DUAL PRIORITY SCHEDULING IS NOT OPTIMAL

Pontus Ekberg Uppsala University

ECRTS 2019 Stuttgart, Germany

DUAL PRIORITY SCHEDULING?

DUAL PRIORITY SCHEDULING?

DUAL PRIORITY ASSIGNMENT: A Practical Method for Increasing Processor Utilisation

A. Burns and A.J. Wellings

Department of Computer Science University of York, UK

Abstract

Static priority schemes have the disadvantage that processor utilisations less than 100% must be tolerated if a system is to be guaranteed off-line. By comparison earliest deadline scheduling can theoretically utilise all of a processors capacity, although in pravity propareheads are increased.

$$U = \sum_{i=1}^{n} \frac{C_i}{T_i}$$

Test (1) converges, approximately, on a utiliser on value of 0.69 for large a Ferril

(Euromicro Workshop on Real-Time Systems, 1993)

- Implicit deadline periodic tasks
- Single preemptive processor

- Implicit deadline periodic tasks
- Single preemptive processor

Configurations

- a phase change point $\delta_i \in \{0, \ldots, p_i\}$
- two priority levels: π_i^1 and π_i^2

- Implicit deadline periodic tasks
- Single preemptive processor

- a phase change point $\delta_i \in \{0, \ldots, p_i\}$
- two priority levels: π_i^1 and π_i^2

- Implicit deadline periodic tasks
- Single preemptive processor

Configurations

- a phase change point $\delta_i \in \{0, \ldots, p_i\}$
- two priority levels: π_i^1 and π_i^2

- Implicit deadline periodic tasks
- Single preemptive processor

Configurations

- a phase change point $\delta_i \in \{0, \ldots, p_i\}$
- two priority levels: π_i^1 and π_i^2

Comparing with FP and EDF

Comparing with FP and EDF

Comparing with FP and EDF

Is dual priority scheduling optimal?

priorities be tound.

The answer to the first takes the form of a conjecture:

Analysis of this conjecture in given in section 4.

Conjecture C1

For any task set with total utilisation less than or equal to 100% there exists a dual priority assignment that will meet all deadlines.

Table 2: Task Set E2

With no task having a second phase, the system is not

Conjecture 1 (Burns and Wellings, 1993)

Dual priority scheduling is *optimal* for implicit deadline periodic tasks.

(Sadly not)

• Evaluating the schedulability can be very costly

- Almost all task sets are schedulable
- Evaluating the schedulability can be very costly

Schedulability test

For every configuration (setting of $\pi_i^1, \pi_i^2, \delta_i$), simulate the hyper-period until a deadline miss.

How many configurations are there?

How many configurations are there?

A task set
$$\mathfrak{T} = \{ au_1, \dots, au_n\}$$
 has $(2n)! imes \prod_{i=1}^n (p_i + 1)$

distinct configurations.

A COUNTEREXAMPLE

ot dual priority schedulable					
	e_i	p_i			
$ au_1$	8	19	hyper-period: utilization:	16390597 ~ 0.9999971	
$ au_2$	13	29			
$ au_3$	9	151			
$ au_4$	14	197			

A COUNTEREXAMPLE

#configurations =
$$(2n)! \times \prod_{i=1}^{n} (p_i + 1) = 728\,082\,432\,000$$

A COUNTEREXAMPLE

#configurations =
$$(2n)! \times \prod_{i=1}^{n} (p_i + 1) = 728\,082\,432\,000$$

Simulating the full hyper-period for all configurations would take *hundreds of years* on my computer.

The saving grace

Most configurations lead to a deadline miss very early.

Most configurations lead to a deadline miss very early.

For the previous counterexample, less than

0.00019 %

of the hyper-period is simulated on average.

Most configurations lead to a deadline miss very early.

For the previous counterexample, less than

0.00019 %

of the hyper-period is simulated on average.

Simulation time is ~ 2.5 days on an office computer.

#configurations = $(2n)! \times \prod_{i=1}^{n} (p_i + 1)$

#configurations =
$$(2 \times \prod_{i=1}^{n} (p_i + 1))$$

#configurations =
$$(2 \times \prod_{i=1}^{n} (p_i + 1))$$

Definition: RM+RM

A dual priority configuration is called *RM+RM* if

1 phase 1 priorities (π_i^1) are RM

2 phase 2 priorities (π_i^2) are RM

$$3 \max_i \{\pi_i^2\} \leqslant \min_i \{\pi_i^1\}$$

#configurations =
$$(2 \times \prod_{i=1}^{n} (p_i + 1))$$

Definition: RM+RM

A dual priority configuration is called *RM+RM* if

1 phase 1 priorities (π_i^1) are RM

- **2** phase 2 priorities (π_i^2) are RM
- 3 $\max_i \{\pi_i^2\} \leqslant \min_i \{\pi_i^1\}$

Conjecture 2 (George et al., 2014)

RM+RM is an optimal choice of priorities.

(Sadly not, even considering only point **1** above)

#configurations =
$$(2 \times \prod_{i=1}^{n} (p_i + 1))$$

#configurations =
$$(2 \times 1 \times \prod_{i=1}^{n} 1)$$

Conjecture 3 (Fautrel et al., 2018)

FDMS always finds optimal phase change points.

(Sadly not) 11

Recognizing the needle

A simple schedulability analysis strategy

1 Try *RM+RM* priorities with *FDMS*

2 If not successful, check configurations exhaustively

Doing **1** is *much* faster than **2**, and works most of the time.

WHERE IS MY HAYSTACK?

WHERE IS MY HAYSTACK?

- 4 tasks
- Utilization ∈ [0.99999, 1]
- Periods chosen from the first 100 primes
- $\prod_{i=1}^{n} p_i \leq 35\,000\,000$

WHERE IS MY HAYSTACK?

Random task sets were tested from this search space until an unschedulable one was found. This is the breakdown:

	# task sets	% of explored search space
Schedulable with RM+RM using FDMS	129823	$\sim 99.67\%$
Schedulable with other configurations	431	$\sim 0.33\%$
Unschedulable	1	$\sim 0.0008\%$

Fact It took 26 years and evaluating millions of task sets to find a single unschedulable one.

But perhaps it behaves worse for larger task sets.

Fact It took 26 years and evaluating millions of task sets to find a single unschedulable one.

But perhaps it behaves worse for larger task sets.

To fully exploit the apparent near-optimality we need efficient tests and methods for finding the right parameters.

Open problem 1

Can we efficiently determine if there exists a schedulable configuration?

Open problem 1

Can we efficiently determine if there exists a schedulable configuration?

In PSPACE, no lower bounds known

Open problem 1

Can we efficiently determine if there exists a schedulable configuration?

In PSPACE, no lower bounds known

Open problem 2

If yes, can we efficiently find it?

Open problem 3

Can we efficiently evaluate a given configuration?

In PSPACE, weakly NP-hard

In PSPACE, weakly NP-hard Simulation only works for periodic tasks (George et al., 2014)

Open problem 4

What is the utilization bound?

Open problem 4

What is the utilization bound?

Must be in the interval $[\ln(2),1)$

It is for *n*-priority scheduling, where $n = |\mathcal{T}|$ (Pathan, 2015)

Can't be brute forced!

Precondition

We need to define the tie-breaking rule.

But most of them don't make sense!

The number of priority orderings with ties are counted by the *Fubini numbers*, growing faster than the factorials.

The same counterexample remains unchedulable if priorities can be shared and FIFO or LIFO is used for ties.

(Not in the paper) 17
Special thanks to

Martina Maggio

Joël Goossens

Artifact evaluators

∀Thank you!↓☐Questions?