
TowaRds Efficient Explainability of
Schedulability PRopeRties in Real-Time

Systems

Sanjoy BaRuah
Washington University in Saint Louis

Pontus EKbeRg
Uppsala University

ECRTS, Vienna 2023

The bRoadeR pictuRe

System
designer

Certification
authority

Comes up
with solution


Sends explanation

(or proof/certificate)
Verifies
solution



Can spend lots
of time/resources

Verification
should be efficient

Ideally, the
explanation is

formally
verifiable

Foundational Response-Time Analysis as Explainable Evidence of Timeliness
by Maida, Bozhko and Brandenburg (ECRTS 2022)

CertiCAN certifying CAN analyses and their results
by Fradet, Guo and Quinton (Real-Time Systems 2023)

Cloud
service

Edge
device

Machine
learning

System
designer

• Classify schedulability problems as efficiently explainable or not

• Investigate techniques for dealing with the problems that are not

This work

2

The bRoadeR pictuRe

System
designer

Certification
authority

Comes up
with solution


Sends explanation

(or proof/certificate)
Verifies
solution



Can spend lots
of time/resources

Verification
should be efficient

Ideally, the
explanation is

formally
verifiable

Foundational Response-Time Analysis as Explainable Evidence of Timeliness
by Maida, Bozhko and Brandenburg (ECRTS 2022)

CertiCAN certifying CAN analyses and their results
by Fradet, Guo and Quinton (Real-Time Systems 2023)

Cloud
service

Edge
device

Machine
learning

System
designer

• Classify schedulability problems as efficiently explainable or not

• Investigate techniques for dealing with the problems that are not

This work

2

The bRoadeR pictuRe

System
designer

Certification
authority

Comes up
with solution



Sends explanation
(or proof/certificate)

Verifies
solution



Can spend lots
of time/resources

Verification
should be efficient

Ideally, the
explanation is

formally
verifiable

Foundational Response-Time Analysis as Explainable Evidence of Timeliness
by Maida, Bozhko and Brandenburg (ECRTS 2022)

CertiCAN certifying CAN analyses and their results
by Fradet, Guo and Quinton (Real-Time Systems 2023)

Cloud
service

Edge
device

Machine
learning

System
designer

• Classify schedulability problems as efficiently explainable or not

• Investigate techniques for dealing with the problems that are not

This work

2

The bRoadeR pictuRe

System
designer

Certification
authority

Comes up
with solution


Sends explanation

(or proof/certificate)

Verifies
solution



Can spend lots
of time/resources

Verification
should be efficient

Ideally, the
explanation is

formally
verifiable

Foundational Response-Time Analysis as Explainable Evidence of Timeliness
by Maida, Bozhko and Brandenburg (ECRTS 2022)

CertiCAN certifying CAN analyses and their results
by Fradet, Guo and Quinton (Real-Time Systems 2023)

Cloud
service

Edge
device

Machine
learning

System
designer

• Classify schedulability problems as efficiently explainable or not

• Investigate techniques for dealing with the problems that are not

This work

2

The bRoadeR pictuRe

System
designer

Certification
authority

Comes up
with solution


Sends explanation

(or proof/certificate)
Verifies
solution



Can spend lots
of time/resources

Verification
should be efficient

Ideally, the
explanation is

formally
verifiable

Foundational Response-Time Analysis as Explainable Evidence of Timeliness
by Maida, Bozhko and Brandenburg (ECRTS 2022)

CertiCAN certifying CAN analyses and their results
by Fradet, Guo and Quinton (Real-Time Systems 2023)

Cloud
service

Edge
device

Machine
learning

System
designer

• Classify schedulability problems as efficiently explainable or not

• Investigate techniques for dealing with the problems that are not

This work

2

The bRoadeR pictuRe

System
designer

Certification
authority

Comes up
with solution


Sends explanation

(or proof/certificate)
Verifies
solution



Can spend lots
of time/resources

Verification
should be efficient

Ideally, the
explanation is

formally
verifiable

Foundational Response-Time Analysis as Explainable Evidence of Timeliness
by Maida, Bozhko and Brandenburg (ECRTS 2022)

CertiCAN certifying CAN analyses and their results
by Fradet, Guo and Quinton (Real-Time Systems 2023)

Cloud
service

Edge
device

Machine
learning

System
designer

• Classify schedulability problems as efficiently explainable or not

• Investigate techniques for dealing with the problems that are not

This work

2

The bRoadeR pictuRe

System
designer

Certification
authority

Comes up
with solution


Sends explanation

(or proof/certificate)
Verifies
solution



Can spend lots
of time/resources

Verification
should be efficient

Ideally, the
explanation is

formally
verifiable

Foundational Response-Time Analysis as Explainable Evidence of Timeliness
by Maida, Bozhko and Brandenburg (ECRTS 2022)

CertiCAN certifying CAN analyses and their results
by Fradet, Guo and Quinton (Real-Time Systems 2023)

Cloud
service

Edge
device

Machine
learning

System
designer

• Classify schedulability problems as efficiently explainable or not

• Investigate techniques for dealing with the problems that are not

This work

2

The bRoadeR pictuRe

System
designer

Certification
authority

Comes up
with solution


Sends explanation

(or proof/certificate)
Verifies
solution



Can spend lots
of time/resources

Verification
should be efficient

Ideally, the
explanation is

formally
verifiable

Foundational Response-Time Analysis as Explainable Evidence of Timeliness
by Maida, Bozhko and Brandenburg (ECRTS 2022)

CertiCAN certifying CAN analyses and their results
by Fradet, Guo and Quinton (Real-Time Systems 2023)

Cloud
service

Edge
device

Machine
learning

System
designer

• Classify schedulability problems as efficiently explainable or not

• Investigate techniques for dealing with the problems that are not

This work

2

The bRoadeR pictuRe

System
designer

Certification
authority

Comes up
with solution


Sends explanation

(or proof/certificate)
Verifies
solution



Can spend lots
of time/resources

Verification
should be efficient

Ideally, the
explanation is

formally
verifiable

Foundational Response-Time Analysis as Explainable Evidence of Timeliness
by Maida, Bozhko and Brandenburg (ECRTS 2022)

CertiCAN certifying CAN analyses and their results
by Fradet, Guo and Quinton (Real-Time Systems 2023)

Cloud
service

Edge
device

Machine
learning

System
designer

• Classify schedulability problems as efficiently explainable or not

• Investigate techniques for dealing with the problems that are not

This work

2

The bRoadeR pictuRe

System
designer

Certification
authority

Comes up
with solution


Sends explanation

(or proof/certificate)
Verifies
solution



Can spend lots
of time/resources

Verification
should be efficient

Ideally, the
explanation is

formally
verifiable

Foundational Response-Time Analysis as Explainable Evidence of Timeliness
by Maida, Bozhko and Brandenburg (ECRTS 2022)

CertiCAN certifying CAN analyses and their results
by Fradet, Guo and Quinton (Real-Time Systems 2023)

Cloud
service

Edge
device

Machine
learning

System
designer

• Classify schedulability problems as efficiently explainable or not

• Investigate techniques for dealing with the problems that are not

This work

2

The bRoadeR pictuRe

System
designer

Certification
authority

Comes up
with solution


Sends explanation

(or proof/certificate)
Verifies
solution



Can spend lots
of time/resources

Verification
should be efficient

Ideally, the
explanation is

formally
verifiable

Foundational Response-Time Analysis as Explainable Evidence of Timeliness
by Maida, Bozhko and Brandenburg (ECRTS 2022)

CertiCAN certifying CAN analyses and their results
by Fradet, Guo and Quinton (Real-Time Systems 2023)

Cloud
service

Edge
device

Machine
learning

System
designer

• Classify schedulability problems as efficiently explainable or not

• Investigate techniques for dealing with the problems that are not

This work

2

The bRoadeR pictuRe

System
designer

Certification
authority

Comes up
with solution


Sends explanation

(or proof/certificate)
Verifies
solution



Can spend lots
of time/resources

Verification
should be efficient

Ideally, the
explanation is

formally
verifiable

Foundational Response-Time Analysis as Explainable Evidence of Timeliness
by Maida, Bozhko and Brandenburg (ECRTS 2022)

CertiCAN certifying CAN analyses and their results
by Fradet, Guo and Quinton (Real-Time Systems 2023)

Cloud
service

Edge
device

Machine
learning

System
designer

• Classify schedulability problems as efficiently explainable or not
• Investigate techniques for dealing with the problems that are not

This work

2

Example: UnipRocessoR FP-schedulability

Constrained-deadline task system Γ = {τ1, . . . , τn} is FP-
schedulable iff the smallest positive fixed-point Ri,

Ri = Ci +
∑

j∈ hp(i)

⌈
Ri
Tj

⌉
× Cj,

is ⩽ Di for each τi ∈ Γ.

RTA (Joseph and Pandya, 1986, and others)

System
designer



Certification
authority



R1, . . . , Rn

3

Example: UnipRocessoR FP-schedulability

Constrained-deadline task system Γ = {τ1, . . . , τn} is FP-
schedulable iff the smallest positive fixed-point Ri,

Ri = Ci +
∑

j∈ hp(i)

⌈
Ri
Tj

⌉
× Cj,

is ⩽ Di for each τi ∈ Γ.

RTA (Joseph and Pandya, 1986, and others)

System
designer



Certification
authority



R1, . . . , Rn

3

Example: UnipRocessoR FP-schedulability

Constrained-deadline task system Γ = {τ1, . . . , τn} is FP-
schedulable iff the smallest positive fixed-point Ri,

Ri = Ci +
∑

j∈ hp(i)

⌈
Ri
Tj

⌉
× Cj,

is ⩽ Di for each τi ∈ Γ.

RTA (Joseph and Pandya, 1986, and others)

System
designer



Certification
authority

R1, . . . , Rn

3

Example 2: UnipRocessoR EDF-schedulability

Task system Γ = {τ1, . . . , τn} is EDF-schedulable iff∑
τi∈Γ

dbfi(t) ⩽ t,

for all t ∈ {0, 1, . . . ,HP(Γ)}.

PDA (Baruah et al., 1990)

dbfi(t)
def
= max

(⌊
t− Di

Ti

⌋
+ 1, 0

)
× Ci

System
designer



Certification
authority



???

4

Example 2: UnipRocessoR EDF-schedulability

Task system Γ = {τ1, . . . , τn} is EDF-schedulable iff∑
τi∈Γ

dbfi(t) ⩽ t,

for all t ∈ {0, 1, . . . ,HP(Γ)}.

PDA (Baruah et al., 1990)

dbfi(t)
def
= max

(⌊
t− Di

Ti

⌋
+ 1, 0

)
× Ci

System
designer



Certification
authority



???

4

Example 2: UnipRocessoR EDF-schedulability

Task system Γ = {τ1, . . . , τn} is EDF-schedulable iff∑
τi∈Γ

dbfi(t) ⩽ t,

for all t ∈ {0, 1, . . . ,HP(Γ)}.

PDA (Baruah et al., 1990)

dbfi(t)
def
= max

(⌊
t− Di

Ti

⌋
+ 1, 0

)
× Ci

System
designer



Certification
authority

???

4

Does this Relate to complexity?

Outside NP =⇒
not verifiable in
polynomial time

NP = verifiable in
polynomial timeP = solvable in polynomial time

u

Uniprocessor
FP-schedulability

(constrained deadlines)

u

u

Uniprocessor
EDF-schedulability

Uniprocessor
EDF-schedulability

u
Partitioned

FP-schedulability
(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

P
NP

NP-C

5

Does this Relate to complexity?

Outside NP =⇒
not verifiable in
polynomial time

NP = verifiable in
polynomial timeP = solvable in polynomial time

u

Uniprocessor
FP-schedulability

(constrained deadlines)

u

u

Uniprocessor
EDF-schedulability

Uniprocessor
EDF-schedulability

u
Partitioned

FP-schedulability
(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

P
NP

NP-C

coNP

coNP-C

5

Does this Relate to complexity?

Outside NP =⇒
not verifiable in
polynomial time

NP = verifiable in
polynomial timeP = solvable in polynomial time

u

Uniprocessor
FP-schedulability

(constrained deadlines)

u

u

Uniprocessor
EDF-schedulability

Uniprocessor
EDF-schedulability

u
Partitioned

FP-schedulability
(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=
ΣP

2

ΣP
2-C

coNPNP
=
ΠP

2

ΠP
2-C PNP = ∆P

2

PH...

5

Does this Relate to complexity?

Outside NP =⇒
not verifiable in
polynomial time

NP = verifiable in
polynomial timeP = solvable in polynomial time

u

Uniprocessor
FP-schedulability

(constrained deadlines)

u

u

Uniprocessor
EDF-schedulability

Uniprocessor
EDF-schedulability

u
Partitioned

FP-schedulability
(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=
ΣP

2

ΣP
2-C

coNPNP
=
ΠP

2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

5

Does this Relate to complexity?

Outside NP =⇒
not verifiable in
polynomial time

NP = verifiable in
polynomial time

P = solvable in polynomial time

u

Uniprocessor
FP-schedulability

(constrained deadlines)

u

u

Uniprocessor
EDF-schedulability

Uniprocessor
EDF-schedulability

u
Partitioned

FP-schedulability
(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=
ΣP

2

ΣP
2-C

coNPNP
=
ΠP

2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

5

Does this Relate to complexity?

Outside NP =⇒
not verifiable in
polynomial time

NP = verifiable in
polynomial timeP = solvable in polynomial time

u

Uniprocessor
FP-schedulability

(constrained deadlines)

u

u

Uniprocessor
EDF-schedulability

Uniprocessor
EDF-schedulability

u
Partitioned

FP-schedulability
(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=
ΣP

2

ΣP
2-C

coNPNP
=
ΠP

2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

5

Does this Relate to complexity?

Outside NP =⇒
not verifiable in
polynomial time

NP = verifiable in
polynomial timeP = solvable in polynomial time

u

Uniprocessor
FP-schedulability

(constrained deadlines)

u

u

Uniprocessor
EDF-schedulability

Uniprocessor
EDF-schedulability

u
Partitioned

FP-schedulability
(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=
ΣP

2

ΣP
2-C

coNPNP
=
ΠP

2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

5

Does this Relate to complexity?

Outside NP =⇒
not verifiable in
polynomial time

NP = verifiable in
polynomial timeP = solvable in polynomial time

u

Uniprocessor
FP-schedulability

(constrained deadlines)

u

u

Uniprocessor
EDF-schedulability

Uniprocessor
EDF-schedulability

u
Partitioned

FP-schedulability
(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=
ΣP

2

ΣP
2-C

coNPNP
=
ΠP

2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

5

Does this Relate to complexity?

Outside NP =⇒
not verifiable in
polynomial time

NP = verifiable in
polynomial timeP = solvable in polynomial time

u

Uniprocessor
FP-schedulability

(constrained deadlines)

u

u

Uniprocessor
EDF-schedulability

Uniprocessor
EDF-schedulability

u
Partitioned

FP-schedulability
(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=
ΣP

2

ΣP
2-C

coNPNP
=
ΠP

2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

5

Does this Relate to complexity?

Outside NP =⇒
not verifiable in
polynomial time

NP = verifiable in
polynomial timeP = solvable in polynomial time

u

Uniprocessor
FP-schedulability

(constrained deadlines)

u

u

Uniprocessor
EDF-schedulability

Uniprocessor
EDF-schedulability

u
Partitioned

FP-schedulability
(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=
ΣP

2

ΣP
2-C

coNPNP
=
ΠP

2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

5

Does this Relate to complexity?

Outside NP =⇒
not verifiable in
polynomial time

NP = verifiable in
polynomial timeP = solvable in polynomial time

u

Uniprocessor
FP-schedulability

(constrained deadlines)

u

u

Uniprocessor
EDF-schedulability

Uniprocessor
EDF-schedulability

u
Partitioned

FP-schedulability
(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=
ΣP

2

ΣP
2-C

coNPNP
=
ΠP

2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

5

Does this Relate to complexity?

Outside NP =⇒
not verifiable in
polynomial time

NP = verifiable in
polynomial timeP = solvable in polynomial time

u

Uniprocessor
FP-schedulability

(constrained deadlines)

u

u

Uniprocessor
EDF-schedulability

Uniprocessor
EDF-schedulability

u
Partitioned

FP-schedulability
(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=
ΣP

2

ΣP
2-C

coNPNP
=
ΠP

2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

5

Does this Relate to complexity?

Outside NP =⇒
not verifiable in
polynomial time

NP = verifiable in
polynomial timeP = solvable in polynomial time

u

Uniprocessor
FP-schedulability

(constrained deadlines)

u

u

Uniprocessor
EDF-schedulability

Uniprocessor
EDF-schedulability

u
Partitioned

FP-schedulability
(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=
ΣP

2

ΣP
2-C

coNPNP
=
ΠP

2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

5

Does this Relate to complexity?

Outside NP =⇒
not verifiable in
polynomial time

NP = verifiable in
polynomial timeP = solvable in polynomial time

u

Uniprocessor
FP-schedulability

(constrained deadlines)

u

u

Uniprocessor
EDF-schedulability

Uniprocessor
EDF-schedulability

u
Partitioned

FP-schedulability
(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=
ΣP

2

ΣP
2-C

coNPNP
=
ΠP

2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

5

Does this Relate to complexity?

Outside NP =⇒
not verifiable in
polynomial time

NP = verifiable in
polynomial timeP = solvable in polynomial time

u

Uniprocessor
FP-schedulability

(constrained deadlines)

u

u

Uniprocessor
EDF-schedulability

Uniprocessor
EDF-schedulability

u
Partitioned

FP-schedulability
(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=
ΣP

2

ΣP
2-C

coNPNP
=
ΠP

2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

�

5

Dealing with EDF

�

(Sporadic tasks, preemptive uniprocessor)

coNP-complete

FP-schedulability =⇒ EDF-schedulability∀A : A-schedulability =⇒ EDF-schedulability

EDF-
schedulable

6

Dealing with EDF

�

(Sporadic tasks, preemptive uniprocessor)

coNP-complete

FP-schedulability =⇒ EDF-schedulability∀A : A-schedulability =⇒ EDF-schedulability

EDF-
schedulable

6

Dealing with EDF

�

(Sporadic tasks, preemptive uniprocessor)

coNP-complete

In P

FP-schedulability =⇒ EDF-schedulability∀A : A-schedulability =⇒ EDF-schedulability

Implicit
deadlines
and EDF-
sched.

EDF-
schedulable

6

Dealing with EDF

�

(Sporadic tasks, preemptive uniprocessor)

coNP-complete

In P

FP-schedulability =⇒ EDF-schedulability∀A : A-schedulability =⇒ EDF-schedulability

Implicit
deadlines
and EDF-
sched.

EDF-
schedulable

6

Dealing with EDF

�

(Sporadic tasks, preemptive uniprocessor)

coNP-complete

In P

In P

FP-schedulability =⇒ EDF-schedulability∀A : A-schedulability =⇒ EDF-schedulability

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

EDF-
schedulable

6

Dealing with EDF

�

(Sporadic tasks, preemptive uniprocessor)

coNP-complete

In P

In P

FP-schedulability =⇒ EDF-schedulability∀A : A-schedulability =⇒ EDF-schedulability

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

EDF-
schedulable

6

Dealing with EDF

�

(Sporadic tasks, preemptive uniprocessor)

coNP-complete

In P

In P

FP-schedulability =⇒ EDF-schedulability

∀A : A-schedulability =⇒ EDF-schedulability

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

EDF-
schedulable

6

Dealing with EDF

�

(Sporadic tasks, preemptive uniprocessor)

coNP-complete

In P

In P

In NP

FP-schedulability =⇒ EDF-schedulability

∀A : A-schedulability =⇒ EDF-schedulability

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

FP-
sched.

EDF-
schedulable

6

Dealing with EDF

�

(Sporadic tasks, preemptive uniprocessor)

coNP-complete

In P

In P

In NP

FP-schedulability =⇒ EDF-schedulability

∀A : A-schedulability =⇒ EDF-schedulability

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

FP-
sched.

EDF-
schedulable

6

Dealing with EDF

�

(Sporadic tasks, preemptive uniprocessor)

coNP-complete

In P

In P

In NP

FP-schedulability =⇒ EDF-schedulability

∀A : A-schedulability =⇒ EDF-schedulability

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

FP-
sched.

EDF-
schedulable

6

Let’s maKe up a scheduleR: FP+fluid

Γ

Γfluid

Γfp

Runs fluidly on reserved processor capacity

∆ =
∑

τi∈Γfluid

Ci

min(Di, Ti)

Runs DM scheduling on the remaining
processor capacity 1−∆

(1) The partitioning of Γ into Γfluid and Γfp
(2) RTA fixed-points for Γfp on a speed-(1−∆) processor

Verifiable in polynomial time ⇐⇒ FP+fluid-schedulability ∈ NP

7

Let’s maKe up a scheduleR: FP+fluid

Γ

Γfluid

Γfp

Runs fluidly on reserved processor capacity

∆ =
∑

τi∈Γfluid

Ci

min(Di, Ti)

Runs DM scheduling on the remaining
processor capacity 1−∆

(1) The partitioning of Γ into Γfluid and Γfp
(2) RTA fixed-points for Γfp on a speed-(1−∆) processor

Verifiable in polynomial time ⇐⇒ FP+fluid-schedulability ∈ NP

7

Let’s maKe up a scheduleR: FP+fluid

Γ

Γfluid

Γfp

Runs fluidly on reserved processor capacity

∆ =
∑

τi∈Γfluid

Ci

min(Di, Ti)

Runs DM scheduling on the remaining
processor capacity 1−∆

(1) The partitioning of Γ into Γfluid and Γfp
(2) RTA fixed-points for Γfp on a speed-(1−∆) processor

Verifiable in polynomial time ⇐⇒ FP+fluid-schedulability ∈ NP

7

Let’s maKe up a scheduleR: FP+fluid

Γ

Γfluid

Γfp

Runs fluidly on reserved processor capacity

∆ =
∑

τi∈Γfluid

Ci

min(Di, Ti)

Runs DM scheduling on the remaining
processor capacity 1−∆

(1) The partitioning of Γ into Γfluid and Γfp
(2) RTA fixed-points for Γfp on a speed-(1−∆) processor

Verifiable in polynomial time ⇐⇒ FP+fluid-schedulability ∈ NP

7

Let’s maKe up a scheduleR: FP+fluid

Γ

Γfluid

Γfp

Runs fluidly on reserved processor capacity

∆ =
∑

τi∈Γfluid

Ci

min(Di, Ti)

Runs DM scheduling on the remaining
processor capacity 1−∆

(1) The partitioning of Γ into Γfluid and Γfp
(2) RTA fixed-points for Γfp on a speed-(1−∆) processor

Verifiable in polynomial time ⇐⇒ FP+fluid-schedulability ∈ NP

7

Let’s maKe up a scheduleR: FP+fluid

Γ

Γfluid

Γfp

Runs fluidly on reserved processor capacity

∆ =
∑

τi∈Γfluid

Ci

min(Di, Ti)

Runs DM scheduling on the remaining
processor capacity 1−∆

(1) The partitioning of Γ into Γfluid and Γfp
(2) RTA fixed-points for Γfp on a speed-(1−∆) processor

Verifiable in polynomial time ⇐⇒ FP+fluid-schedulability ∈ NP

7

Dealing with EDF

FP+fluid-schedulability =⇒ EDF-schedulability

∀A : A-schedulability =⇒ EDF-schedulability

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

FP-
sched.

EDF-
schedulable

8

Dealing with EDF

FP+fluid-schedulability =⇒ EDF-schedulability

∀A : A-schedulability =⇒ EDF-schedulability

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

FP-
sched.

EDF-
schedulable

8

Dealing with EDF

FP+fluid-schedulability =⇒ EDF-schedulability

∀A : A-schedulability =⇒ EDF-schedulability

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

FP-
sched.

FP+fluid-
sched.

EDF-
schedulable

8

AnotheR one: FP+split

Split each task τi into ki ∈ N+ pieces, then schedule with DM.

τi

Split into ki = 2 pieces

τ ′i

(1) The ki for each τi ∈ Γ
(2) RTA fixed-points for Γ after splitting each τi into ki pieces

Verifiable in polynomial time ⇐⇒ FP+split-schedulability ∈ NP

9

AnotheR one: FP+split

Split each task τi into ki ∈ N+ pieces, then schedule with DM.

τi

Split into ki = 2 pieces

τ ′i

(1) The ki for each τi ∈ Γ
(2) RTA fixed-points for Γ after splitting each τi into ki pieces

Verifiable in polynomial time ⇐⇒ FP+split-schedulability ∈ NP

9

AnotheR one: FP+split

Split each task τi into ki ∈ N+ pieces, then schedule with DM.

τi

Split into ki = 2 pieces

τ ′i

(1) The ki for each τi ∈ Γ
(2) RTA fixed-points for Γ after splitting each τi into ki pieces

Verifiable in polynomial time ⇐⇒ FP+split-schedulability ∈ NP

9

AnotheR one: FP+split

Split each task τi into ki ∈ N+ pieces, then schedule with DM.

τi

Split into ki = 2 pieces

τ ′i

(1) The ki for each τi ∈ Γ
(2) RTA fixed-points for Γ after splitting each τi into ki pieces

Verifiable in polynomial time ⇐⇒ FP+split-schedulability ∈ NP

9

AnotheR one: FP+split

Split each task τi into ki ∈ N+ pieces, then schedule with DM.

τi

Split into ki = 2 pieces

τ ′i

(1) The ki for each τi ∈ Γ
(2) RTA fixed-points for Γ after splitting each τi into ki pieces

Verifiable in polynomial time ⇐⇒ FP+split-schedulability ∈ NP

9

AnotheR one: FP+split

Split each task τi into ki ∈ N+ pieces, then schedule with DM.

τi

Split into ki = 2 pieces

τ ′i

(1) The ki for each τi ∈ Γ
(2) RTA fixed-points for Γ after splitting each τi into ki pieces

Verifiable in polynomial time ⇐⇒ FP+split-schedulability ∈ NP
9

Dealing with EDF

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

FP-
sched.

FP+fluid-
sched.

EDF-
schedulable

10

Dealing with EDF

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

FP-
sched.

FP+fluid-
sched.

FP+split-
sched.

EDF-
schedulable

10

Dealing with EDF

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

FP-
sched.

FP+fluid-
sched.

FP+split-
sched.

FP+fluid+split-
schedulable

EDF-
schedulable

10

AppRoximation algoRithms

Γ is EDF-schedulable iff ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

dbfi(t)

1 2 k

dbfi(t)⩽

Γ is EDF-schedulable if ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

A&S
FPTASΓ, k A&S
FPTASΓ, δ

“No” if unschedulable on speed-1

“Yes” if schedulable on speed-(k/(k+1))“Yes” if schedulable on speed-(1/(1+δ))

Polynomial in |Γ| and kPolynomial in |Γ| and (1δ) (by Albers and Slomka, ECRTS 2004)

11

AppRoximation algoRithms

Γ is EDF-schedulable iff ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

dbfi(t)

1 2 k

dbfi(t)⩽

Γ is EDF-schedulable if ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

A&S
FPTASΓ, k A&S
FPTASΓ, δ

“No” if unschedulable on speed-1

“Yes” if schedulable on speed-(k/(k+1))“Yes” if schedulable on speed-(1/(1+δ))

Polynomial in |Γ| and kPolynomial in |Γ| and (1δ) (by Albers and Slomka, ECRTS 2004)

11

AppRoximation algoRithms

Γ is EDF-schedulable iff ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

dbfi(t)

1 2 k

dbfi(t)⩽

Γ is EDF-schedulable if ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

A&S
FPTASΓ, k A&S
FPTASΓ, δ

“No” if unschedulable on speed-1

“Yes” if schedulable on speed-(k/(k+1))“Yes” if schedulable on speed-(1/(1+δ))

Polynomial in |Γ| and kPolynomial in |Γ| and (1δ) (by Albers and Slomka, ECRTS 2004)

11

AppRoximation algoRithms

Γ is EDF-schedulable iff ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

dbfi(t)

1 2 k

dbfi(t)⩽

Γ is EDF-schedulable if ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

A&S
FPTASΓ, k A&S
FPTASΓ, δ

“No” if unschedulable on speed-1

“Yes” if schedulable on speed-(k/(k+1))“Yes” if schedulable on speed-(1/(1+δ))

Polynomial in |Γ| and kPolynomial in |Γ| and (1δ) (by Albers and Slomka, ECRTS 2004)

11

AppRoximation algoRithms

Γ is EDF-schedulable iff ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

dbfi(t)

1 2 k

dbfi(t)⩽

Γ is EDF-schedulable if ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

A&S
FPTASΓ, k A&S
FPTASΓ, δ

“No” if unschedulable on speed-1

“Yes” if schedulable on speed-(k/(k+1))“Yes” if schedulable on speed-(1/(1+δ))

Polynomial in |Γ| and kPolynomial in |Γ| and (1δ) (by Albers and Slomka, ECRTS 2004)

11

AppRoximation algoRithms

Γ is EDF-schedulable iff ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

dbfi(t)

1 2 k

dbfi(t)⩽

Γ is EDF-schedulable if ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

A&S
FPTASΓ, k A&S
FPTASΓ, δ

“No” if unschedulable on speed-1

“Yes” if schedulable on speed-(k/(k+1))“Yes” if schedulable on speed-(1/(1+δ))

Polynomial in |Γ| and kPolynomial in |Γ| and (1δ)

(by Albers and Slomka, ECRTS 2004)
11

AppRoximation algoRithms

Γ is EDF-schedulable iff ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

dbfi(t)

1 2 k

dbfi(t)⩽

Γ is EDF-schedulable if ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

A&S
FPTASΓ, k A&S
FPTASΓ, δ

“No” if unschedulable on speed-1

“Yes” if schedulable on speed-(k/(k+1))“Yes” if schedulable on speed-(1/(1+δ))

Polynomial in |Γ| and kPolynomial in |Γ| and (1δ)

(by Albers and Slomka, ECRTS 2004)
11

AppRoximation algoRithms

Γ is EDF-schedulable iff ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

dbfi(t)

1 2 k

dbfi(t)⩽

Γ is EDF-schedulable if ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

A&S
FPTASΓ, k

A&S
FPTASΓ, δ

“No” if unschedulable on speed-1

“Yes” if schedulable on speed-(k/(k+1))“Yes” if schedulable on speed-(1/(1+δ))

Polynomial in |Γ| and kPolynomial in |Γ| and (1δ)

(by Albers and Slomka, ECRTS 2004)
11

AppRoximation algoRithms

Γ is EDF-schedulable iff ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

dbfi(t)

1 2 k

dbfi(t)⩽

Γ is EDF-schedulable if ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

A&S
FPTASΓ, k

A&S
FPTASΓ, δ

“No” if unschedulable on speed-1

“Yes” if schedulable on speed-(k/(k+1))“Yes” if schedulable on speed-(1/(1+δ))

Polynomial in |Γ| and kPolynomial in |Γ| and (1δ)

(by Albers and Slomka, ECRTS 2004)
11

AppRoximation algoRithms

Γ is EDF-schedulable iff ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

dbfi(t)

1 2 k

dbfi(t)⩽

Γ is EDF-schedulable if ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

A&S
FPTASΓ, k

A&S
FPTASΓ, δ

“No” if unschedulable on speed-1

“Yes” if schedulable on speed-(k/(k+1))

“Yes” if schedulable on speed-(1/(1+δ))

Polynomial in |Γ| and kPolynomial in |Γ| and (1δ)

(by Albers and Slomka, ECRTS 2004)
11

AppRoximation algoRithms

Γ is EDF-schedulable iff ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

dbfi(t)

1 2 k

dbfi(t)⩽

Γ is EDF-schedulable if ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

A&S
FPTASΓ, k

A&S
FPTASΓ, δ

“No” if unschedulable on speed-1

“Yes” if schedulable on speed-(k/(k+1))

“Yes” if schedulable on speed-(1/(1+δ))

Polynomial in |Γ| and k

Polynomial in |Γ| and (1δ)

(by Albers and Slomka, ECRTS 2004)
11

AppRoximation algoRithms

Γ is EDF-schedulable iff ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

dbfi(t)

1 2 k

dbfi(t)⩽

Γ is EDF-schedulable if ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

A&S
FPTASΓ, k

A&S
FPTASΓ, δ

“No” if unschedulable on speed-1

“Yes” if schedulable on speed-(k/(k+1))

“Yes” if schedulable on speed-(1/(1+δ))

Polynomial in |Γ| and k

Polynomial in |Γ| and (1δ) (by Albers and Slomka, ECRTS 2004)
11

Dealing with EDF

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

FP-
sched.

FP+fluid-
sched.

FP+split-
sched.

FP+fluid+split-
schedulable

EDF-
schedulable

12

Dealing with EDF

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

FP-
sched.

FP+fluid-
sched.

FP+split-
sched.

FP+fluid+split-
schedulable

A&S
FPTAS

EDF-
schedulable

12

AppRoximation algoRithms foR explainability?

Idea: Let Si ⊂ N be the steps to keep

1 2 k

dbfi(t)
t

1 2

5

dbfi(Si, t)

FPTVASΓ, δ, ⟨S1, . . . , Sn⟩

FPTVAS =

Fully Polynomial-Time
Verification Approximation Scheme“No” if unschedulable

“Yes” if schedulable on speed-(1/(1 + δ))

(as explained by some ⟨S1, . . . , Sn⟩)

Polynomial in |Γ| and (1δ)

13

AppRoximation algoRithms foR explainability?

Idea: Let Si ⊂ N be the steps to keep

1 2 k

dbfi(t)

t
1 2

5

dbfi(Si, t)

FPTVASΓ, δ, ⟨S1, . . . , Sn⟩

FPTVAS =

Fully Polynomial-Time
Verification Approximation Scheme“No” if unschedulable

“Yes” if schedulable on speed-(1/(1 + δ))

(as explained by some ⟨S1, . . . , Sn⟩)

Polynomial in |Γ| and (1δ)

13

AppRoximation algoRithms foR explainability?

Idea: Let Si ⊂ N be the steps to keep

1 2 k

dbfi(t)
t

1 2

5

dbfi(Si, t)

FPTVASΓ, δ, ⟨S1, . . . , Sn⟩

FPTVAS =

Fully Polynomial-Time
Verification Approximation Scheme“No” if unschedulable

“Yes” if schedulable on speed-(1/(1 + δ))

(as explained by some ⟨S1, . . . , Sn⟩)

Polynomial in |Γ| and (1δ)

13

AppRoximation algoRithms foR explainability?

Idea: Let Si ⊂ N be the steps to keep

1 2 k

dbfi(t)
t

1 2

5

dbfi(Si, t)

FPTVASΓ, δ, ⟨S1, . . . , Sn⟩

FPTVAS =

Fully Polynomial-Time
Verification Approximation Scheme“No” if unschedulable

“Yes” if schedulable on speed-(1/(1 + δ))

(as explained by some ⟨S1, . . . , Sn⟩)

Polynomial in |Γ| and (1δ)

13

AppRoximation algoRithms foR explainability?

Idea: Let Si ⊂ N be the steps to keep

1 2 k

dbfi(t)
t

1 2

5

dbfi(Si, t)

FPTVASΓ, δ, ⟨S1, . . . , Sn⟩

FPTVAS =

Fully Polynomial-Time
Verification Approximation Scheme

“No” if unschedulable

“Yes” if schedulable on speed-(1/(1 + δ))

(as explained by some ⟨S1, . . . , Sn⟩)

Polynomial in |Γ| and (1δ)

13

AppRoximation algoRithms foR explainability?

Idea: Let Si ⊂ N be the steps to keep

1 2 k

dbfi(t)
t

1 2

5

dbfi(Si, t)

FPTVASΓ, δ, ⟨S1, . . . , Sn⟩

FPTVAS =

Fully Polynomial-Time
Verification Approximation Scheme“No” if unschedulable

“Yes” if schedulable on speed-(1/(1 + δ))

(as explained by some ⟨S1, . . . , Sn⟩)

Polynomial in |Γ| and (1δ)

13

AppRoximation algoRithms foR explainability?

Idea: Let Si ⊂ N be the steps to keep

1 2 k

dbfi(t)
t

1 2

5

dbfi(Si, t)

FPTVASΓ, δ, ⟨S1, . . . , Sn⟩

FPTVAS =

Fully Polynomial-Time
Verification Approximation Scheme

“No” if unschedulable

“Yes” if schedulable on speed-(1/(1 + δ))

(as explained by some ⟨S1, . . . , Sn⟩)

Polynomial in |Γ| and (1δ)

13

AppRoximation algoRithms foR explainability?

Idea: Let Si ⊂ N be the steps to keep

1 2 k

dbfi(t)
t

1 2

5

dbfi(Si, t)

FPTVASΓ, δ, ⟨S1, . . . , Sn⟩

FPTVAS =

Fully Polynomial-Time
Verification Approximation Scheme

“No” if unschedulable

“Yes” if schedulable on speed-(1/(1 + δ))

(as explained by some ⟨S1, . . . , Sn⟩)

Polynomial in |Γ| and (1δ)

13

AppRoximation algoRithms foR explainability?

Idea: Let Si ⊂ N be the steps to keep

1 2 k

dbfi(t)
t

1 2

5

dbfi(Si, t)

FPTVASΓ, δ, ⟨S1, . . . , Sn⟩

FPTVAS =

Fully Polynomial-Time
Verification Approximation Scheme

“No” if unschedulable

“Yes” if schedulable on speed-(1/(1 + δ))

(as explained by some ⟨S1, . . . , Sn⟩)

Polynomial in |Γ| and (1δ)
13

Dealing with EDF

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

FP-
sched.

FP+fluid-
sched.

FP+split-
sched.

FP+fluid+split-
schedulable

A&S
FPTAS

EDF-
schedulable

14

Dealing with EDF

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

FP-
sched.

FP+fluid-
sched.

FP+split-
sched.

FP+fluid+split-
schedulable

A&S
FPTAS

FPTVAS

EDF-
schedulable

14

Pseudo-polynomial time veRification

A problem is in pseudoNP if solutions can be verified in
pseudo-polynomial time.

Definition: pseudoNP

Is Γ schedulable by partitioned-EDF onm processors such
that the utilization per partition is at most c < 1?

7 Not in NP (if NP ̸= coNP)

7 Not solvable in pseudo-polynomial time (if P ̸= NP)

3 In pseudoNP!

15

Pseudo-polynomial time veRification

A problem is in pseudoNP if solutions can be verified in
pseudo-polynomial time.

Definition: pseudoNP

Is Γ schedulable by partitioned-EDF onm processors such
that the utilization per partition is at most c < 1?

7 Not in NP (if NP ̸= coNP)

7 Not solvable in pseudo-polynomial time (if P ̸= NP)

3 In pseudoNP!

15

Pseudo-polynomial time veRification

A problem is in pseudoNP if solutions can be verified in
pseudo-polynomial time.

Definition: pseudoNP

Is Γ schedulable by partitioned-EDF onm processors such
that the utilization per partition is at most c < 1?

7 Not in NP (if NP ̸= coNP)

7 Not solvable in pseudo-polynomial time (if P ̸= NP)

3 In pseudoNP!

15

Pseudo-polynomial time veRification

A problem is in pseudoNP if solutions can be verified in
pseudo-polynomial time.

Definition: pseudoNP

Is Γ schedulable by partitioned-EDF onm processors such
that the utilization per partition is at most c < 1?

7 Not in NP (if NP ̸= coNP)

7 Not solvable in pseudo-polynomial time (if P ̸= NP)

3 In pseudoNP!

15

Pseudo-polynomial time veRification

A problem is in pseudoNP if solutions can be verified in
pseudo-polynomial time.

Definition: pseudoNP

Is Γ schedulable by partitioned-EDF onm processors such
that the utilization per partition is at most c < 1?

7 Not in NP (if NP ̸= coNP)

7 Not solvable in pseudo-polynomial time (if P ̸= NP)

3 In pseudoNP!

15

Pseudo-polynomial time veRification

A problem is in pseudoNP if solutions can be verified in
pseudo-polynomial time.

Definition: pseudoNP

Is Γ schedulable by partitioned-EDF onm processors such
that the utilization per partition is at most c < 1?

7 Not in NP (if NP ̸= coNP)

7 Not solvable in pseudo-polynomial time (if P ̸= NP)

3 In pseudoNP!

15

Conclusions

• Classification of schedulability problems as efficiently explainable

• Methods for those that are not inherently efficiently explainable:

• Identification of efficiently explainable subproblems

• A concept for efficiently explainable approximation: FPTVAS

• A relevant complexity class: pseudoNP

16

Conclusions

• Classification of schedulability problems as efficiently explainable

• Methods for those that are not inherently efficiently explainable:

• Identification of efficiently explainable subproblems

• A concept for efficiently explainable approximation: FPTVAS

• A relevant complexity class: pseudoNP

16

Conclusions

• Classification of schedulability problems as efficiently explainable

• Methods for those that are not inherently efficiently explainable:

• Identification of efficiently explainable subproblems

• A concept for efficiently explainable approximation: FPTVAS

• A relevant complexity class: pseudoNP

16

Conclusions

• Classification of schedulability problems as efficiently explainable

• Methods for those that are not inherently efficiently explainable:

• Identification of efficiently explainable subproblems

• A concept for efficiently explainable approximation: FPTVAS

• A relevant complexity class: pseudoNP

16

Conclusions

• Classification of schedulability problems as efficiently explainable

• Methods for those that are not inherently efficiently explainable:

• Identification of efficiently explainable subproblems

• A concept for efficiently explainable approximation: FPTVAS

• A relevant complexity class: pseudoNP

16

Conclusions

• Classification of schedulability problems as efficiently explainable

• Methods for those that are not inherently efficiently explainable:

• Identification of efficiently explainable subproblems

• A concept for efficiently explainable approximation: FPTVAS

• A relevant complexity class: pseudoNP

16

∀Thank you!
⋄

∃Questions?

