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How does it work?

• Implicit deadline periodic tasks
• Single preemptive processor

Assumptions

For each task τi = (ei, pi), assign
• a phase change point δi ∈ {0, . . . , pi}
• two priority levels: π1

i and π2
i

Configurations
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Comparing with FP and EDF

FP:

suboptimal

πi πi

Dual prio:

?

π1
i π1

iπ2
i π2

i

EDF:

optimal

9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7
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Is dual priority scheduling optimal?

Dual priority scheduling is optimal for implicit deadline
periodic tasks.

Conjecture 1 (Burns and Wellings, 1993)

(Sadly not)
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Why was this a difficult conjecture?

Find a task set that is
• feasible (U ⩽ 1), and
• not dual priority schedulable.

Disproving the conjecture

Easy!

• Almost all task sets are schedulable
• Evaluating the schedulability can be very costly

But in practice…

For every configuration (setting of π1
i , π2

i , δi), simulate the
hyper-period until a deadline miss.

Schedulability test
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How many configurations are there?

• All priority levels are unique
⇒ A total of (2n)! permutations

• Phase change points (δi) are integer
⇒ A total of

∏n
i=1(pi + 1) combinations

Assumptions

A task set T = {τ1, . . . , τn} has

(2n)!×
n∏

i=1

(pi + 1)

distinct configurations.
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A counterexample

ei pi
τ1 8 19

τ2 13 29

τ3 9 151

τ4 14 197

hyper-period: 16 390 597
utilization: ∼ 0.9999971

Not dual priority schedulable

#configurations = (2n)!×
n∏

i=1

(pi + 1) = 728 082 432 000

Simulating the full hyper-period for all configurations
would take hundreds of years on my computer.
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The saving grace

Most configurations lead to a deadline miss very early.

For the previous counterexample, less than

0.00019 %

of the hyper-period is simulated on average.

Simulation time is ∼ 2.5 days on an office computer.
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Recognizing the needle: RM+RM

#configurations = (2n)!×
∏n

i=1(pi + 1)

A dual priority configuration is called RM+RM if

1 phase 1 priorities (π1
i ) are RM

2 phase 2 priorities (π2
i ) are RM

3 maxi{π2
i } ⩽ mini{π1

i }

Definition: RM+RM

RM+RM is an optimal choice of priorities.

Conjecture 2 (George et al., 2014)

(Sadly not, even considering only point 1 above)
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Recognizing the needle: FDMS (Fautrel et al., 2018)

#configurations = (2n)!×
∏n

i=1(pi + 1)

7

FDMS always finds optimal phase change points.

Conjecture 3 (Fautrel et al., 2018)

(Sadly not)
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Recognizing the needle

1 Try RM+RM priorities with FDMS

2 If not successful, check configurations exhaustively

A simple schedulability analysis strategy

Doing 1 is much faster than 2 , and works most of the time.
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Where is my haystack?

• 4 tasks
• Utilization ∈ [0.99999, 1]

• Periods chosen from the first 100 primes
• ∏n

i=1 pi ⩽ 35 000 000

An ad hoc search space

Random task sets were tested from this search space until an
unschedulable one was found. This is the breakdown:

# task sets % of explored search space
Schedulable with RM+RM using FDMS 129 823 ∼ 99.67%
Schedulable with other configurations 431 ∼ 0.33%
Unschedulable 1 ∼ 0.0008%
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So dual priority scheduling is no good?

It took 26 years and evaluating millions of task sets to find
a single unschedulable one.

Fact

But perhaps it behaves worse for larger task sets.

To fully exploit the apparent near-optimality we need effi-
cient tests and methods for finding the right parameters.
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Open problems

Can we efficiently determine if there exists a schedulable
configuration?

Open problem 1

In PSPACE, no lower bounds known

If yes, can we efficiently find it?

Open problem 2

Can we efficiently evaluate a given configuration?

Open problem 3

In PSPACE, weakly NP-hard
Simulation only works for periodic tasks (George et al., 2014)
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Open problems

What is the utilization bound?

Open problem 4

Must be in the interval [ln(2), 1)

Is k-priority scheduling optimal for some constant k?

Open problem 5

It is for n-priority scheduling, where n = |T| (Pathan, 2015)

What about rational phase change points?

Open problem 6

Can’t be brute forced!
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What if not all priorities are uniqe?

We need to define the tie-breaking rule.

Precondition

But most of them don’t make sense!

The number of priority orderings with ties are counted by
the Fubini numbers, growing faster than the factorials.

Bad news

The same counterexample remains unchedulable if prior-
ities can be shared and FIFO or LIFO is used for ties.

Result

(Not in the paper)
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∀Thank you!
⋄

∃Questions?


