Towards Efficient Explainability of Schedulability Properties in Real-Time Systems

SANJOY BARUAH Washington University in Saint Louis

PONTUS EKBERG Uppsala University

ECRTS, VIENNA 2023

System designer Certification authority

System designer

Comes up with solution

Certification authority

Ideally, the explanation is *formally* verifiable Foundational Response-Time Analysis as Explainable Evidence of Timeliness by Maida, Bozhko and Brandenburg (ECRTS 2022)

> CertiCAN certifying CAN analyses and their results by Fradet, Guo and Quinton (Real-Time Systems 2023)

This work

• Classify schedulability problems as efficiently explainable or not

This work

- Classify schedulability problems as efficiently explainable or not
- Investigate techniques for dealing with the problems that are not

Example: Uniprocessor FP-schedulability

RTA (Joseph and Pandya, 1986, and others)

Constrained-deadline task system $\Gamma = \{\tau_1, \ldots, \tau_n\}$ is FP-schedulable iff the smallest positive fixed-point R_i ,

$$R_i = C_i + \sum_{j \in \operatorname{hp}(i)} \left\lceil \frac{R_i}{T_j} \right\rceil \times C_j,$$

is $\leq D_i$ for each $\tau_i \in \Gamma$.

Example: Uniprocessor FP-schedulability

RTA (Joseph and Pandya, 1986, and others) Constrained-deadline task system $\Gamma = \{\tau_1, \dots, \tau_n\}$ is FPschedulable iff the smallest positive fixed-point R_i , $R_i = C_i + \sum_{j \in hp(i)} \left\lceil \frac{R_i}{T_j} \right\rceil \times C_j$, is $\leq D_i$ for each $\tau_i \in \Gamma$.

Example: Uniprocessor FP-schedulability

RTA (Joseph and Pandya, 1986, and others) Constrained-deadline task system $\Gamma = \{\tau_1, \dots, \tau_n\}$ is FPschedulable iff the smallest positive fixed-point R_i , $R_i = C_i + \sum_{j \in hp(i)} \left\lceil \frac{R_i}{T_j} \right\rceil \times C_j$, is $\leq D_i$ for each $\tau_i \in \Gamma$.

Example 2: Uniprocessor EDF-schedulability

PDA (Baruah et al., 1990) Task system $\Gamma = \{\tau_1, \dots, \tau_n\}$ is EDF-schedulable iff $\sum_{\tau_i \in \Gamma} dbf_i(t) \leqslant t,$ for all $t \in \{0, 1, \dots, HP(\Gamma)\}.$

Example 2: Uniprocessor EDF-schedulability

PDA (Baruah et al., 1990) Task system $\Gamma = \{\tau_1, \dots, \tau_n\}$ is EDF-schedulable iff $\sum_{\tau_i \in \Gamma} dbf_i(t) \leq t,$ for all $t \in \{0, 1, \dots, HP(\Gamma)\}.$

$$\mathrm{dbf}_{i}(t) \stackrel{\mathrm{def}}{=} \max\left(\left\lfloor \frac{t-D_{i}}{T_{i}} \right\rfloor + 1, 0\right) \times C_{i}$$

Example 2: Uniprocessor EDF-schedulability

---- Upper bound

---- Upper bound

---- Upper bound

DEALING WITH EDF

(Sporadic tasks, preemptive uniprocessor)

DEALING WITH EDF

6

 $FP\text{-schedulability} \Longrightarrow EDF\text{-schedulability}$

 $FP\text{-schedulability} \Longrightarrow EDF\text{-schedulability}$

 $FP\text{-schedulability} \Longrightarrow EDF\text{-schedulability}$

 $\forall \mathcal{A}: \ \ \mathcal{A}\text{-schedulability} \Longrightarrow \text{EDF-schedulability}$

(1) The partitioning of Γ into Γ_{fluid} and Γ_{fp} (2) RTA fixed-points for Γ_{fp} on a speed- $(1 - \Delta)$ processor

(1) The partitioning of Γ into Γ_{fluid} and Γ_{fp}
(2) RTA fixed-points for Γ_{fp} on a speed-(1 - Δ) processor

Verifiable in polynomial time \iff FP+fluid-schedulability \in NP

 $\forall \mathcal{A}: \ \ \mathcal{A}\text{-schedulability} \Longrightarrow \text{EDF-schedulability}$

FP+fluid-schedulability \Longrightarrow EDF-schedulability

FP+fluid-schedulability \Longrightarrow EDF-schedulability

Another one: FP+split

Split each task τ_i into $k_i \in \mathbb{N}_+$ pieces, then schedule with DM.

Verifiable in polynomial time \iff FP+split-schedulability \in NP

 Γ is EDF-schedulable iff $\forall t : \sum_{\tau_i \in \Gamma} dbf_i(t) \leq t$.

 Γ is EDF-schedulable iff $\forall t : \sum_{\tau_i \in \Gamma} dbf_i(t) \leq t$.

$$\Gamma, k \longrightarrow \begin{matrix} A\&S \\ FPTAS \end{matrix}$$

Approximation algorithms

Polynomial in $|\Gamma|$ and k

(by Albers and Slomka, ECRTS 2004)

Approximation algorithms

Polynomial in $|\Gamma|$ and $(\frac{1}{\delta})$

(by Albers and Slomka, ECRTS 2004)

DEALING WITH EDF

DEALING WITH EDF

$$\Gamma, \delta, \langle \mathfrak{S}_1, \ldots, \mathfrak{S}_n \rangle \longrightarrow \mathsf{FPTVAS}$$

APPROXIMATION ALGORITHMS FOR EXPLAINABILITY?

Idea: Let $S_i \subset \mathbb{N}$ be the steps to keep

FPTVAS =

Fully Polynomial-Time Verification Approximation Scheme

DEALING WITH EDF

DEALING WITH EDF

Definition: pseudoNP

A problem is in pseudoNP if solutions can be verified in pseudo-polynomial time.

Definition: pseudoNP

A problem is in pseudoNP if solutions can be verified in pseudo-polynomial time.

Is Γ schedulable by partitioned-EDF on *m* processors such that the utilization per partition is at most c < 1?

Definition: pseudoNP

A problem is in pseudoNP if solutions can be verified in pseudo-polynomial time.

Is Γ schedulable by partitioned-EDF on *m* processors such that the utilization per partition is at most c < 1?

× Not in NP (if NP \neq coNP)

Definition: pseudoNP

A problem is in pseudoNP if solutions can be verified in pseudo-polynomial time.

Is Γ schedulable by partitioned-EDF on *m* processors such that the utilization per partition is at most c < 1?

- × Not in NP (if NP \neq coNP)
- × Not solvable in pseudo-polynomial time (if $P \neq NP$)

Definition: pseudoNP

A problem is in pseudoNP if solutions can be verified in pseudo-polynomial time.

Is Γ schedulable by partitioned-EDF on m processors such that the utilization per partition is at most c < 1?

- × Not in NP (if NP \neq coNP)
- ✗ Not solvable in pseudo-polynomial time (if $P \neq NP$)
- In pseudoNP!

Conclusions

• Classification of schedulability problems as *efficiently explainable*

- Classification of schedulability problems as *efficiently explainable*
- Methods for those that are not inherently efficiently explainable:

- Classification of schedulability problems as *efficiently explainable*
- Methods for those that are not inherently efficiently explainable:
 - Identification of efficiently explainable subproblems

- Classification of schedulability problems as *efficiently explainable*
- Methods for those that are not inherently efficiently explainable:
 - Identification of efficiently explainable subproblems
 - A concept for efficiently explainable approximation: FPTVAS

- Classification of schedulability problems as *efficiently explainable*
- Methods for those that are not inherently efficiently explainable:
 - Identification of efficiently explainable subproblems
 - A concept for efficiently explainable approximation: FPTVAS
 - A relevant complexity class: pseudoNP

∀Thank you!↓∃Questions?