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Ideally’ the Foundational Response-Time Analysis as Explainable Evidence of Timeliness

eXplanati on is by Maida, Bozhko and Brandenburg (ECRTS 2022)

formally CertiCAN certifying CAN analyses and their results
verifiable by Fradet, Guo and Quinton (Real-Time Systems 2023)
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processor capacity 1 — A

(1) The partitioning of I" into I'fuiq and I'g,
(2) RTA fixed-points for I'g, on a speed-(1 — A) processor

Verifiable in polynomial time <> FP+fluid-schedulability € NP
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Split each task 7; into k; € N pieces, then schedule with DM.

(1) The k; for each 7; € I’
(2) RTA fixed-points for I" after splitting each 7; into k; pieces

Verifiable in polynomial time <= FP+split-schedulability € NP
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Definition: pseudoNP

A problem is in pseudoNP if solutions can be verified in
pseudo-polynomial time.

Is I" schedulable by partitioned-EDF on m processors such
that the utilization per partition is at most ¢ < 1?

X Not in NP (if NP # coNP)

X Not solvable in pseudo-polynomial time (if P # NP)
v' In pseudoNP!

15



CONCLUSIONS

16



CONCLUSIONS

® Classification of schedulability problems as efficiently explainable

16



CONCLUSIONS

® Classification of schedulability problems as efficiently explainable

® Methods for those that are not inherently efficiently explainable:

16



CONCLUSIONS

® Classification of schedulability problems as efficiently explainable
® Methods for those that are not inherently efficiently explainable:

® Identification of efficiently explainable subproblems

16



CONCLUSIONS

® Classification of schedulability problems as efficiently explainable
® Methods for those that are not inherently efficiently explainable:

® Identification of efficiently explainable subproblems

® A concept for efficiently explainable approximation: FPTVAS

16



CONCLUSIONS

® Classification of schedulability problems as efficiently explainable
® Methods for those that are not inherently efficiently explainable:

® Identification of efficiently explainable subproblems
® A concept for efficiently explainable approximation: FPTVAS
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