GRACEFUL DEGRADATION IN Semi-Clairvoyant Scheduling

SANJOY BARUAH Washington University in Saint Louis

Pontus Ekberg Uppsala University

ECRTS 2021

CC-1 reduces to the *standard mixed-criticality semantics* in the absence of graceful degradation (i.e., if C(HI) = 0).

$$CC-3 \Longrightarrow CC-2 \Longrightarrow CC-1$$

All the problems

We consider optimal scheduling and exact analysis in different settings:

- With one of three correctness criteria:
 - 1 CC-1 2 CC-2 3 CC-3
- With one of two workload models:
 - 1 Independent jobs
 - 2 Sporadic tasks

All the problems

We consider optimal scheduling and exact analysis in different settings:

- With one of three correctness criteria:
 - 1 CC-1
 2 CC-2
 3 CC-3
- With one of two workload models:
 - 1 Independent jobs
 - 2 Sporadic tasks
- Semi-clairvoyant scheduling
- Graceful degradation
- A preemptive uniprocessor

Prior work

CC-1 without graceful degradation (i.e., C(HI) = 0 for locrit. jobs) is the setting in Agrawal et al., RTSS'19.

Prior work

CC-1 without graceful degradation (i.e., C(HI) = 0 for locrit. jobs) is the setting in Agrawal et al., RTSS'19.

We extend the same results to work with graceful degradation.

Prior work

CC-1 without graceful degradation (i.e., C(HI) = 0 for Locrit. jobs) is the setting in Agrawal et al., RTSS'19.

We extend the same results to work with graceful degradation.

1 A polynomial-time solution for jobs:

- A Linear Program (LP) for exactly solving the feasibility problem.
- A table-based optimal scheduler extracted from the LP solution.

Prior work

CC-1 without graceful degradation (i.e., C(HI) = 0 for Locrit. jobs) is the setting in Agrawal et al., RTSS'19.

We extend the same results to work with graceful degradation.

1 A polynomial-time solution for jobs:

- A Linear Program (LP) for exactly solving the feasibility problem.
- A table-based optimal scheduler extracted from the LP solution.
- 2 A polynomial-time solution for implicit-deadline sporadic tasks.
 - An exact utilization-based feasibility test.
 - A fluid-based optimal scheduler.
 - (This followed directly from Agrawal et al.)

CC-2 Active LO-crit. jobs that have *started execution* get to keep their C(LO) budgets.

CC-1

CC-2 - results

1 Feasibility for jobs under CC-2 can be solved exactly with an *Mixed Integer Linear Program* (MILP).

CC-2 - results

- **1** Feasibility for jobs under CC-2 can be solved exactly with an *Mixed Integer Linear Program* (MILP).
- 2 A table-based optimal scheduler can again be extracted.

CC-2 - results

- Feasibility for jobs under CC-2 can be solved exactly with an Mixed Integer Linear Program (MILP).
- 2 A table-based optimal scheduler can again be extracted.
- **3** Feasibility for jobs under CC-2 is strongly NP-complete.

- Feasibility for jobs under CC-2 can be solved exactly with an Mixed Integer Linear Program (MILP).
- 2 A table-based optimal scheduler can again be extracted.
- **3** Feasibility for jobs under CC-2 is *strongly NP-complete*.

Correctness criterion CC-3 - INSIGHTS

 \implies EDF is an optimal scheduler for both jobs and tasks!

Jobs

Feasibility for *jobs* can be done in $O(n^2 \log n)$ time.

Jobs

Feasibility for *jobs* can be done in $O(n^2 \log n)$ time.

(Simply simulate EDF O(n) times.)

CC-3 - RESULTS FOR TASKS

Feasibility for *arbitrary-deadline sporadic tasks* can be done in pseudo-polynomial time if U is bounded by c < 1.

CC-3 - RESULTS FOR TASKS

Feasibility for *arbitrary-deadline sporadic tasks* can be done in pseudo-polynomial time if U is bounded by c < 1.

(Based on *dbf* analysis.)

ı.

	CC-1	CC-2	CC-3
Jobs	Polynomial-time solvable (LP formulation)		
	Table-based optimal scheduler		
Sporadic tasks	Simple utilization test		
	Optimal fluid scheduler		
	(Only implicit deadlines)		

Т

ı.

	CC-1	CC-2	CC-3
Jobs	Polynomial-time solvable (LP formulation)	Strongly NP-complete (MILP formulation)	
	Table-based optimal scheduler	Table-based optimal scheduler	
	Simple utilization test		
Sporadic tasks	Optimal fluid scheduler		
	(Only implicit deadlines)		

Т

ı.

	CC-1	CC-2	CC-3
John	Polynomial-time solvable (LP formulation)	Strongly NP-complete (MILP formulation)	Solvable in $O(n^2 \log n)$
5003	Table-based optimal scheduler	Table-based optimal scheduler	EDF optimal
	Simple utilization test		Pseudo-poly. time solvable with bounded utilization
Sporadic tasks	Optimal fluid scheduler		EDF optimal
	(Only implicit deadlines)		(Even arbitrary deadlines)

Т

	CC-1	CC-2	CC-3
John	Polynomial-time solvable (LP formulation)	Strongly NP-complete (MILP formulation)	Solvable in $O(n^2 \log n)$
JODS	Table-based optimal scheduler	Table-based optimal scheduler	EDF optimal
	Simple utilization test		Pseudo-poly. time solvable with bounded utilization
Sporadic tasks	Optimal fluid scheduler		EDF optimal
	(Only implicit deadlines)		(Even arbitrary deadlines)

Which correctness criteria is the correct one?

	CC-1	CC-2	CC-3
John	Polynomial-time solvable (LP formulation)	Strongly NP-complete (MILP formulation)	Solvable in $O(n^2 \log n)$
JODS	Table-based optimal scheduler	Table-based optimal scheduler	EDF optimal
	Simple utilization test		Pseudo-poly. time solvable with bounded utilization
Sporadic tasks	Optimal fluid scheduler		EDF optimal
	(Only implicit deadlines)		(Even arbitrary deadlines)

$$CC-3 \Longrightarrow CC-2 \Longrightarrow CC-1$$

What is the modeling overhead?

The modeling overhead of CC-3

Over-approximating either CC-1 or CC-2 by CC-3 has a worst-case speedup cost of 2 (which is tight).

What is the modeling overhead?

The modeling overhead of CC-3

Over-approximating either CC-1 or CC-2 by CC-3 has a worst-case speedup cost of 2 (which is tight).

The modeling overhead of CC-2

Over-approximating CC-1 by CC-2 has a worst-case speedup cost in $[\varphi, 2]$. ($\varphi \approx 1.618$ is the golden ratio.)

∀Thank you!↓☐Questions?