a certificate
than merely an explicit enumeration of a schedule lookup
table. As an illustrative problem we consider the preemptive
uniprocessor scheduling of synchronous periodic constrained-
deadline task systems (see Section II). We discuss alternative
certificates of schedulability for such systems, and provide
informal assurance arguments as to why these certificates
may be considered adequate for the purposes of verifying
schedulability. We apply standard results from computational
complexity theory in order to identify, in Section III, a particular
schedulability analysis problem for which a system developer
is able to provide certificates that can be verified in time
polynomial in the size of the representation of the task system.
By defining explainability in terms of the guaranteed existence
of such polynomial-time verifiable certificates, we also identify,
in Sections IV and V, a pair of schedulability analysis problems

that are unlikely to be explainable according to this notion. In
Section VI we propose some directions for research upon such
a notion of explainability: seeking explainable subproblems of
problems that are unlikely to be explainable in general.

II. SYSTEM MODEL

We consider a synchronous periodic constrained-deadline task
system Γ that is to be scheduled upon a single preemptive
processor. Each periodic task τi ∈ Γ is characterized by
three integer parameters: its worst-case execution time Ci,
its relative deadline Di, and its period Ti; we restrict attention
to constrained-deadline systems in which Di ≤ Ti. To recap
the synchronous periodic task model: each task τi releases a
job at each time instant k × Ti for all k ∈ N; the job released
at time-instant k × Ti has a WCET Ci and a deadline at
time-instant (k × Ti +Di).
Notation: we will use H(Γ) to denote the hyper-period (least
common multiple of all the periods) of task system Γ, and
U(Γ) to denote its utilization, U(Γ) =

∑
τi∈Γ Ci/Ti.

Explainability. A system developer that chooses to model
their system as a periodic task system for the purposes of
obtaining certification would presumably need to justify this
choice to the CA. They would, for instance, need to provide
some justification for the values they have assigned to the
WCET parameters characterizing their tasks1, and explain why
one may model the processor as being preemptive. We will
not address this issue of model-justification any further in
this note, other than pointing out that safety-critical system
design methodologies (e.g., the Rate-Monotonic Analysis
methodology [6]) exist that explain how this may be done.
In Section V, we will consider an extended version of this
problem in which each task τi is additionally characterized by
a best case execution time (BCET) Bi. This model, if used,
must also be justified, and a convincing argument provided as
to why it is safe to assume that each job of a task will execute
for a duration no smaller than the value that is assigned to the
BCET parameter value of the task.

III. FIXED-PRIORITY SCHEDULING

Fixed-priority (FP) scheduling is a priority-based scheduling
scheme in which each task in the system is assigned a
unique priority, and at each instant in time the highest-priority

1Such justification may, for instance, take the form of stating that the values
were obtained using tools [5] that have been certified for this purpose.



task needing execution is executed on the shared processor.
Response-time analysis (RTA) [7], [8] is the standard technique
for determining whether a constrained-deadline synchronous
periodic task system is schedulable or not under FP scheduling
with given priorities. RTA is based on the observation [7] that
if a constrained-deadline task system is schedulable under FP,
then the maximum possible duration between the release of a
job of τi and the instant this job completes execution (called
the worst-case response time of task τi) is equal to the smallest
positive value of Ri that satisfies the following recurrence:

Ri = Ci +
∑

τj∈hp(τi)

⌈
Ri

Tj

⌉
× Cj (1)

(Here hp(τi) denotes all jobs in the task system that have
scheduling priority greater than τi’s scheduling priority.)

Explainability. A system developer that chooses to use FP
scheduling must first have the CA accept the validity of RTA.2

Assuming the CA accepts this, the certificate for schedulability
for a given task system Γ is a value for Ri for each τi ∈
Γ that satisfies Expression 1 and is ⩽ Di’s. The certificate
comprises |Γ| numbers, and so is polynomial (in fact linear) in
the representation of the task system Γ. It is straightforward to
observe that each claimed Ri can be verified to be a solution
to Equation 1 in linear time.

IV. EDF SCHEDULING

Earliest-deadline-first (EDF) scheduling is another priority-
based scheduling algorithm. In an EDF-scheduled system, at
each instance the currently active (i.e., needing execution) job
with the earliest deadline is executed — ties may be broken
arbitrarily. Processor-demand analysis (PDA) [11] is the stan-
dard technique for determining whether a synchronous periodic
task system is schedulable or not under EDF scheduling. PDA
asserts that constrained-deadline synchronous periodic task
system Γ is EDF-schedulable if (and only if) the following
constraint is satisfied for all t ∈ [0, H):(∑

τi∈Γ

max

(⌊
t−Di

Ti

⌋
+ 1, 0

)
× Ci

)
⩽ t (2)

Explainability. Getting the CA to accept the validity of PDA
does not yield a means to generate a certificate for a polynomial-
time verification algorithm. Indeed, the existence of such a
certificate seems highly unlikely since it would then follow
(from the definition of the complexity class NP) that EDF
schedulability of constrained-deadline synchronous periodic
task systems is in NP. But this schedulability problem has
previously been shown [12]–[14] to be coNP-hard, hence its
membership in NP would immediately imply that coNP = NP,

2This has essentially been achieved: there appears to be wide-spread
acceptance by most certification authorities that Equation 1 is indeed correct.
Additionally in recent years, this RTA (and much more) has been formally
proven correct [9] with machine-verified proofs in the Prosa [10] framework.

which runs counter to the expectations of most researchers in
computational complexity theory.

V. BEST-CASE RESPONSE TIMES

We have seen that there are polynomial-time verifiable cer-
tificates for FP-schedulability but it is unlikely that such
certificates exist for EDF-schedulability. In showing [non]-
existence of polynomial-time verifiable certificates, the devil is
very much in the details of the exact question being asked —
we demonstrate this below by showing that a problem, which
is very closely related to the FP-schedulability problem, is
coNP-hard and therefore does not allow for polynomial-time
verifiable certificates if NP ̸= coNP.
The problem we consider is to establish a lower bound on the
best-case response-time (BCRT) of a task under FP-scheduling.
This is a practically relevant problem since bounding both the
BCRT (from below) and the WCRT (from above) allows us to
bound the jitter in task responses. For the BCRT problem to be
meaningful we need the task model to also include a best-case
execution-time Bi of each task. The hardness of the BCRT
problem that we will establish here does not stem from any
complicated relationship between the Bi and Ci parameters; in
the following we show that the BCRT problem is coNP-hard
even if Bi = Ci for all tasks.

The Best-Case Response-Time (BCRT) Problem

INSTANCE: An FP-scheduled synchronous periodic
task system Γ with each task τi ∈ Γ additionally
characterized by a best-case execution time (BCET)
Bi, and a positive integer a.

QUESTION: Does each job of the lowest-priority task
in Γ have a response time ⩾ a?

We will establish the coNP-hardness of the BCRT problem by
relating it to the worst-case response-time (WCRT) problem.
Determining FP-schedulability is equivalent to determining
whether the WCRT Ri (as in Eq. 1) of each task is no larger
than its relative deadline Di. We find it convenient in our
derivation below to use the following utilization-restricted
variant of the WCRT problem, which has itself been shown [15]
to be NP-complete.

The Worst-Case Response-Time (WCRT) Problem

INSTANCE: An FP-scheduled synchronous periodic task
system Γ with U(Γ) ⩽ ln 2, and a positive integer a.

QUESTION: Does each job of the lowest-priority task
in Γ have a response time ⩽ a?

We note that the key difference between the above two problem
formulations is that we are asked if the given number a is an
upper bound to the possible response times in the WCRT case,
and a lower bound in the BCRT case. We will use a simple



trick to reduce from the WCRT problem to the complement
of the BCRT problem, thereby showing coNP-hardness for the
BCRT problem.
We reduce from the WCRT problem to the BCRT problem
by copying the task set Γ of the former problem to a task
set Γ′ for the new problem, but changing the period of the
lowest-priority task τlow in Γ′ to equal the hyper-period,

Tlow = H(Γ),

and assigning best-case execution times

Bi = Ci

to all tasks τi ∈ Γ′.
The change to τlow’s period effectively means that it will only
release the first job in every hyper-period in Γ′ compared to Γ.
It is well-known that if the first job in the hyper-period has a
response-time ⩽ Tlow, then that job has the maximum response
time [16]. Since we have U(Γ) ⩽ ln 2, the response-time of
the first job must be ⩽ Tlow by Liu and Layland’s utilization
bound [3], and so τlow’s WCRT must be the same in Γ and Γ′.
But since τlow only releases a single job per hyper-period in
Γ′, and since all tasks have Bi = Ci, it must also be the case
that τlow’s WCRT and BCRT are the same in Γ′. In order to
answer the WCRT problem for Γ

“Does each job of the lowest-priority task in Γ have a
response time ⩽ a?”

we can simply answer the BCRT problem for Γ′

“Does each job of the lowest-priority task in Γ′ have a
response time ⩾ a+ 1?”

and negate the answer. It follows that the BCRT problem
is coNP-hard and therefore does not allow polynomial-time
verifiable certificates if NP ̸= coNP.
As an immediate corollary, we may conclude that the following
problem for bounding the response time within an interval is
both NP-hard and coNP-hard, and therefore is unlikely to have
either polynomial-time verifiable certificates or counterexam-
ples.

The Response-Time Jitter Problem

INSTANCE: An FP-scheduled synchronous periodic
task system Γ with each task τi ∈ Γ additionally
characterized by a best-case execution time (BCET)
Bi, and positive integers a, b.

QUESTION: Does each job of the lowest-priority task
in Γ have a response time in interval [a, b]?

Explainability. Despite being so closely related to the WCRT
problem, and hence the FP-schedulability problem, we have
seen that there are likely no polynomial-time verifiable certifi-
cates for the BCRT problem (if there are, then NP = coNP).
We consider the coNP-hardness of the BCRT problem an

interesting result in itself; this section additionally demonstrates
how computational complexity may change with only small
variations of the questions asked, and how this can determine
the existence of efficiently-verifiable certificates.

VI. SUMMARY & DISCUSSION

One effective means of “explaining” that a system is schedu-
lable has been by presenting verifiable certificates of its
schedulability, as is evidenced by the prevalence of cyclic-
executive based scheduling approaches in important safety-
critical application domains such as avionics. A more general
notion of certificate than the explicit schedule as provided by
cyclic executives is some more abstract proof of schedulability
that can be independently verified by, say, a certification
authority. A very formal (and very interesting) approach to
this are the machine-checkable certificates generated by the
foundational response-time analysis of Maida et al. [17].
The notion of explainability that we focus upon in this note
is this: is a certificate guaranteed to exist for all schedulable
task systems, that can be verified in time polynomial in the
representation of the task system whose schedulability is to
be verified? Under this interpretation, explainability implies
membership in the computational complexity class NP; and
as a contrapositive, if a schedulability analysis problem is
̸∈ NP, then the problem is not explainable in general – it is not
the case that all instances have polynomial-sized certificates.
Showing, as we have done in this note, that a problem is
coNP-hard offers very strong evidence that it is ̸∈ NP, since
we otherwise would have NP = coNP.
We have demonstrated this equivalence between computational
complexity and this notion of explainability via examples upon
some commonly-studied preemptive uniprocessor schedulability
analysis problems. Under FP scheduling, we noted that upper
bounds on worst-case response time are explainable, but showed
that lower bounds on best-case response times are likely not.
For EDF scheduling, we noted that determining schedulability
is unlikely to be explainable.
We can of course apply this thinking to other complexity
results in real-time scheduling theory. To exemplify with a
few complexity results for some multiprocessor schedulability
analysis problems:

• Partitioned FP scheduling of constrained-deadline syn-
chronous periodic task systems is in NP, this follows for
example from an ILP formulation by Zheng et al. [18]. (In
fact it is NP-complete even for unrelated heterogeneous pro-
cessors, see [19, Sec. VII] for an overview on the complexity
of partitioned schedulability problems.) Hence partitioned
FP scheduling of constrained-deadline synchronous periodic
task systems is explainable.

• In contrast, it is currently unknown if the global FP-
schedulability problem of constrained-deadline synchronous
periodic task systems has polynomial-sized certificates. This
problem is NP-hard (which follows directly from the hardness
of the single-processor case [15]), but to the best of our



knowledge no better lower bounds on its complexity are
known, and it is not known to be in NP.

• Multiprocessor schedulability for a single conditional DAG
(C-DAG) [20]–[22] under restricted processor assignment is
unlikely to be explainable, since this schedulability analysis
problem is known [23] to be PSPACE-complete (and since it
is generally believed that NP ̸= PSPACE).

Directions for future research. Although this note (and
indeed, this workshop) deals with explainability, the traditional
focus of real-time scheduling theory research has primarily
been on devising efficient algorithms for determining, rather
than explaining, schedulability. In this traditional context if a
schedulability analysis problem is shown to be computationally
hard, one approach has been to try to identify sub-problems
that are solvable in polynomial time (for example, FP and
EDF schedulability analysis of harmonic task systems may be
looked upon as such sub-problems of the schedulability analysis
problems considered in Sections III and IV, for which exact
polynomial-time schedulability tests are known [24], [25]).
This flavor of prior research suggests a promising future
research direction on the approach to explainability that we
have investigated in this note: If some schedulability analysis
problem that arises frequently in practice is ̸∈ NP and therefore
unlikely to have polynomial-sized certificates, there may be sub-
problems of it that are in NP and hence possess polynomially-
verifiable certificates of schedulability. Since P ⊆ NP, there is
an obvious possibility that there are more or larger practically
relevant sub-problems of this type than there are sub-problems
that are efficiently solvable. In other words, if explainability is
a main concern it may be meaningful to search for practically
relevant sub-problems not only for their efficient solvability,
but also for their explainability
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