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Let’s maKe up a scheduleR: FP+fluid

Γ

Γfluid

Γfp

Runs fluidly on reserved processor capacity

∆ =
∑

τi∈Γfluid

Ci

min(Di, Ti)

Runs DM scheduling on the remaining
processor capacity 1−∆

(1) The partitioning of Γ into Γfluid and Γfp
(2) RTA fixed-points for Γfp on a speed-(1−∆) processor

Verifiable in polynomial time ⇐⇒ FP+fluid-schedulability ∈ NP
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AnotheR one: FP+split

Split each task τi into ki ∈ N+ pieces, then schedule with DM.

τi

Split into ki = 2 pieces

τ ′i

(1) The ki for each τi ∈ Γ
(2) RTA fixed-points for Γ after splitting each τi into ki pieces

Verifiable in polynomial time ⇐⇒ FP+split-schedulability ∈ NP
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AppRoximation algoRithms

Γ is EDF-schedulable iff ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

dbfi(t)

1 2 k

dbfi(t)⩽

Γ is EDF-schedulable if ∀t :
∑

τi∈Γ dbfi(t) ⩽ t.

A&S
FPTASΓ, k A&S
FPTASΓ, δ

“No” if unschedulable on speed-1

“Yes” if schedulable on speed-(k/(k+1))“Yes” if schedulable on speed-(1/(1+δ))

Polynomial in |Γ| and kPolynomial in |Γ| and (1δ ) (by Albers and Slomka, ECRTS 2004)
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AppRoximation algoRithms foR explainability?

Idea: Let Si ⊂ N be the steps to keep

1 2 k

dbfi(t)
t

1 2

5

dbfi(Si, t)

FPTVASΓ, δ, ⟨S1, . . . , Sn⟩

FPTVAS =

Fully Polynomial-Time
Verification Approximation Scheme“No” if unschedulable

“Yes” if schedulable on speed-(1/(1 + δ))

(as explained by some ⟨S1, . . . , Sn⟩)

Polynomial in |Γ| and (1δ )
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Pseudo-polynomial time veRification

A problem is in pseudoNP if solutions can be verified in
pseudo-polynomial time.

Definition: pseudoNP

Is Γ schedulable by partitioned-EDF onm processors such
that the utilization per partition is at most c < 1?

7 Not in NP (if NP ̸= coNP)

7 Not solvable in pseudo-polynomial time (if P ̸= NP)

3 In pseudoNP!
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Conclusions
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∀Thank you!
⋄

∃Questions?


