TowARDS EFFICIENT EXPLAINABILITY OF
SCHEDULABILITY PROPERTIES IN REAL-TIME
SYSTEMS

SANJOY BARUAH

Washington University in Saint Louis

PonTUs EKBERG
Uppsala University

ECRTS, VIENNA 2023



THE BROADER PICTURE



THE BROADER PICTURE

System Certification
designer authority



THE BROADER PICTURE

System
designer

e
oy
Comes up
with solution

Certification
authority



THE BROADER PICTURE

System Certification
. _ e .
designer authority
i
&y
Comes up Sends explanation

with solution (or proof/certificate)



THE BROADER PICTURE

System Certification
. _ e .
designer authority
o Q
Comes up Sends explanation Verifies

with solution (or proof/certificate) solution



THE BROADER PICTURE

System
designer

e
oy
Comes up
with solution

Can spend lots
of time/resources

 —

Sends explanation
(or proof/certificate)

Certification
authority

Q

Verifies
solution

Verification

should be efficient



THE BROADER PICTURE

System Certification
. _ e .
designer authority
i
5 Q
Comes up Sends explanation Verifies
with solution (or proof/certificate) solution
Can spend lots Verification
of time/resources should be efficient

Ideally’ the Foundational Response-Time Analysis as Explainable Evidence of Timeliness

eXplanati on is by Maida, Bozhko and Brandenburg (ECRTS 2022)

formally CertiCAN certifying CAN analyses and their results
verifiable by Fradet, Guo and Quinton (Real-Time Systems 2023)



THE BROADER PICTURE

System Certification
. _ e .
designer authority



THE BROADER PICTURE

System
designer

Cloud
service

 —

Certification
authority

Edge

device



THE BROADER PICTURE

System
designer

Cloud
service

Machine
learning

 —

s

Certification
authority

Edge

device

System
designer



THE BROADER PICTURE

System Certification
. _ e .

designer authority

Cloud N Edge

service device
Machine System

. _— R .

learning designer

e Classify schedulability problems as efficiently explainable or not




THE BROADER PICTURE

System Certification
. _ e .

designer authority

Cloud . Edge

service device
Machine System

. _— R .

learning designer

e Classify schedulability problems as efficiently explainable or not

e Investigate techniques for dealing with the problems that are not




ExAMPLE: UNIPROCESSOR FP-SCHEDULABILITY

RTA (Joseph and Pandya, 1986, and others)

Constrained-deadline task system I" = {7y,...,7,} is FP-
schedulable iff the smallest positive fixed-point R;,

R.
r-a+ Y [¥xq
jehp(i) ' 7

is < D, foreach ; € I.




ExAMPLE: UNIPROCESSOR FP-SCHEDULABILITY

RTA (Joseph and Pandya, 1986, and others) N

Constrained-deadline task system I" = {7y,...,7,} is FP-
schedulable iff the smallest positive fixed-point R;,

v g 8]

Jj€hp(i)
is < D, foreach ; € I.
System =L Certification
. - —_— .
designer = authority

o Q




ExAMPLE: UNIPROCESSOR FP-SCHEDULABILITY

RTA (Joseph and Pandya, 1986, and others) N

Constrained-deadline task system I" = {7y,...,7,} is FP-
schedulable iff the smallest positive fixed-point R;,

v g 8]

Jj€hp(i)
is < D, foreach ; € I.
System =L Certification
. - —_— .
designer = authority

o Ry,...

=
=

Q




ExAMPLE 2: UNIPROCESSOR EDF-SCHEDULABILITY

PDA (Baruah et al., 1990)

Task system I' = {7y, ..., 7,} is EDF-schedulable iff

> dbfi(t) < t,

i€l

forallt € {0,1,...,HP(I")}.




ExAMPLE 2: UNIPROCESSOR EDF-SCHEDULABILITY

PDA (Baruah et al., 1990)

Task system I' = {7y, ..., 7,} is EDF-schedulable iff

> dbfi(t) < t,

i€l

forallt € {0,1,...,HP(I")}.

i

e _Di
dbf;(£) & max (VTJ + 1,0) x C;



ExAMPLE 2: UNIPROCESSOR EDF-SCHEDULABILITY

PDA (Baruah et al., 1990) |

Task system I' = {7y, ..., 7,} is EDF-schedulable iff

> dbfi(t) < t,

el

forall t€ {0,1,...,HP(T")}.

System =L Certification
designer = authority

Lo 4 777 Q




DOES THIS RELATE TO COMPLEXITY?



DOES THIS RELATE TO COMPLEXITY?




DOES THIS RELATE TO COMPLEXITY?




DOES THIS RELATE TO COMPLEXITY?




DOES THIS RELATE TO COMPLEXITY?

P = solvable in polynomial time



DOES THIS RELATE TO COMPLEXITY?

NP = verifiable in
P = solvable in polynomial time polynomial time



DOES THIS RELATE TO COMPLEXITY?

Uniprocessor
FP-schedulability
(constrained deadlines)

NP = verifiable in
P = solvable in polynomial time polynomial time



DOES THIS RELATE TO COMPLEXITY?

Uniprocessor
FP-schedulability
(constrained deadlines)

Uniprocessor
EDF-schedulability

NP = verifiable in
P = solvable in polynomial time polynomial time



DOES THIS RELATE TO COMPLEXITY?

Outside NP —-
not verifiable in
polynomial time

. Uniprocessor
Uniprocessor FP-schedulability
EDF-schedulability (constrained deadlines)

NP = verifiable in

P = solvable in polynomial time polynomial time



DOES THIS RELATE TO COMPLEXITY?

Outside NP —-
not verifiable in
polynomial time

Partitioned
FP-schedulability
(constrained deadlines)

Uniprocessor
FP-schedulability
(constrained deadlines)

Uniprocessor
EDF-schedulability

NP = verifiable in

P = solvable in polynomial time polynomial time



DOES THIS RELATE TO COMPLEXITY? - - -~ Upper bound

Outside NP —-
not verifiable in
polynomial time

s Partitioned
EDFI-):f}:etgjlﬁzgilit FP-schedulability
Y (constrained deadlines)
. Uniprocessor
Uniprocessor FP-schedulability
EDF-schedulability (constrained deadlines)

NP = verifiable in
P = solvable in polynomial time polynomial time



DOES THIS RELATE TO COMPLEXITY? - - -~ Upper bound

Outside NP —-
not verifiable in
polynomial time

Global _
EDF-schedulability ~ ~

Global
FP-schedulability ~ /

s Partitioned
EDFI-);l;thlet:iolﬁzgilit FP-schedulability
Y (constrained deadlines)
. Uniprocessor
Uniprocessor FP-schedulability
EDF-schedulability (constrained deadlines)

NP = verifiable in

P = solvable in polynomial time polynomial time



DOES THIS RELATE TO COMPLEXITY? - - -~ Upper bound

Global feasibility
(constrained deadlines)
Outside NP —>
not verifiable in
polynomial time

Global _
EDF-schedulability ~ ~

Global
FP-schedulability ~ /

s Partitioned
EDFI-);l;thlet:iolﬁzgilit FP-schedulability
Y (constrained deadlines)
. Uniprocessor
Uniprocessor FP-schedulability
EDF-schedulability (constrained deadlines)

NP = verifiable in

P = solvable in polynomial time polynomial time



DOES THIS RELATE TO COMPLEXITY?

Uniprocessor
FP-schedulability
(constrained deadlines)

Uniprocessor
EDF-schedulability

NP = verifiable in
P = solvable in polynomial time polynomial time



DOES THIS RELATE TO COMPLEXITY?

Uniprocessor
FP-schedulability
(constrained deadlines)

Uniprocessor
EDF-schedulability

NP = verifiable in
P = solvable in polynomial time polynomial time



DeALING WITH EDF

AN

EDF-
schedulable

(Sporadic tasks, preemptive uniprocessor)



DeALING WITH EDF

EDF-
schedulable

coNP-complete



DeALING WITH EDF

EDF- Implicit
schedulable deadlines
and EDF-
sched.

coNP-complete



DeALING WITH EDF

EDF- Implicit
schedulable deadlines
and EDF-
sched.

coNP-complete



DeALING WITH EDF

EDF- Implicit
schedulable deadlines
and EDF-
sched.

coNP-complete



DeALING WITH EDF

EDF- Implicit
schedulable deadlines
and EDF-
sched.

coNP-complete



DeALING WITH EDF

Implicit
deadlines
and EDF-
sched.

EDF-
schedulable

Harmonic
and EDF-
sched.

coNP-complete

FP-schedulability = EDF-schedulability



DeALING WITH EDF

Implicit
deadlines
and EDF-
sched.

EDF-
schedulable

Harmonic
and EDF-
sched.

coNP-complete

FP-schedulability = EDF-schedulability



DeALING WITH EDF

Implicit
deadlines
and EDF-
sched.

EDF-
schedulable

Harmonic
and EDF-
sched.

coNP-complete

FP-schedulability = EDF-schedulability



DeALING WITH EDF

Implicit
deadlines
and EDF-
sched.

EDF-
schedulable

Harmonic
and EDF-
sched.

coNP-complete

VA : A-schedulability = EDF-schedulability



LET’S MAKE UP A SCHEDULER: FP+FLUID



LET’S MAKE UP A SCHEDULER: FP+FLUID

/-* Ifuid
I
\-} Ffp



LET’S MAKE UP A SCHEDULER: FP+FLUID

Runs fluidly on reserved processor capacity

C.
lwia — A — S
/} 2. min(D;, T;)

Ti€ uid
r

\% Ffp



LET’S MAKE UP A SCHEDULER: FP+FLUID

Runs fluidly on reserved processor capacity

C.
Cayig — A — =t
/ 1 2. min(D;, T))

Ti€ uid
r

\_} r Runs DM scheduling on the remaining
fp ——

processor capacity 1 — A



LET’S MAKE UP A SCHEDULER: FP+FLUID

Runs fluidly on reserved processor capacity

C.
Cayig — A — =t
/ 1 2. min(D;, T))

Ti€ uid
T

\_} r Runs DM scheduling on the remaining
fp ——

processor capacity 1 — A

(1) The partitioning of I" into I'fuiq and I'g,
(2) RTA fixed-points for I'g, on a speed-(1 — A) processor



LET’S MAKE UP A SCHEDULER: FP+FLUID

Runs fluidly on reserved processor capacity

C.
Cayig — A — =t
/ 1 2. min(D;, T))

Ti€ uid
T

\_} r Runs DM scheduling on the remaining
fp ——

processor capacity 1 — A

(1) The partitioning of I" into I'fuiq and I'g,
(2) RTA fixed-points for I'g, on a speed-(1 — A) processor

Verifiable in polynomial time <> FP+fluid-schedulability € NP



DeALING WITH EDF

EDF- Implicit
schedulable deadlines
and EDF-

sched.

Harmonic
and EDF-
sched.

VA : A-schedulability = EDF-schedulability



DeALING WITH EDF

EDF- Implicit
schedulable deadlines
and EDF-

sched.

Harmonic
and EDF-
sched.

FP+fluid-schedulability = EDF-schedulability



DeALING wWiTH EDF

EDF-
schedulable

Harmonic
and EDF-
sched.

FP+fluid-schedulability = EDF-schedulability



ANOTHER ONE: FP+sSpPLIT



ANOTHER ONE: FP+SPLIT

Split each task 7; into k; € N pieces, then schedule with DM.



ANOTHER ONE: FP+SPLIT

Split each task 7; into k; € N pieces, then schedule with DM.




ANOTHER ONE: FP+SPLIT

Split each task 7; into k; € N pieces, then schedule with DM.

Split into k; = 2 pieces

~




ANOTHER ONE: FP+SPLIT

Split each task 7; into k; € N pieces, then schedule with DM.

[ N
////////////////////////////

T T T T T T T T T

(1) The k; for each 7; € I’
(2) RTA fixed-points for I" after splitting each 7; into k; pieces



ANOTHER ONE: FP+SPLIT

Split each task 7; into k; € N pieces, then schedule with DM.

(1) The k; for each 7; € I’
(2) RTA fixed-points for I" after splitting each 7; into k; pieces

Verifiable in polynomial time <= FP+split-schedulability € NP
9



DeALING wWiTH EDF

EDF-
schedulable

Harmonic
and EDF-
sched.

10



DeALING wWiTH EDF

FP+split-
sched.

EDF-
schedulable

Harmonic
and EDF-
sched.

10



DeALING wWiTH EDF

FP+fluid+split-
schedulable

EDF-
schedulable

Harmonic
and EDF-
sched.

10



APPROXIMATION ALGORITHMS

11



APPROXIMATION ALGORITHMS

I is EDF-schedulable iff V¢: ) . dbfi(t) < &

11



APPROXIMATION ALGORITHMS

I is EDF-schedulable iff V¢: ) . dbfi(t) < &

(ibfi( t)

11



APPROXIMATION ALGORITHMS

I is EDF-schedulable iff V¢: ) . dbfi(t) < &

dbfy(1) < dbf;(1)

11



APPROXIMATION ALGORITHMS

I is EDF-schedulable iff V¢: ) . dbfi(t) < &

dbf;(t) < dbf;(¢)
[ is EDF-schedulable if Vi: Y. . dbfi(1) <t

11



APPROXIMATION ALGORITHMS

I is EDF-schedulable iff V¢: ) . dbfi(t) < &

dbf;(t) < dbf;(¢)
[ is EDF-schedulable if Vi: Y. . dbfi(1) <t

(by Albers and Slomka, ECRTS 2004)
11



APPROXIMATION ALGORITHMS

I is EDF-schedulable iff V¢: ) . dbfi(t) < &

dbf,-( t)

N
o
o
fongl
—~
=

[ is EDF-schedulable if Vi: Y. . dbfi(1) <t

(by Albers and Slomka, ECRTS 2004)
11



APPROXIMATION ALGORITHMS

I is EDF-schedulable iff V¢: ) . dbfi(t) < &

dbf;(t) < dbf;(¢)
[ is EDF-schedulable if Vi: Y. . dbfi(1) <t

A&S
T,k —1{ ppTAS

(by Albers and Slomka, ECRTS 2004)
11



APPROXIMATION ALGORITHMS

I is EDF-schedulable iff V¢: ) . dbfi(t) < &

dbf;(t) < dbf;(¢)
[ is EDF-schedulable if Vi: Y. . dbfi(1) <t

I k A&S
’ FPTAS
“No” if unschedulable on speed-1

(by Albers and Slomka, ECRTS 2004)
11



APPROXIMATION ALGORITHMS

I is EDF-schedulable iff V¢: ) . dbfi(t) < &

dbf;(t) < dbf;(¢)
[ is EDF-schedulable if Vi: Y. . dbfi(1) <t

“Yes” if schedulable on speed-(k/(k+1))
I k A&S
’ FPTAS
“No” if unschedulable on speed-1
(by Albers and Slomka, ECRTS 2004)
11



APPROXIMATION ALGORITHMS

I is EDF-schedulable iff Vt: ) dbfi(t) <t

dbf;(t) < dbf;(¢)
[ is EDF-schedulable if Vi: Y. . dbfi(1) <t

“Yes” if schedulable on speed-(k/(k+1))
I k A&S
’ FPTAS
| “No” if unschedulable on speed-1

Polynomial in |T'| and k (by Albers and Slomka, ECRTS 2004)
11



APPROXIMATION ALGORITHMS

I is EDF-schedulable iff V¢: ) . dbfi(t) < &

dbf;(t) < dbf;(¢)
[ is EDF-schedulable if Vi: Y. . dbfi(1) <t

- [ Ass
.0 = ppTAS

| “No” if unschedulable on speed-1

“Yes” if schedulable on speed-(1/(149))

Polynomial in |T'| and (%) (by Albers and Slomka, ECRTS 2004)
11



DeALING wWiTH EDF

FP+fluid+split-
schedulable

EDF-
schedulable

Harmonic
and EDF-
sched.

12



DeALING wWiTH EDF

FP+fluid+split-
schedulable

EDF-
schedulable

Harmonic
and EDF-
sched.

12



APPROXIMATION ALGORITHMS FOR EXPLAINABILITY?

13



APPROXIMATION ALGORITHMS FOR EXPLAINABILITY?

13



APPROXIMATION ALGORITHMS FOR EXPLAINABILITY?

Idea: Let §; C N be the steps to keep

O

13



APPROXIMATION ALGORITHMS FOR EXPLAINABILITY?

Idea: Let §; C N be the steps to keep

k' - - )
2 2
1 &—o 1 &—o0
o —o t
dbfl(t) ﬁi(Si, t)

13



APPROXIMATION ALGORITHMS FOR EXPLAINABILITY?

Idea: Let §; C N be the steps to keep

k' - - )
2 2
1 &—o 1 &—o0
o —o t
d_bfi(t) d_lafi(Si, t)
FPTVAS =

I',6,(81,...,8x) —| FPTVAS Fully Polynomial-Time

Verification Approximation Scheme

13



APPROXIMATION ALGORITHMS FOR EXPLAINABILITY?

Idea: Let §; C N be the steps to keep

k' - - )
2 2
1 &—o 1 &—o0
o —o t
dbfl(t) ﬁi(Si, t)

/_/H
T,6,(S1,...,8,) —| FPTVAS

13



APPROXIMATION ALGORITHMS FOR EXPLAINABILITY?

Idea: Let §; C N be the steps to keep

k' - - )
2 2
1 &—o 1 &—o0
o —o t
dbfl(t) ﬂ}(Si, t)

/_/H
T,0,(81,...,84) FPTVAS
“No” if unschedulable

13



APPROXIMATION ALGORITHMS FOR EXPLAINABILITY?

Idea: Let §; C N be the steps to keep

O

“Yes” if schedulable on speed-(1/(1 + ¢))
— (as explained by some (81,...,8,))
I,6,(S1,...,8,) — FPTVAS

“No” if unschedulable

13



APPROXIMATION ALGORITHMS FOR EXPLAINABILITY?

Idea: Let §; C N be the steps to keep

O

“Yes” if schedulable on speed-(1/(1 + ¢))
— (as explained by some (81,...,8,))
I,6,(S1,...,8,) — FPTVAS

“No” if unschedulable

Polynomial in |I'| and (5)
13



DeALING wWiTH EDF

FP+fluid+split-
schedulable

EDF-
schedulable

Harmonic
and EDF-
sched.

14



DeALING wWiTH EDF

FP+fluid+split-
schedulable

EDF-
schedulable

Harmonic
and EDF-
sched.

14



PSEUDO-POLYNOMIAL TIME VERIFICATION

15



PSEUDO-POLYNOMIAL TIME VERIFICATION

Definition: pseudoNP

A problem is in pseudoNP if solutions can be verified in
pseudo-polynomial time.

15



PSEUDO-POLYNOMIAL TIME VERIFICATION

Definition: pseudoNP

A problem is in pseudoNP if solutions can be verified in
pseudo-polynomial time.

Is I" schedulable by partitioned-EDF on m processors such
that the utilization per partition is at most ¢ < 1?

15



PSEUDO-POLYNOMIAL TIME VERIFICATION

Definition: pseudoNP

A problem is in pseudoNP if solutions can be verified in
pseudo-polynomial time.

Is I" schedulable by partitioned-EDF on m processors such
that the utilization per partition is at most ¢ < 1?

X Not in NP (if NP # coNP)

15



PSEUDO-POLYNOMIAL TIME VERIFICATION

Definition: pseudoNP

A problem is in pseudoNP if solutions can be verified in
pseudo-polynomial time.

Is I" schedulable by partitioned-EDF on m processors such
that the utilization per partition is at most ¢ < 1?

X Not in NP (if NP # coNP)

X Not solvable in pseudo-polynomial time (if P # NP)

15



PSEUDO-POLYNOMIAL TIME VERIFICATION

Definition: pseudoNP

A problem is in pseudoNP if solutions can be verified in
pseudo-polynomial time.

Is I" schedulable by partitioned-EDF on m processors such
that the utilization per partition is at most ¢ < 1?

X Not in NP (if NP # coNP)

X Not solvable in pseudo-polynomial time (if P # NP)
v' In pseudoNP!

15



CONCLUSIONS

16



CONCLUSIONS

® Classification of schedulability problems as efficiently explainable

16



CONCLUSIONS

® Classification of schedulability problems as efficiently explainable

® Methods for those that are not inherently efficiently explainable:

16



CONCLUSIONS

® Classification of schedulability problems as efficiently explainable
® Methods for those that are not inherently efficiently explainable:

® Identification of efficiently explainable subproblems

16



CONCLUSIONS

® Classification of schedulability problems as efficiently explainable
® Methods for those that are not inherently efficiently explainable:

® Identification of efficiently explainable subproblems

® A concept for efficiently explainable approximation: FPTVAS

16



CONCLUSIONS

® Classification of schedulability problems as efficiently explainable
® Methods for those that are not inherently efficiently explainable:

® Identification of efficiently explainable subproblems
® A concept for efficiently explainable approximation: FPTVAS

® A relevant complexity class: pseudoNP

16



V'Thank you!
&

3Questions?



