
TowaRds Efficient Explainability of
Schedulability PRopeRties in Real-Time

Systems

Sanjoy BaRuah
Washington University in Saint Louis

Pontus EKbeRg
Uppsala University

ECRTS, Vienna 2023

The bRoadeR pictuRe

System
designer

Certification
authority

Comes up
with solution

Sends explanation

(or proof/certificate)
Verifies
solution

Can spend lots
of time/resources

Verification
should be efficient

Ideally, the
explanation is

formally
verifiable

Foundational Response-Time Analysis as Explainable Evidence of Timeliness
by Maida, Bozhko and Brandenburg (ECRTS 2022)

CertiCAN certifying CAN analyses and their results
by Fradet, Guo and Quinton (Real-Time Systems 2023)

Cloud
service

Edge
device

Machine
learning

System
designer

• Classify schedulability problems as efficiently explainable or not

• Investigate techniques for dealing with the problems that are not

This work

2

The bRoadeR pictuRe

System
designer

Certification
authority

Comes up
with solution

Sends explanation

(or proof/certificate)
Verifies
solution

Can spend lots
of time/resources

Verification
should be efficient

Ideally, the
explanation is

formally
verifiable

Foundational Response-Time Analysis as Explainable Evidence of Timeliness
by Maida, Bozhko and Brandenburg (ECRTS 2022)

CertiCAN certifying CAN analyses and their results
by Fradet, Guo and Quinton (Real-Time Systems 2023)

Cloud
service

Edge
device

Machine
learning

System
designer

• Classify schedulability problems as efficiently explainable or not

• Investigate techniques for dealing with the problems that are not

This work

2

The bRoadeR pictuRe

System
designer

Certification
authority

Comes up
with solution

Sends explanation
(or proof/certificate)

Verifies
solution

Can spend lots
of time/resources

Verification
should be efficient

Ideally, the
explanation is

formally
verifiable

Foundational Response-Time Analysis as Explainable Evidence of Timeliness
by Maida, Bozhko and Brandenburg (ECRTS 2022)

CertiCAN certifying CAN analyses and their results
by Fradet, Guo and Quinton (Real-Time Systems 2023)

Cloud
service

Edge
device

Machine
learning

System
designer

• Classify schedulability problems as efficiently explainable or not

• Investigate techniques for dealing with the problems that are not

This work

2

The bRoadeR pictuRe

System
designer

Certification
authority

Comes up
with solution

Sends explanation

(or proof/certificate)

Verifies
solution

Can spend lots
of time/resources

Verification
should be efficient

Ideally, the
explanation is

formally
verifiable

Foundational Response-Time Analysis as Explainable Evidence of Timeliness
by Maida, Bozhko and Brandenburg (ECRTS 2022)

CertiCAN certifying CAN analyses and their results
by Fradet, Guo and Quinton (Real-Time Systems 2023)

Cloud
service

Edge
device

Machine
learning

System
designer

• Classify schedulability problems as efficiently explainable or not

• Investigate techniques for dealing with the problems that are not

This work

2

The bRoadeR pictuRe

System
designer

Certification
authority

Comes up
with solution

Sends explanation

(or proof/certificate)
Verifies
solution

Can spend lots
of time/resources

Verification
should be efficient

Ideally, the
explanation is

formally
verifiable

Foundational Response-Time Analysis as Explainable Evidence of Timeliness
by Maida, Bozhko and Brandenburg (ECRTS 2022)

CertiCAN certifying CAN analyses and their results
by Fradet, Guo and Quinton (Real-Time Systems 2023)

Cloud
service

Edge
device

Machine
learning

System
designer

• Classify schedulability problems as efficiently explainable or not

• Investigate techniques for dealing with the problems that are not

This work

2

The bRoadeR pictuRe

System
designer

Certification
authority

Comes up
with solution

Sends explanation

(or proof/certificate)
Verifies
solution

Can spend lots
of time/resources

Verification
should be efficient

Ideally, the
explanation is

formally
verifiable

Foundational Response-Time Analysis as Explainable Evidence of Timeliness
by Maida, Bozhko and Brandenburg (ECRTS 2022)

CertiCAN certifying CAN analyses and their results
by Fradet, Guo and Quinton (Real-Time Systems 2023)

Cloud
service

Edge
device

Machine
learning

System
designer

• Classify schedulability problems as efficiently explainable or not

• Investigate techniques for dealing with the problems that are not

This work

2

The bRoadeR pictuRe

System
designer

Certification
authority

Comes up
with solution

Sends explanation

(or proof/certificate)
Verifies
solution

Can spend lots
of time/resources

Verification
should be efficient

Ideally, the
explanation is

formally
verifiable

Foundational Response-Time Analysis as Explainable Evidence of Timeliness
by Maida, Bozhko and Brandenburg (ECRTS 2022)

CertiCAN certifying CAN analyses and their results
by Fradet, Guo and Quinton (Real-Time Systems 2023)

Cloud
service

Edge
device

Machine
learning

System
designer

• Classify schedulability problems as efficiently explainable or not

• Investigate techniques for dealing with the problems that are not

This work

2

The bRoadeR pictuRe

System
designer

Certification
authority

Comes up
with solution

Sends explanation

(or proof/certificate)
Verifies
solution

Can spend lots
of time/resources

Verification
should be efficient

Ideally, the
explanation is

formally
verifiable

Foundational Response-Time Analysis as Explainable Evidence of Timeliness
by Maida, Bozhko and Brandenburg (ECRTS 2022)

CertiCAN certifying CAN analyses and their results
by Fradet, Guo and Quinton (Real-Time Systems 2023)

Cloud
service

Edge
device

Machine
learning

System
designer

• Classify schedulability problems as efficiently explainable or not

• Investigate techniques for dealing with the problems that are not

This work

2

The bRoadeR pictuRe

System
designer

Certification
authority

Comes up
with solution

Sends explanation

(or proof/certificate)
Verifies
solution

Can spend lots
of time/resources

Verification
should be efficient

Ideally, the
explanation is

formally
verifiable

Foundational Response-Time Analysis as Explainable Evidence of Timeliness
by Maida, Bozhko and Brandenburg (ECRTS 2022)

CertiCAN certifying CAN analyses and their results
by Fradet, Guo and Quinton (Real-Time Systems 2023)

Cloud
service

Edge
device

Machine
learning

System
designer

• Classify schedulability problems as efficiently explainable or not

• Investigate techniques for dealing with the problems that are not

This work

2

The bRoadeR pictuRe

System
designer

Certification
authority

Comes up
with solution

Sends explanation

(or proof/certificate)
Verifies
solution

Can spend lots
of time/resources

Verification
should be efficient

Ideally, the
explanation is

formally
verifiable

Foundational Response-Time Analysis as Explainable Evidence of Timeliness
by Maida, Bozhko and Brandenburg (ECRTS 2022)

CertiCAN certifying CAN analyses and their results
by Fradet, Guo and Quinton (Real-Time Systems 2023)

Cloud
service

Edge
device

Machine
learning

System
designer

• Classify schedulability problems as efficiently explainable or not

• Investigate techniques for dealing with the problems that are not

This work

2

The bRoadeR pictuRe

System
designer

Certification
authority

Comes up
with solution

Sends explanation

(or proof/certificate)
Verifies
solution

Can spend lots
of time/resources

Verification
should be efficient

Ideally, the
explanation is

formally
verifiable

Foundational Response-Time Analysis as Explainable Evidence of Timeliness
by Maida, Bozhko and Brandenburg (ECRTS 2022)

CertiCAN certifying CAN analyses and their results
by Fradet, Guo and Quinton (Real-Time Systems 2023)

Cloud
service

Edge
device

Machine
learning

System
designer

• Classify schedulability problems as efficiently explainable or not

• Investigate techniques for dealing with the problems that are not

This work

2

The bRoadeR pictuRe

System
designer

Certification
authority

Comes up
with solution

Sends explanation

(or proof/certificate)
Verifies
solution

Can spend lots
of time/resources

Verification
should be efficient

Ideally, the
explanation is

formally
verifiable

Foundational Response-Time Analysis as Explainable Evidence of Timeliness
by Maida, Bozhko and Brandenburg (ECRTS 2022)

CertiCAN certifying CAN analyses and their results
by Fradet, Guo and Quinton (Real-Time Systems 2023)

Cloud
service

Edge
device

Machine
learning

System
designer

• Classify schedulability problems as efficiently explainable or not
• Investigate techniques for dealing with the problems that are not

This work

2

Example: UnipRocessoR FP-schedulability

Constrained-deadline task system Γ = {τ1, . . . , τn} is FP-
schedulable iff the smallest positive fixed-point Ri,

Ri = Ci +
∑

j∈ hp(i)

⌈
Ri
Tj

⌉
× Cj,

is ⩽ Di for each τi ∈ Γ.

RTA (Joseph and Pandya, 1986, and others)

System
designer

Certification
authority

R1, . . . , Rn

3

Example: UnipRocessoR FP-schedulability

Constrained-deadline task system Γ = {τ1, . . . , τn} is FP-
schedulable iff the smallest positive fixed-point Ri,

Ri = Ci +
∑

j∈ hp(i)

⌈
Ri
Tj

⌉
× Cj,

is ⩽ Di for each τi ∈ Γ.

RTA (Joseph and Pandya, 1986, and others)

System
designer

Certification
authority

R1, . . . , Rn

3

Example: UnipRocessoR FP-schedulability

Constrained-deadline task system Γ = {τ1, . . . , τn} is FP-
schedulable iff the smallest positive fixed-point Ri,

Ri = Ci +
∑

j∈ hp(i)

⌈
Ri
Tj

⌉
× Cj,

is ⩽ Di for each τi ∈ Γ.

RTA (Joseph and Pandya, 1986, and others)

System
designer

Certification
authority

R1, . . . , Rn

3

Example 2: UnipRocessoR EDF-schedulability

Task system Γ = {τ1, . . . , τn} is EDF-schedulable iff∑
τi∈Γ

dbfi(t) ⩽ t,

for all t ∈ {0, 1, . . . ,HP(Γ)}.

PDA (Baruah et al., 1990)

dbfi(t)
def
= max

(⌊
t− Di

Ti

⌋
+ 1, 0

)
× Ci

System
designer

Certification
authority

???

4

Example 2: UnipRocessoR EDF-schedulability

Task system Γ = {τ1, . . . , τn} is EDF-schedulable iff∑
τi∈Γ

dbfi(t) ⩽ t,

for all t ∈ {0, 1, . . . ,HP(Γ)}.

PDA (Baruah et al., 1990)

dbfi(t)
def
= max

(⌊
t− Di

Ti

⌋
+ 1, 0

)
× Ci

System
designer

Certification
authority

???

4

Example 2: UnipRocessoR EDF-schedulability

Task system Γ = {τ1, . . . , τn} is EDF-schedulable iff∑
τi∈Γ

dbfi(t) ⩽ t,

for all t ∈ {0, 1, . . . ,HP(Γ)}.

PDA (Baruah et al., 1990)

dbfi(t)
def
= max

(⌊
t− Di

Ti

⌋
+ 1, 0

)
× Ci

System
designer

Certification
authority

???

4

Does this Relate to complexity?

Outside NP =⇒
not verifiable in
polynomial time

NP = verifiable in
polynomial timeP = solvable in polynomial time

u

Uniprocessor
FP-schedulability

(constrained deadlines)

u

u

Uniprocessor
EDF-schedulability

Uniprocessor
EDF-schedulability

u
Partitioned

FP-schedulability
(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

P
NP

NP-C

5

Does this Relate to complexity?

Outside NP =⇒
not verifiable in
polynomial time

NP = verifiable in
polynomial timeP = solvable in polynomial time

u

Uniprocessor
FP-schedulability

(constrained deadlines)

u

u

Uniprocessor
EDF-schedulability

Uniprocessor
EDF-schedulability

u
Partitioned

FP-schedulability
(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

P
NP

NP-C

coNP

coNP-C

5

Does this Relate to complexity?

Outside NP =⇒
not verifiable in
polynomial time

NP = verifiable in
polynomial timeP = solvable in polynomial time

u

Uniprocessor
FP-schedulability

(constrained deadlines)

u

u

Uniprocessor
EDF-schedulability

Uniprocessor
EDF-schedulability

u
Partitioned

FP-schedulability
(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=
ΣP

2

ΣP
2-C

coNPNP
=
ΠP

2

ΠP
2-C PNP = ∆P

2

PH...

5

Does this Relate to complexity?

Outside NP =⇒
not verifiable in
polynomial time

NP = verifiable in
polynomial timeP = solvable in polynomial time

u

Uniprocessor
FP-schedulability

(constrained deadlines)

u

u

Uniprocessor
EDF-schedulability

Uniprocessor
EDF-schedulability

u
Partitioned

FP-schedulability
(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=
ΣP

2

ΣP
2-C

coNPNP
=
ΠP

2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

5

Does this Relate to complexity?

Outside NP =⇒
not verifiable in
polynomial time

NP = verifiable in
polynomial time

P = solvable in polynomial time

u

Uniprocessor
FP-schedulability

(constrained deadlines)

u

u

Uniprocessor
EDF-schedulability

Uniprocessor
EDF-schedulability

u
Partitioned

FP-schedulability
(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=
ΣP

2

ΣP
2-C

coNPNP
=
ΠP

2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

5

Does this Relate to complexity?

Outside NP =⇒
not verifiable in
polynomial time

NP = verifiable in
polynomial timeP = solvable in polynomial time

u

Uniprocessor
FP-schedulability

(constrained deadlines)

u

u

Uniprocessor
EDF-schedulability

Uniprocessor
EDF-schedulability

u
Partitioned

FP-schedulability
(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=
ΣP

2

ΣP
2-C

coNPNP
=
ΠP

2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

5

Does this Relate to complexity?

Outside NP =⇒
not verifiable in
polynomial time

NP = verifiable in
polynomial timeP = solvable in polynomial time

u

Uniprocessor
FP-schedulability

(constrained deadlines)

u

u

Uniprocessor
EDF-schedulability

Uniprocessor
EDF-schedulability

u
Partitioned

FP-schedulability
(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=
ΣP

2

ΣP
2-C

coNPNP
=
ΠP

2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

5

Does this Relate to complexity?

Outside NP =⇒
not verifiable in
polynomial time

NP = verifiable in
polynomial timeP = solvable in polynomial time

u

Uniprocessor
FP-schedulability

(constrained deadlines)

u

u

Uniprocessor
EDF-schedulability

Uniprocessor
EDF-schedulability

u
Partitioned

FP-schedulability
(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=
ΣP

2

ΣP
2-C

coNPNP
=
ΠP

2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

5

Does this Relate to complexity?

Outside NP =⇒
not verifiable in
polynomial time

NP = verifiable in
polynomial timeP = solvable in polynomial time

u

Uniprocessor
FP-schedulability

(constrained deadlines)

u

u

Uniprocessor
EDF-schedulability

Uniprocessor
EDF-schedulability

u
Partitioned

FP-schedulability
(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=
ΣP

2

ΣP
2-C

coNPNP
=
ΠP

2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

5

Does this Relate to complexity?

Outside NP =⇒
not verifiable in
polynomial time

NP = verifiable in
polynomial timeP = solvable in polynomial time

u

Uniprocessor
FP-schedulability

(constrained deadlines)

u

u

Uniprocessor
EDF-schedulability

Uniprocessor
EDF-schedulability

u
Partitioned

FP-schedulability
(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=
ΣP

2

ΣP
2-C

coNPNP
=
ΠP

2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

5

Does this Relate to complexity?

Outside NP =⇒
not verifiable in
polynomial time

NP = verifiable in
polynomial timeP = solvable in polynomial time

u

Uniprocessor
FP-schedulability

(constrained deadlines)

u

u

Uniprocessor
EDF-schedulability

Uniprocessor
EDF-schedulability

u
Partitioned

FP-schedulability
(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=
ΣP

2

ΣP
2-C

coNPNP
=
ΠP

2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

5

Does this Relate to complexity?

Outside NP =⇒
not verifiable in
polynomial time

NP = verifiable in
polynomial timeP = solvable in polynomial time

u

Uniprocessor
FP-schedulability

(constrained deadlines)

u

u

Uniprocessor
EDF-schedulability

Uniprocessor
EDF-schedulability

u
Partitioned

FP-schedulability
(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=
ΣP

2

ΣP
2-C

coNPNP
=
ΠP

2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

5

Does this Relate to complexity?

Outside NP =⇒
not verifiable in
polynomial time

NP = verifiable in
polynomial timeP = solvable in polynomial time

u

Uniprocessor
FP-schedulability

(constrained deadlines)

u

u

Uniprocessor
EDF-schedulability

Uniprocessor
EDF-schedulability

u
Partitioned

FP-schedulability
(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=
ΣP

2

ΣP
2-C

coNPNP
=
ΠP

2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

5

Does this Relate to complexity?

Outside NP =⇒
not verifiable in
polynomial time

NP = verifiable in
polynomial timeP = solvable in polynomial time

u

Uniprocessor
FP-schedulability

(constrained deadlines)

u

u

Uniprocessor
EDF-schedulability

Uniprocessor
EDF-schedulability

u
Partitioned

FP-schedulability
(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=
ΣP

2

ΣP
2-C

coNPNP
=
ΠP

2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

5

Does this Relate to complexity?

Outside NP =⇒
not verifiable in
polynomial time

NP = verifiable in
polynomial timeP = solvable in polynomial time

u

Uniprocessor
FP-schedulability

(constrained deadlines)

u

u

Uniprocessor
EDF-schedulability

Uniprocessor
EDF-schedulability

u
Partitioned

FP-schedulability
(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=
ΣP

2

ΣP
2-C

coNPNP
=
ΠP

2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

�

5

Dealing with EDF

�

(Sporadic tasks, preemptive uniprocessor)

coNP-complete

FP-schedulability =⇒ EDF-schedulability∀A : A-schedulability =⇒ EDF-schedulability

EDF-
schedulable

6

Dealing with EDF

�

(Sporadic tasks, preemptive uniprocessor)

coNP-complete

FP-schedulability =⇒ EDF-schedulability∀A : A-schedulability =⇒ EDF-schedulability

EDF-
schedulable

6

Dealing with EDF

�

(Sporadic tasks, preemptive uniprocessor)

coNP-complete

In P

FP-schedulability =⇒ EDF-schedulability∀A : A-schedulability =⇒ EDF-schedulability

Implicit
deadlines
and EDF-
sched.

EDF-
schedulable

6

Dealing with EDF

�

(Sporadic tasks, preemptive uniprocessor)

coNP-complete

In P

FP-schedulability =⇒ EDF-schedulability∀A : A-schedulability =⇒ EDF-schedulability

Implicit
deadlines
and EDF-
sched.

EDF-
schedulable

6

Dealing with EDF

�

(Sporadic tasks, preemptive uniprocessor)

coNP-complete

In P

In P

FP-schedulability =⇒ EDF-schedulability∀A : A-schedulability =⇒ EDF-schedulability

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

EDF-
schedulable

6

Dealing with EDF

�

(Sporadic tasks, preemptive uniprocessor)

coNP-complete

In P

In P

FP-schedulability =⇒ EDF-schedulability∀A : A-schedulability =⇒ EDF-schedulability

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

EDF-
schedulable

6

Dealing with EDF

�

(Sporadic tasks, preemptive uniprocessor)

coNP-complete

In P

In P

FP-schedulability =⇒ EDF-schedulability

∀A : A-schedulability =⇒ EDF-schedulability

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

EDF-
schedulable

6

Dealing with EDF

�

(Sporadic tasks, preemptive uniprocessor)

coNP-complete

In P

In P

In NP

FP-schedulability =⇒ EDF-schedulability

∀A : A-schedulability =⇒ EDF-schedulability

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

FP-
sched.

EDF-
schedulable

6

Dealing with EDF

�

(Sporadic tasks, preemptive uniprocessor)

coNP-complete

In P

In P

In NP

FP-schedulability =⇒ EDF-schedulability

∀A : A-schedulability =⇒ EDF-schedulability

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

FP-
sched.

EDF-
schedulable

6

Dealing with EDF

�

(Sporadic tasks, preemptive uniprocessor)

coNP-complete

In P

In P

In NP

FP-schedulability =⇒ EDF-schedulability

∀A : A-schedulability =⇒ EDF-schedulability

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

FP-
sched.

EDF-
schedulable

6

Let’s maKe up a scheduleR: FP+fluid

Γ

Γfluid

Γfp

Runs fluidly on reserved processor capacity

∆ =
∑

τi∈Γfluid

Ci

min(Di, Ti)

Runs DM scheduling on the remaining
processor capacity 1−∆

(1) The partitioning of Γ into Γfluid and Γfp
(2) RTA fixed-points for Γfp on a speed-(1−∆) processor

Verifiable in polynomial time ⇐⇒ FP+fluid-schedulability ∈ NP

7

Let’s maKe up a scheduleR: FP+fluid

Γ

Γfluid

Γfp

Runs fluidly on reserved processor capacity

∆ =
∑

τi∈Γfluid

Ci

min(Di, Ti)

Runs DM scheduling on the remaining
processor capacity 1−∆

(1) The partitioning of Γ into Γfluid and Γfp
(2) RTA fixed-points for Γfp on a speed-(1−∆) processor

Verifiable in polynomial time ⇐⇒ FP+fluid-schedulability ∈ NP

7

Let’s maKe up a scheduleR: FP+fluid

Γ

Γfluid

Γfp

Runs fluidly on reserved processor capacity

∆ =
∑

τi∈Γfluid

Ci

min(Di, Ti)

Runs DM scheduling on the remaining
processor capacity 1−∆

(1) The partitioning of Γ into Γfluid and Γfp
(2) RTA fixed-points for Γfp on a speed-(1−∆) processor

Verifiable in polynomial time ⇐⇒ FP+fluid-schedulability ∈ NP

7

Let’s maKe up a scheduleR: FP+fluid

Γ

Γfluid

Γfp

Runs fluidly on reserved processor capacity

∆ =
∑

τi∈Γfluid

Ci

min(Di, Ti)

Runs DM scheduling on the remaining
processor capacity 1−∆

(1) The partitioning of Γ into Γfluid and Γfp
(2) RTA fixed-points for Γfp on a speed-(1−∆) processor

Verifiable in polynomial time ⇐⇒ FP+fluid-schedulability ∈ NP

7

Let’s maKe up a scheduleR: FP+fluid

Γ

Γfluid

Γfp

Runs fluidly on reserved processor capacity

∆ =
∑

τi∈Γfluid

Ci

min(Di, Ti)

Runs DM scheduling on the remaining
processor capacity 1−∆

(1) The partitioning of Γ into Γfluid and Γfp
(2) RTA fixed-points for Γfp on a speed-(1−∆) processor

Verifiable in polynomial time ⇐⇒ FP+fluid-schedulability ∈ NP

7

Let’s maKe up a scheduleR: FP+fluid

Γ

Γfluid

Γfp

Runs fluidly on reserved processor capacity

∆ =
∑

τi∈Γfluid

Ci

min(Di, Ti)

Runs DM scheduling on the remaining
processor capacity 1−∆

(1) The partitioning of Γ into Γfluid and Γfp
(2) RTA fixed-points for Γfp on a speed-(1−∆) processor

Verifiable in polynomial time ⇐⇒ FP+fluid-schedulability ∈ NP

7

Dealing with EDF

FP+fluid-schedulability =⇒ EDF-schedulability

∀A : A-schedulability =⇒ EDF-schedulability

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

FP-
sched.

EDF-
schedulable

8

Dealing with EDF

FP+fluid-schedulability =⇒ EDF-schedulability

∀A : A-schedulability =⇒ EDF-schedulability

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

FP-
sched.

EDF-
schedulable

8

Dealing with EDF

FP+fluid-schedulability =⇒ EDF-schedulability

∀A : A-schedulability =⇒ EDF-schedulability

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

FP-
sched.

FP+fluid-
sched.

EDF-
schedulable

8

AnotheR one: FP+split

Split each task τi into ki ∈ N+ pieces, then schedule with DM.

τi

Split into ki = 2 pieces

τ ′i

(1) The ki for each τi ∈ Γ
(2) RTA fixed-points for Γ after splitting each τi into ki pieces

Verifiable in polynomial time ⇐⇒ FP+split-schedulability ∈ NP

9

AnotheR one: FP+split

Split each task τi into ki ∈ N+ pieces, then schedule with DM.

τi

Split into ki = 2 pieces

τ ′i

(1) The ki for each τi ∈ Γ
(2) RTA fixed-points for Γ after splitting each τi into ki pieces

Verifiable in polynomial time ⇐⇒ FP+split-schedulability ∈ NP

9

AnotheR one: FP+split

Split each task τi into ki ∈ N+ pieces, then schedule with DM.

τi

Split into ki = 2 pieces

τ ′i

(1) The ki for each τi ∈ Γ
(2) RTA fixed-points for Γ after splitting each τi into ki pieces

Verifiable in polynomial time ⇐⇒ FP+split-schedulability ∈ NP

9

AnotheR one: FP+split

Split each task τi into ki ∈ N+ pieces, then schedule with DM.

τi

Split into ki = 2 pieces

τ ′i

(1) The ki for each τi ∈ Γ
(2) RTA fixed-points for Γ after splitting each τi into ki pieces

Verifiable in polynomial time ⇐⇒ FP+split-schedulability ∈ NP

9

AnotheR one: FP+split

Split each task τi into ki ∈ N+ pieces, then schedule with DM.

τi

Split into ki = 2 pieces

τ ′i

(1) The ki for each τi ∈ Γ
(2) RTA fixed-points for Γ after splitting each τi into ki pieces

Verifiable in polynomial time ⇐⇒ FP+split-schedulability ∈ NP

9

AnotheR one: FP+split

Split each task τi into ki ∈ N+ pieces, then schedule with DM.

τi

Split into ki = 2 pieces

τ ′i

(1) The ki for each τi ∈ Γ
(2) RTA fixed-points for Γ after splitting each τi into ki pieces

Verifiable in polynomial time ⇐⇒ FP+split-schedulability ∈ NP
9

Dealing with EDF

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

FP-
sched.

FP+fluid-
sched.

EDF-
schedulable

10

Dealing with EDF

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

FP-
sched.

FP+fluid-
sched.

FP+split-
sched.

EDF-
schedulable

10

Dealing with EDF

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

FP-
sched.

FP+fluid-
sched.

FP+split-
sched.

FP+fluid+split-
schedulable

EDF-
schedulable

10

AppRoximation algoRithms

Γ is EDF-schedulable iff ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

dbfi(t)

1 2 k

dbfi(t)⩽

Γ is EDF-schedulable if ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

A&S
FPTASΓ, k A&S
FPTASΓ, δ

“No” if unschedulable on speed-1

“Yes” if schedulable on speed-(k/(k+1))“Yes” if schedulable on speed-(1/(1+δ))

Polynomial in |Γ| and kPolynomial in |Γ| and (1δ) (by Albers and Slomka, ECRTS 2004)

11

AppRoximation algoRithms

Γ is EDF-schedulable iff ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

dbfi(t)

1 2 k

dbfi(t)⩽

Γ is EDF-schedulable if ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

A&S
FPTASΓ, k A&S
FPTASΓ, δ

“No” if unschedulable on speed-1

“Yes” if schedulable on speed-(k/(k+1))“Yes” if schedulable on speed-(1/(1+δ))

Polynomial in |Γ| and kPolynomial in |Γ| and (1δ) (by Albers and Slomka, ECRTS 2004)

11

AppRoximation algoRithms

Γ is EDF-schedulable iff ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

dbfi(t)

1 2 k

dbfi(t)⩽

Γ is EDF-schedulable if ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

A&S
FPTASΓ, k A&S
FPTASΓ, δ

“No” if unschedulable on speed-1

“Yes” if schedulable on speed-(k/(k+1))“Yes” if schedulable on speed-(1/(1+δ))

Polynomial in |Γ| and kPolynomial in |Γ| and (1δ) (by Albers and Slomka, ECRTS 2004)

11

AppRoximation algoRithms

Γ is EDF-schedulable iff ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

dbfi(t)

1 2 k

dbfi(t)⩽

Γ is EDF-schedulable if ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

A&S
FPTASΓ, k A&S
FPTASΓ, δ

“No” if unschedulable on speed-1

“Yes” if schedulable on speed-(k/(k+1))“Yes” if schedulable on speed-(1/(1+δ))

Polynomial in |Γ| and kPolynomial in |Γ| and (1δ) (by Albers and Slomka, ECRTS 2004)

11

AppRoximation algoRithms

Γ is EDF-schedulable iff ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

dbfi(t)

1 2 k

dbfi(t)⩽

Γ is EDF-schedulable if ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

A&S
FPTASΓ, k A&S
FPTASΓ, δ

“No” if unschedulable on speed-1

“Yes” if schedulable on speed-(k/(k+1))“Yes” if schedulable on speed-(1/(1+δ))

Polynomial in |Γ| and kPolynomial in |Γ| and (1δ) (by Albers and Slomka, ECRTS 2004)

11

AppRoximation algoRithms

Γ is EDF-schedulable iff ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

dbfi(t)

1 2 k

dbfi(t)⩽

Γ is EDF-schedulable if ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

A&S
FPTASΓ, k A&S
FPTASΓ, δ

“No” if unschedulable on speed-1

“Yes” if schedulable on speed-(k/(k+1))“Yes” if schedulable on speed-(1/(1+δ))

Polynomial in |Γ| and kPolynomial in |Γ| and (1δ)

(by Albers and Slomka, ECRTS 2004)
11

AppRoximation algoRithms

Γ is EDF-schedulable iff ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

dbfi(t)

1 2 k

dbfi(t)⩽

Γ is EDF-schedulable if ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

A&S
FPTASΓ, k A&S
FPTASΓ, δ

“No” if unschedulable on speed-1

“Yes” if schedulable on speed-(k/(k+1))“Yes” if schedulable on speed-(1/(1+δ))

Polynomial in |Γ| and kPolynomial in |Γ| and (1δ)

(by Albers and Slomka, ECRTS 2004)
11

AppRoximation algoRithms

Γ is EDF-schedulable iff ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

dbfi(t)

1 2 k

dbfi(t)⩽

Γ is EDF-schedulable if ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

A&S
FPTASΓ, k

A&S
FPTASΓ, δ

“No” if unschedulable on speed-1

“Yes” if schedulable on speed-(k/(k+1))“Yes” if schedulable on speed-(1/(1+δ))

Polynomial in |Γ| and kPolynomial in |Γ| and (1δ)

(by Albers and Slomka, ECRTS 2004)
11

AppRoximation algoRithms

Γ is EDF-schedulable iff ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

dbfi(t)

1 2 k

dbfi(t)⩽

Γ is EDF-schedulable if ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

A&S
FPTASΓ, k

A&S
FPTASΓ, δ

“No” if unschedulable on speed-1

“Yes” if schedulable on speed-(k/(k+1))“Yes” if schedulable on speed-(1/(1+δ))

Polynomial in |Γ| and kPolynomial in |Γ| and (1δ)

(by Albers and Slomka, ECRTS 2004)
11

AppRoximation algoRithms

Γ is EDF-schedulable iff ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

dbfi(t)

1 2 k

dbfi(t)⩽

Γ is EDF-schedulable if ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

A&S
FPTASΓ, k

A&S
FPTASΓ, δ

“No” if unschedulable on speed-1

“Yes” if schedulable on speed-(k/(k+1))

“Yes” if schedulable on speed-(1/(1+δ))

Polynomial in |Γ| and kPolynomial in |Γ| and (1δ)

(by Albers and Slomka, ECRTS 2004)
11

AppRoximation algoRithms

Γ is EDF-schedulable iff ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

dbfi(t)

1 2 k

dbfi(t)⩽

Γ is EDF-schedulable if ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

A&S
FPTASΓ, k

A&S
FPTASΓ, δ

“No” if unschedulable on speed-1

“Yes” if schedulable on speed-(k/(k+1))

“Yes” if schedulable on speed-(1/(1+δ))

Polynomial in |Γ| and k

Polynomial in |Γ| and (1δ)

(by Albers and Slomka, ECRTS 2004)
11

AppRoximation algoRithms

Γ is EDF-schedulable iff ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

dbfi(t)

1 2 k

dbfi(t)⩽

Γ is EDF-schedulable if ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

A&S
FPTASΓ, k

A&S
FPTASΓ, δ

“No” if unschedulable on speed-1

“Yes” if schedulable on speed-(k/(k+1))

“Yes” if schedulable on speed-(1/(1+δ))

Polynomial in |Γ| and k

Polynomial in |Γ| and (1δ) (by Albers and Slomka, ECRTS 2004)
11

Dealing with EDF

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

FP-
sched.

FP+fluid-
sched.

FP+split-
sched.

FP+fluid+split-
schedulable

EDF-
schedulable

12

Dealing with EDF

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

FP-
sched.

FP+fluid-
sched.

FP+split-
sched.

FP+fluid+split-
schedulable

A&S
FPTAS

EDF-
schedulable

12

AppRoximation algoRithms foR explainability?

Idea: Let Si ⊂ N be the steps to keep

1 2 k

dbfi(t)
t

1 2

5

dbfi(Si, t)

FPTVASΓ, δ, ⟨S1, . . . , Sn⟩

FPTVAS =

Fully Polynomial-Time
Verification Approximation Scheme“No” if unschedulable

“Yes” if schedulable on speed-(1/(1 + δ))

(as explained by some ⟨S1, . . . , Sn⟩)

Polynomial in |Γ| and (1δ)

13

AppRoximation algoRithms foR explainability?

Idea: Let Si ⊂ N be the steps to keep

1 2 k

dbfi(t)

t
1 2

5

dbfi(Si, t)

FPTVASΓ, δ, ⟨S1, . . . , Sn⟩

FPTVAS =

Fully Polynomial-Time
Verification Approximation Scheme“No” if unschedulable

“Yes” if schedulable on speed-(1/(1 + δ))

(as explained by some ⟨S1, . . . , Sn⟩)

Polynomial in |Γ| and (1δ)

13

AppRoximation algoRithms foR explainability?

Idea: Let Si ⊂ N be the steps to keep

1 2 k

dbfi(t)
t

1 2

5

dbfi(Si, t)

FPTVASΓ, δ, ⟨S1, . . . , Sn⟩

FPTVAS =

Fully Polynomial-Time
Verification Approximation Scheme“No” if unschedulable

“Yes” if schedulable on speed-(1/(1 + δ))

(as explained by some ⟨S1, . . . , Sn⟩)

Polynomial in |Γ| and (1δ)

13

AppRoximation algoRithms foR explainability?

Idea: Let Si ⊂ N be the steps to keep

1 2 k

dbfi(t)
t

1 2

5

dbfi(Si, t)

FPTVASΓ, δ, ⟨S1, . . . , Sn⟩

FPTVAS =

Fully Polynomial-Time
Verification Approximation Scheme“No” if unschedulable

“Yes” if schedulable on speed-(1/(1 + δ))

(as explained by some ⟨S1, . . . , Sn⟩)

Polynomial in |Γ| and (1δ)

13

AppRoximation algoRithms foR explainability?

Idea: Let Si ⊂ N be the steps to keep

1 2 k

dbfi(t)
t

1 2

5

dbfi(Si, t)

FPTVASΓ, δ, ⟨S1, . . . , Sn⟩

FPTVAS =

Fully Polynomial-Time
Verification Approximation Scheme

“No” if unschedulable

“Yes” if schedulable on speed-(1/(1 + δ))

(as explained by some ⟨S1, . . . , Sn⟩)

Polynomial in |Γ| and (1δ)

13

AppRoximation algoRithms foR explainability?

Idea: Let Si ⊂ N be the steps to keep

1 2 k

dbfi(t)
t

1 2

5

dbfi(Si, t)

FPTVASΓ, δ, ⟨S1, . . . , Sn⟩

FPTVAS =

Fully Polynomial-Time
Verification Approximation Scheme“No” if unschedulable

“Yes” if schedulable on speed-(1/(1 + δ))

(as explained by some ⟨S1, . . . , Sn⟩)

Polynomial in |Γ| and (1δ)

13

AppRoximation algoRithms foR explainability?

Idea: Let Si ⊂ N be the steps to keep

1 2 k

dbfi(t)
t

1 2

5

dbfi(Si, t)

FPTVASΓ, δ, ⟨S1, . . . , Sn⟩

FPTVAS =

Fully Polynomial-Time
Verification Approximation Scheme

“No” if unschedulable

“Yes” if schedulable on speed-(1/(1 + δ))

(as explained by some ⟨S1, . . . , Sn⟩)

Polynomial in |Γ| and (1δ)

13

AppRoximation algoRithms foR explainability?

Idea: Let Si ⊂ N be the steps to keep

1 2 k

dbfi(t)
t

1 2

5

dbfi(Si, t)

FPTVASΓ, δ, ⟨S1, . . . , Sn⟩

FPTVAS =

Fully Polynomial-Time
Verification Approximation Scheme

“No” if unschedulable

“Yes” if schedulable on speed-(1/(1 + δ))

(as explained by some ⟨S1, . . . , Sn⟩)

Polynomial in |Γ| and (1δ)

13

AppRoximation algoRithms foR explainability?

Idea: Let Si ⊂ N be the steps to keep

1 2 k

dbfi(t)
t

1 2

5

dbfi(Si, t)

FPTVASΓ, δ, ⟨S1, . . . , Sn⟩

FPTVAS =

Fully Polynomial-Time
Verification Approximation Scheme

“No” if unschedulable

“Yes” if schedulable on speed-(1/(1 + δ))

(as explained by some ⟨S1, . . . , Sn⟩)

Polynomial in |Γ| and (1δ)
13

Dealing with EDF

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

FP-
sched.

FP+fluid-
sched.

FP+split-
sched.

FP+fluid+split-
schedulable

A&S
FPTAS

EDF-
schedulable

14

Dealing with EDF

Implicit
deadlines
and EDF-
sched.

Harmonic
and EDF-
sched.

FP-
sched.

FP+fluid-
sched.

FP+split-
sched.

FP+fluid+split-
schedulable

A&S
FPTAS

FPTVAS

EDF-
schedulable

14

Pseudo-polynomial time veRification

A problem is in pseudoNP if solutions can be verified in
pseudo-polynomial time.

Definition: pseudoNP

Is Γ schedulable by partitioned-EDF onm processors such
that the utilization per partition is at most c < 1?

7 Not in NP (if NP ̸= coNP)

7 Not solvable in pseudo-polynomial time (if P ̸= NP)

3 In pseudoNP!

15

Pseudo-polynomial time veRification

A problem is in pseudoNP if solutions can be verified in
pseudo-polynomial time.

Definition: pseudoNP

Is Γ schedulable by partitioned-EDF onm processors such
that the utilization per partition is at most c < 1?

7 Not in NP (if NP ̸= coNP)

7 Not solvable in pseudo-polynomial time (if P ̸= NP)

3 In pseudoNP!

15

Pseudo-polynomial time veRification

A problem is in pseudoNP if solutions can be verified in
pseudo-polynomial time.

Definition: pseudoNP

Is Γ schedulable by partitioned-EDF onm processors such
that the utilization per partition is at most c < 1?

7 Not in NP (if NP ̸= coNP)

7 Not solvable in pseudo-polynomial time (if P ̸= NP)

3 In pseudoNP!

15

Pseudo-polynomial time veRification

A problem is in pseudoNP if solutions can be verified in
pseudo-polynomial time.

Definition: pseudoNP

Is Γ schedulable by partitioned-EDF onm processors such
that the utilization per partition is at most c < 1?

7 Not in NP (if NP ̸= coNP)

7 Not solvable in pseudo-polynomial time (if P ̸= NP)

3 In pseudoNP!

15

Pseudo-polynomial time veRification

A problem is in pseudoNP if solutions can be verified in
pseudo-polynomial time.

Definition: pseudoNP

Is Γ schedulable by partitioned-EDF onm processors such
that the utilization per partition is at most c < 1?

7 Not in NP (if NP ̸= coNP)

7 Not solvable in pseudo-polynomial time (if P ̸= NP)

3 In pseudoNP!

15

Pseudo-polynomial time veRification

A problem is in pseudoNP if solutions can be verified in
pseudo-polynomial time.

Definition: pseudoNP

Is Γ schedulable by partitioned-EDF onm processors such
that the utilization per partition is at most c < 1?

7 Not in NP (if NP ̸= coNP)

7 Not solvable in pseudo-polynomial time (if P ̸= NP)

3 In pseudoNP!

15

Conclusions

• Classification of schedulability problems as efficiently explainable

• Methods for those that are not inherently efficiently explainable:

• Identification of efficiently explainable subproblems

• A concept for efficiently explainable approximation: FPTVAS

• A relevant complexity class: pseudoNP

16

Conclusions

• Classification of schedulability problems as efficiently explainable

• Methods for those that are not inherently efficiently explainable:

• Identification of efficiently explainable subproblems

• A concept for efficiently explainable approximation: FPTVAS

• A relevant complexity class: pseudoNP

16

Conclusions

• Classification of schedulability problems as efficiently explainable

• Methods for those that are not inherently efficiently explainable:

• Identification of efficiently explainable subproblems

• A concept for efficiently explainable approximation: FPTVAS

• A relevant complexity class: pseudoNP

16

Conclusions

• Classification of schedulability problems as efficiently explainable

• Methods for those that are not inherently efficiently explainable:

• Identification of efficiently explainable subproblems

• A concept for efficiently explainable approximation: FPTVAS

• A relevant complexity class: pseudoNP

16

Conclusions

• Classification of schedulability problems as efficiently explainable

• Methods for those that are not inherently efficiently explainable:

• Identification of efficiently explainable subproblems

• A concept for efficiently explainable approximation: FPTVAS

• A relevant complexity class: pseudoNP

16

Conclusions

• Classification of schedulability problems as efficiently explainable

• Methods for those that are not inherently efficiently explainable:

• Identification of efficiently explainable subproblems

• A concept for efficiently explainable approximation: FPTVAS

• A relevant complexity class: pseudoNP

16

∀Thank you!
⋄

∃Questions?

