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Abstract
We study an engine control application where the behavior of engine controllers depends on
the engine’s rotational speed. For efficient and precise timing analysis, we use the Digraph
Real-Time (DRT) task model to specify the workload of control tasks where we employ optimal
control theory to faithfully calculate the respective minimum inter-release times. We show how
DRT models can be refined by finer grained partitioning of the state space of the engine up to a
model which enables an exact timing analysis. Compared to previously proposed methods which
are either unsafe or pessimistic, our work provides both abstract and tight characterizations of
the corresponding workload.
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1 Introduction

Cyber-physical systems are recognized by a tight integration of a physical process, which
is subject to dynamic changes, and a computing system, which is responsible for handling
the events initiated by the physical environment. From a real-time scheduling perspective,
an event triggers a task to release a new job which must be completed within a specified
time. Since the events are released according to the state of physical variables, and as the
physical system is subject to dynamic variations, there may exist no regular or completely
predictable release pattern for the jobs. In order to precisely specify the real-time workload
in the mentioned systems, which is necessary for an accurate timing (and schedulability)
analysis, one needs to (i) properly characterize the dynamic behavior of the physical system;
and, (ii) construct reliable models (i.e., task systems) to capture the respective workload.

A key parameter in real-time task models is the minimum inter-release time between
the jobs that are released by a task. In cyber-physical systems, such as an engine control
application [11], this parameter can change at run time based on the physical system dynamics
(i.e., engine speed in this case). Therefore, in order to accurately specify minimum inter-
release times for each task, the relation between system dynamics and the release pattern of
the corresponding events must be exploited in a rigorous way.
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11:2 Refinement of Workload Models for Engine Controllers

In this work, we employ a mathematical model of the physical system which is described
through a set of differential equations. We show how the parameters of the corresponding
real-time tasks, particularly minimum inter-release times, can be extracted in a faithful
manner with a tunable accuracy. For this purpose, we formulate the problem of finding
minimum inter-release times as an optimization problem. Then, we use the calculus of
variations [13] from optimal control theory to calculate the minimum time required by the
physical system to transfer from an initial state to a target state. The solution is used to
derive the minimum inter-release time of the respective jobs (as the release of a job depends
on the physical system’s state). Based on the obtained values, a digraph real-time (DRT) [17]
task is constructed as a representation of the engine control task. An important benefit
of using the DRT task model is that, while it is expressive enough to capture the varying
behavior of engine controllers, there exist efficient timing analysis methods for this task
model for both static and dynamic priority scheduling policies [20, 22]. Also, using the
theoretical framework of calculus of variations provides a “generic” solution which can be
adopted for systems with more complicated dynamical behavior.

As it will be shown, construction of a DRT task for an engine controller requires partition-
ing of the problem state space. In this work, we also propose a method for partitioning the
continuous range of the engine speed such that the resultant DRT task contains no pessimism
with respect to schedulability analysis. As a result, our method provides a tight workload
characterization of engine control tasks. To be consistent with the literature [5, 10, 4, 2],
hereafter engine control tasks are referred to as AVR (adaptive variable-rate) tasks.

The rest of this paper is organized as follows. Previous work on timing analysis of AVR
tasks is reviewed in the rest of this section. Section 2 introduces the system model considered
in the current work, as well as a number of basic relations. Our method for constructing a
DRT model for an AVR task is described in Section 3. Section 4 gives an illustrative example
of how the proposed method works on a sample AVR task with realistic engine parameters.
The faithfulness of the proposed method is formally established in Section 5. We present a
method to construct the DRT task such that it provides an exact schedulability analysis of
the AVR task in Section 6. The proposed method is evaluated in Section 7. A summary of
the paper as well as some remarks for extending the work is presented in Section 8.

Related work: Real-time tasks with continually variable parameters were studied by Kim
et al. [12] by introducing the rhythmic task model and proposing a respective response-time
analysis method for rate monotonic scheduling. The method, however, is restricted to task
sets with only one rhythmic task, which must be of the highest priority. Pollex et al. [16, 15]
relaxed this constraint by assuming a task system containing an arbitrary number of so-called
engine-triggered tasks. They proposed a sufficient schedulability test for such task sets
in [16] under the assumption of an arbitrary but constant angular speed. Later, in [15], they
removed the limitation to constant speeds, presenting a pessimistic analysis for the worst-case
response time of engine-triggered tasks. The accuracy of the analysis was improved in [9] by
taking the dependency of the tasks into account. The method also permits the execution
time of the jobs to be specified as a continuous function of the rotational speed. In contrast
to the analyses in [16, 15, 9], which present sufficient/pessimistic real-time analysis, our
method provides both necessary and sufficient conditions for schedulability.

A major problem with characterizing the workload of an AVR task is infiniteness of the
problem state space. This is because physical variables, such as the rotational speed, can
vary continuously, and the fact that task parameters depend on such variables. Davis et
al. [8] used state space quantization to address this issue, and then, presented a sufficient
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schedulability test using Integer Linear Programming (ILP). However, the method only
provides a sufficient test, containing additional pessimism due to the quantization.

Focusing on fixed priority schedulability of AVR tasks, Biondi et al. [5] overcame the
infinite state space problem by recognizing a set of finite cases (for the speed at the instant of
a job release) which dominate the whole state space. Based on this, schedulability analysis is
reduced to a search problem in the space of all possible dominant cases. The same approach
was used in [6] to derive the worst-case response time of a set of mixed periodic and AVR
tasks under fixed priority scheduling. The approach was further employed to develop an EDF
schedulability test for the respective tasks in [4]. In this case, dominant speeds are used to
calculate the demand bound function (dbf) based on which feasibility analysis is accomplished.
The analysis is proposed for those AVR tasks that depend on a single rotation source, and
have a zero angular phase and the same period. In [4], it is also proposed to use a digraph
structure, i.e., DRT graphs, for modeling and analysis of AVR tasks. A crucial restriction of
the analyses presented in [5, 6, 4] is that they are valid only when the following assumption
holds: between the release of two consecutive jobs of a task, the angular acceleration is
constant. However, in the general case where the acceleration may vary between the release
of two jobs, the proposed methods are not necessarily valid. We illustrate this issue in more
details in Sections 4 and 7 by providing concrete counter examples.

A model for describing AVR tasks that are implemented with a hysteresis during mode
switching has been proposed in [2]. Also, the dependency of the tasks on a common rotation
source is taken into account. The work is more general than our method in terms of considering
these realistic aspects. However, this generality comes at the cost of inaccuracy as they
present only an upper bound on the system utilization, which is used for schedulability tests.
The analysis is also restricted to the EDF scheduling algorithm. In a recent work, Biondi
and Buttazzo [3] considered the speed estimation problem and its impact on schedulability
analysis of AVR tasks. They argue that in practice, there is not a precise knowledge about
the instantaneous speed of the engine. Based on this observation, they study the error that is
introduced by state estimation into the analysis. Meanwhile, they do not focus on providing
a new timing analysis method.

An initial idea of using the DRT task model for feasibility analysis of AVR tasks was also
proposed by Guo and Baruah [10]. Compared to our work, the method in [10] considers a
pessimistic assumption for extracting the inter-release times. More precisely, when switching
from a mode to another one that corresponds to a higher speed range, the method assumes that
the engine rotates with the maximum acceleration irrespective of whether this acceleration
will lead to the designated speed range or not. Hence, the method provides a pessimistic
lower bound on the minimum inter-release time which, as will be shown in Section 4, can be
tightened. A similar assumption was used by Feld and Slomka [9] for response-time analysis
of AVR tasks under fixed priority scheduling, where the maximum acceleration is used to
compute the interfering workload of higher priority tasks in a given interval. As a result, the
approach suffers from the same pessimism in timing analysis.

2 System model and preliminaries

This section presents the model used in the current study to describe the engine’s dynamics.
AVR and DRT task models are also briefly reviewed.

ECRTS 2017



11:4 Refinement of Workload Models for Engine Controllers

2.1 Dynamical system
In order to specify the state of the dynamical system and its evolution, three variables are
defined: θ(t) .= angular position of the crankshaft, ω(t) .= angular velocity (rotational speed),
and α(t) .= angular acceleration, where t denotes the physical time. These variables are
related to each other through the following equations [9]:

ω(t) = θ̇ = dθ

dt
, (1)

α(t) = ω̇ = dω

dt
. (2)

The minimum and maximum possible accelerations are denoted by α− and α+, respectively.
Further, the rotational speed can vary in the range [ωmin, ωmax).

Under a fixed acceleration, θ and ω can be expressed as explicit functions of time. Towards
this, assume a constant acceleration α during an interval of [0, te]. Then, from (1) and (2),
the angular position and speed at any time instant t ∈ [0, te] can be computed by

θ(t) = 1
2αt

2 + ω0t+ θ0, (3)

ω(t) = ω0 + αt, (4)

where θ0 and ω0 denote the initial angle and the initial speed, respectively. From these
equations, the relation between θ and ω under a constant acceleration α can be specified as

θ(ω) = 1
2α
(
ω2 − ω2

0
)

+ θ0. (5)

Assuming an initial speed ω0 and a constant acceleration of α, the time it takes to have
an angular change of ∆θ can be calculated, as shown in [7], by

T (ω0, α,∆θ) =
√
ω2

0 + 2α∆θ − ω0

α
. (6)

Also, the speed after an angular change of ∆θ, denoted by Ω(ω0, α,∆θ), is derived as, [5]:

Ω(ω0, α,∆θ) =
√
ω2

0 + 2α∆θ. (7)

According to the described relations, we point out two properties assuming the domain of
non-negative values for ω0 and ∆θ.

I Property 1. Function T (ω0, α,∆θ) defined in (6) is (strictly) decreasing in ω0 and α.

I Property 2. Function Ω(ω0, α,∆θ) defined in (7) is (strictly) increasing in ω0 and α.

Throughout this work, we assume that ∆θ specifies the crankshaft revolution in terms of
“number of rotations”. As a result, a full rotation is recognized by ∆θ = 1. Hence, according
to (7), and assuming an initial speed of ω0 and a constant acceleration of α, the speed
after one complete revolution, denoted by Ω1(ω0, α), would be Ω1(ω0, α) =

√
ω2

0 + 2α. As a
generalization, by Ωi(ω0, α) we denote the speed after exactly i rotations, for i ∈ N, which
can be calculated (under the same assumptions) as

Ωi(ω0, α) =
√
ω2

0 + 2iα. (8)
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2.2 AVR tasks

We consider the AVR task model that is commonly used in the literature (e.g., [5, 2, 4, 10]).
Based on this model, an AVR task releases a new job whenever the crankshaft of the
engine reaches a specific angle. Without loss of generality, we assume that the jobs are
released whenever one full rotation is taken (i.e., ∆θ = 1).1 The functionality of an AVR
task is determined according to the instantaneous rotational speed. More specifically, a
task comprises a set of M modes, each of which is related to a certain speed range. At
run time, according to the instantaneous speed, a mode is selected and the corresponding
functionality is executed. Based on this, each mode is specified by a pair (Cm, [ωm, ωm+1))
which associates a worst-case execution time (WCET) Cm and a speed range [ωm, ωm+1)
to the mode. Consequently, the set of modes associated to a task is described as M =
{(Cm, [ωm, ωm+1)) | m = 1, 2, . . . ,M}, where ω1 = ωmin and ωM+1 = ωmax .

2.3 The DRT task model

Our goal is to abstract the behavior of engine control applications such that, while having an
accurate characterization, one can achieve efficient timing analysis. For this purpose, we use
the DRT task model, which provides the facility of modeling real-time tasks with variable
(mode switching) behavior, as described below.

A DRT task T is specified by a directed graph G(T ) = (V,E), where V and E denote the
set of vertices and edges, respectively. Each vertex v ∈ V corresponds to a specific job type,
labeled by a pair of non-negative integers 〈e(v), d(v)〉, where e(v) and d(v) represent the
WCET and relative deadline of the respective jobs. Each edge (v, u) ∈ E is also labeled by a
non-negative integer p(v, u) which shows the minimum inter-release time between any job of
v and any job of u. In such a graph, the existence of multiple outgoing edges from one vertex
represents a notion of non-determinism in the type of the next job. Hence, each path in the
graph is related to a possible sequence of jobs which can be released by the task. While
this real-time task model provides a high degree of expressiveness, there exists quite efficient
methods for feasibility [17], schedulability [19], and response-time [18] analysis of DRT task
sets. In subsequent sections, we use the terms DRT task and DRT graph interchangeably.

3 AVR to DRT transformation

For modeling an AVR task as a DRT graph, two problems need to be addressed: (i) parti-
tioning the speed range (i.e., [ωmin, ωmax)) into an appropriate set of sub-intervals (each of
which will be mapped to a DRT vertex); and (ii) constructing a DRT graph (and deriving
its parameter values) based on these sub-intervals. For a better presentation, we first tackle
the second one in this section, where we show how one can obtain a DRT graph for an AVR
task assuming a given speed range partitioning. In Section 6, we deal with the first issue,
and present a method to partition the speed range such that schedulability analysis of the
obtained DRT graph provides an exact schedulability test for the original AVR task. We will
refer to such a DRT graph as a tight model for the AVR task.

1 To see how the general case can be considered in the system model, see, for example, [4].

ECRTS 2017
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Figure 1 A sample DRT task with three vertices.

3.1 Transformation method

The idea is to capture the continuous state space of the engine speed, which determines the
AVR task functionality, by a number of K vertices (job types) of a DRT graph. For this
purpose, we assume a partition of the speed range [ωmin, ωmax) into a set of K sub-intervals
{[ρ1, ρ2), . . . , [ρK , ρK+1)}, where ρ1 = ωmin and ρK+1 = ωmax . Each sub-interval will be
mapped a vertex of the DRT task. A trivial partitioning can be obtained by the speed ranges
linked to the modes of the considered AVR task. However, any other partitioning can be
used as well, leading to different levels of precision of the obtained DRT task, and thus, the
respective timing analyses.

Figure 1 demonstrates a sample DRT task where each vertex is associated with a speed
range. Based on this model, when the speed at the job release time is a value in the range of
[ρi , ρi+1), for i ∈ {1, 2, 3}, a job of type vi is released.

After the set of vertices are obtained, the label of each edge e = (v, u), namely the
minimum inter-release time, is determined based on the following observation. A job of u
can be released whenever an entire rotation is taken by the crankshaft after the release of a
job of type v. As a result, the minimum inter-release time is equal to the minimum time
that it takes for the crankshaft to have a full rotation. The initial speed may be any value
in the range associated to vertex v. In turn, the final speed (i.e., the speed exactly at the
moment when the rotation completes) can be any value in the speed range of vertex u.

Based on these descriptions, we construct a DRT graph for a given AVR task. The
procedure is shown in Algorithm 1. In Line 6 of Algorithm 1, the WCET of each vertex is
determined by the maximum execution time of those modes whose speed range has an overlap
with the speed range associated to that vertex. Next, the edge labels are specified (Lines 10
to 16). As seen, the procedure depends on calculating the minimum inter-release times by
calling MinTime(.). The procedure MinTime(.) gets two speed ranges and uses a method
from the optimal control theory to calculate the minimum possible time required for one
rotation starting from a speed in the first range and ending in a speed in the second range.
A formal description of the problem of finding the minimum time under these constraints
and its solution are presented in the next subsection.

In order to determine the relative deadline of job types, we assume that each job needs
to be finished before the release of the next job. As a result, for each job type, the minimum
inter-release time among all outgoing edges from the respective vertex is considered as its
relative deadline (Line 19 in Algorithm 1).
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Algorithm 1 Deriving a DRT graph for an AVR task
input: A set M = {(Cm, [ωm , ωm+1)) | m = 1, . . . ,M} of AVR task modes; Speed intervals
{[ρ1, ρ2), . . . , [ρK , ρK+1)}.
output: A DRT graph.

1: procedure ConstructDRT
2: V ← {}, E ← {}
3: . Creating the vertices:
4: for i← 1 to K do
5: vi ← A new vertex
6: e(vi)← max

1≤j≤M
{Cj | [ρi , ρi+1) ∩ [ωj , ωj+1) 6= ∅}

7: V ← V ∪ {vi}
8: end for
9: . Creating the edges:

10: for all vi, vj ∈ V do
11: p←MinTime([ρi , ρi+1), [ρj , ρj+1))
12: if p 6=∞ then
13: p(vi, vj)← p

14: E ← E ∪ {(vi, vj)}
15: end if
16: end for
17: . Setting relative deadlines:
18: for i← 1 to K do
19: d(vi)← min {p(vi, vj) | (vi, vj) ∈ E}
20: end for
21: G← (V,E)
22: return G

23: end procedure

3.2 Computing minimum inter-release times

The goal is to calculate minimum inter-release times in the obtained DRT graph. For this, we
first express the problem of finding minimum inter-release times as a minimization problem.

I Problem 1 (Minimum-time problem). Consider a dynamical system described by Eqs. (1)
and (2). Also, assume that [ρi , ρi+1) and [ρf , ρf +1) are two given speed intervals. The
problem is to find the minimum time t∗ > 0 for which θ(t∗) = 1 (which specifies one complete
rotation), subject to θ(0) = 0, ω(0) ∈ [ρi , ρi+1), ω(t∗) ∈ [ρf , ρf +1), and

ωmin ≤ ω(t) ≤ ωmax , ∀t ∈ [0, t∗], (9a)
α− ≤ α(t) ≤ α+, ∀t ∈ [0, t∗]. (9b)

In words, the constraints express that we start at the angular position 0 with a speed in
interval [ρi , ρi+1) and want to end up in speed interval [ρf , ρf +1) after one full rotation.

In the context of optimal control of dynamical systems, this problem is regarded as a
minimum-time control problem [13]. Stating Problem 1 in that context, we can think of the
acceleration function α(t) as the control input. Then, the problem is to find the optimal
control (namely, the function α(t)) which reveals the minimum time, while the initial and
terminal states are constrained. The so-called Pontryagin’s minimum principle [13] provides
necessary conditions for an optimal solution to this problem. The principle is based on the
notion of Hamiltonian function, reviewed below.

ECRTS 2017



11:8 Refinement of Workload Models for Engine Controllers

I Definition 1 (Hamiltonian, [13]). Consider the dynamical system and the optimization
problem specified in Problem 1. Further, let ψ1 and ψ2 denote two functions (of t). Then,
the Hamiltonian is defined as2

H(ψ1, ψ2, θ, ω, α) = ψ1ω + ψ2α+ 1. (10)

I Theorem 2 (Pontryagin’s minimum principle, [13]). Let α∗(.) be an acceleration function
which reveals the optimal solution of Problem 1. Then, functions ψ1 and ψ2 exist which
satisfy

dψ1

dt
= ∂H

∂θ
, and dψ2

dt
= ∂H

∂ω
, (11)

and

H(ψ1, ψ2, θ, ω, α
∗) ≤ H(ψ1, ψ2, θ, ω, α) (12)

for all admissible controls α(.) and all times t ∈ [t0, tf ].

The theorem expresses that the optimal control α∗ for the original problem must minimize
the Hamiltonian as well. Thus, instead of solving Problem 1 directly, we focus on finding the
control function that minimizes the Hamiltonian, which is typically an easier problem.

The necessary condition stated by the theorem provides a way to characterize the optimal
control. Specifically, from (11) in Theorem 2, and by taking the derivative of the Hamiltonian,
i.e., H() defined in (10), with respect to θ and ω, we reach ψ̇1(t) = 0 and ψ̇2(t) = −ψ1, which
yield

ψ1(t) = c1,

ψ2(t) = −c1t+ c2,
(13)

for two (unknown) constants c1 and c2. By replacing ψ1(t) and ψ2(t) in (10) with their
definition in (13), the Hamiltonian is obtained as

H(ψ1, ψ2, θ, ω, α) = c1x2 + (−c1t+ c2)α+ 1. (14)

According to the Pontryagin’s minimum principle (Theorem 2), a necessary condition for a
control variable α to be an optimal solution to Problem 1 is that it minimizes the Hamiltonian.
Based on (14), the acceleration function which minimizes the Hamiltonian is determined by

α∗(t) =
{
α+, if − c1t+ c2 < 0,
α−, if − c1t+ c2 > 0.

(15)

Consequently, as also shown in [13, 21] for a similar setting, the optimal control function,
i.e., the engine acceleration which minimizes the time, should be

α∗(t) =


α+, for all t ∈ [0, t∗], or
α−, for all t ∈ [0, t∗], or
α+, for t ∈ [0, t1) and α−, for t ∈ [t1, t∗], or
α−, for t ∈ [0, t1) and α+, for t ∈ [t1, t∗].

(16)

2 The Hamiltonian does not directly depend on θ in our problem. However, to follow the general form,
we include θ in the arguments list. For a generic definition of the Hamiltonian see [13].
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ρf

ρf+1

ρf

ρf+1

Ω
M+

Ωm
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(a) Case 1 (infeasible)

ρi
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ρf+1
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ρi

ρi+1

ρf

ρf+1

time0 t∗

(b) Case 2,3 (fixed accel.)

ρi

ρi+1
ρf

ρf+1

Ω
M−

ρi

ρi+1

ρf

ρf+1

time0 t∗

(c) Case 4 (variable accel.)

Figure 2 Possible cases for minimum time revolution. Dashed lines indicate speed variation in the
optimal solution; dot-dashed lines show speed evolution under an extreme (minimum or maximum)
acceleration; t∗ stands for the instant of one full rotation.

(as long as the system constraints, i.e., lower and upper speed and acceleration bounds, are
not violated.) In order to determine which case in (16) provides the optimal solution, we
need a secondary condition. For this, we notice that, in the beginning, the system must start
with its maximum possible speed that can lead to a feasible solution. The reason is as follows.
Assume an optimal solution where the system does not start from the maximum speed in the
permitted range. This means that there exists a higher speed at which the system can start
and yet provide a feasible solution. Based on Property 1, this solution provides a smaller
time, or equivalently, a better solution compared to the presumed optimal one, which is a
contradiction. This observation, which is referred to as the transversality condition [21], is
used to obtain the actual optimal solutions, as described in the following.

The optimal solution of Problem 1 is determined according to the value of the problem
parameters, i.e., α−, α+, ρi , ρi+1, ρf , and ρf +1. More particularly, with respect to the
existence of a solution, and also the criteria specified by (16) for computing the optimal
result, if it exists, different cases can be identified. To introduce and deal with these cases,
we first define the following notations (using Eq. (8))

Ωm
.= Ω1(ρi , α

−) =
√
ρ2

i + 2α− (17a)

ΩM−
.= Ω1(ρi+1, α

−) =
√
ρ2

i+1 + 2α− (17b)

ΩM+
.= Ω1(ρi+1, α

+) =
√
ρ2

i+1 + 2α+ (17c)

Figure 2 depicts all possible situations regarding an optimal solution. We formally specify
and treat each case as follows.

Case 1: ΩM+ ≤ ρf or Ωm ≥ ρf +1 (Fig. 2a). In this case, the problem has no feasible
solution (this is implied by Property 2 and the continuity of Ω(., ., .) defined in (7)).

Case 2: ρf < ΩM+ ≤ ρf +1 (depicted in the upper part of Fig. 2b). Under this
condition, selecting an initial speed of ρi+1 and assigning α = α+, ∀t ∈ [0, t∗] reveal the
minimum time. Therefore, the duration of one rotation can be calculated through Eq. (6).

ECRTS 2017



11:10 Refinement of Workload Models for Engine Controllers

Case 3: Ωm < ρf +1 ≤ ΩM− (seen in the lower part of Fig 2b). In this case, the optimal
time is achieved when the acceleration is selected to be α− and the initial speed is selected
such that the final speed is ρf +1. In other words, from (8), the initial speed (denoted by ρ0)
must satisfy ρf +1 =

√
ρ2

0 + 2α−. This yields

ρ0 =
√
ρ2

f +1 − 2α−. (18)

Again, the duration of one rotation can be calculated by Eq. (6) with assigning ω0 = ρ0,
α = α−, and ∆θ = 1.

Case 4: ΩM− ≤ ρf +1 ≤ ΩM+ (seen in Fig 2c). In this situation, in the optimal
solution, the initial and final speed will be the maximum possible values, namely ρi+1 and
ρf +1, respectively. Also, the acceleration will be chosen to be α+ until a certain instant,
denoted by t1, and then it will be switched to α− (due to the transversality condition [21]).
To obtain the minimum time, we use the result of the following lemma.
I Lemma 3. Let ρ1 denote the rotational speed at time t1 defined in case 4. Then, ρ1 can
be computed as

ρ1 =

√
2α−α+ + α−ρ2

i+1 − α+ρ2
f +1

α− − α+ . (19)

Proof. Let θ1 represent the position at t1. From (5) it follows that θ1 = 1
2α+ (ρ2

1−ρ2
i+1). Also,

as the final position is assumed to be 1, we can write 1 = 1
2α− (ρ2

f +1−ρ2
1)+θ1. Substituting θ1

from the former equation to the latter one reveals 1 = ρ2
f+1

2α− −
ρ2

i+1
2α+ + ρ2

1( 1
2α+ − 1

2α− ). Solving
this equation for ρ1 gives (19). J

Two different cases may arise according to the value of ρ1 calculated in Lemma 3. If
the speed limit is not violated, i.e., if ρ1 ≤ ωmax , then the minimum time for one rotation,
denoted by t∗, can be computed as (based on (4))

t∗ = ρ1 − ρi+1

α+ + ρf +1 − ρ1

α−
. (20)

On the other hand, if ρ1 > ωmax , then after reaching the maximum speed, the acceleration is
forced to be 0 for a while and then, turning to α−. Under this scenario, we have t∗ = t∗1+t∗2+t∗3,
where t∗1, t∗2, and t∗3 denote the time durations in which the acceleration is α+, 0, and α−,
respectively, and are calculated as

t∗1 = (ωmax − ρi+1)/α+,

t∗2 = 1
ωmax

(
1−

ω2
max − ρ2

i+1
2α+ −

ρ2
f +1 − ωmax

2

2α−

)
,

t∗3 = (ρf +1 − ωmax)/α−.

(21)

Algorithm 2 summarizes the described procedure for solving Problem 1. As seen, according
to each case, a respective value is calculated, and finally returned.
I Lemma 4. Consider two vertices vi and vf in the constructed DRT graph associated with
speed intervals [ρi , ρi+1) and [ρf , ρf +1), respectively. Additionally, assume two jobs J1 and
J2 released by the AVR task such that the rotational speed at the release time of J1 lies in
[ρi , ρi+1), and at the release time of J2 lies in [ρf , ρf +1). Then, the inter-release time of J1
and J2 is not smaller than p(vi, vf ).
Proof. The Lemma follows from the optimality (minimality) of the solution provided by
Algorithm 2 for Problem 1. J
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Algorithm 2 Computing minimum time
input: [ρi , ρi+1): Initial speed range; [ρf , ρf +1): Final speed range.
output: p: A lower bound on the duration of one rotation.

1: procedure MinTime([ρi , ρi+1), [ρf , ρf +1))
2: Take Ωm,ΩM− , and ΩM+ as defined in (17).
3: if ρf ≥ ΩM+ or ρf +1 ≤ Ωm then
4: p←∞
5: else if ΩM+ ∈ (ρf , ρf +1] then
6: p← T (ρi+1, α

+) . Using (6)
7: else if ρf +1 ∈ (Ωm,ΩM− ] then
8: p← T (ρ0, α

−) . ρ0 is computed in (18)
9: else
10: Take ρ1 as in (19).
11: if ρ1 ≤ ωmax then
12: p← t∗ . t∗ is calculated by (20)
13: else
14: p← t∗1 + t∗2 + t∗3 . See (21)
15: end if
16: end if
17: return p

18: end procedure

4 An illustrative example

In this section, we show how the proposed method delivers minimum inter-release times
in comparison with existing methods using a sample AVR task. Also, it is shown how the
accuracy of the analysis can be improved by using more vertices in the DRT task. For our
purpose, we consider an AVR task with the parameters used in [6] and [8]. Accordingly,
the minimum and maximum speeds are assumed as ωmin = 500 rpm and ωmax = 6500
rpm. Further, the acceleration range is set as [α−, α+] = [−600000, 600000].3 This setting is
regarded as a reasonable representative for typical production car engines [8].

4.1 Calculating minimum inter-release time
This section demonstrates how the proposed method can provide a safe and also accurate
value for minimum inter-release times. We assume two modes with speed ranges [500, 600)
and [700, 800). The goal is to calculate the minimum time of one full rotation, while the
initial and final speeds are restricted to be in the former and latter speed range, respectively.
The diagram in the bottom of Fig. 3 shows the acceleration during one rotation for three
scenarios. The first scenario, represented with solid lines, is related to the proposed method,
where case 4 applies (Lines 11-12 in Algorithm 2). As seen, the acceleration is selected to
get its maximum value, namely 600 × 103, up to a certain point, and then, its minimum
value, i.e., −600× 103, during the rest of the interval. In contrast, the dashed line indicates
the acceleration which leads to the minimum time, when the system is supposed to select
a fixed acceleration during one rotation. In addition, the dot-dashed line corresponds to a
pessimistic approach where the acceleration constantly is assigned the maximum value.

The diagram in the middle of Fig. 3 shows the corresponding speeds for the mentioned
three approaches as a function of time. Also, the topmost diagram shows the respective

3 We use the revolution per minute (rpm) unit for rotational speed and rpm per minute for acceleration.
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Figure 3 Illustration of a rotation that leads to minimum time using three approaches. The
diagram in the bottom shows the acceleration, the middle one shows the respective speeds, and the
upper one depicts the corresponding angular positions.

angular variations. In this diagram, the time for one rotation is the point at which the
associated curve hits the horizontal (dotted) line. As seen, the minimum time (related to the
solid line) is around 70 ms, while the respective time for the case of a fixed acceleration will
be nearly 85 ms. This comparison shows that the assumption of fixed acceleration between
the release of two successive jobs, as is made in [5], [6], and [4], may lead to an optimistic
result. On the other hand, one can obtain a pessimistic result by relaxing the constraint
on the final speed, and then, selecting a constant maximum acceleration (as used in [10]).
This situation is shown by the dot-dashed line in the diagram, revealing a minimum time of
around 65 ms. In contrast, our proposed method exhibits a tighter, yet safe, result.

4.2 Deriving a DRT task

For extracting a DRT graph, we consider an AVR task with the same speed and acceleration
ranges as before. Further, we assume three modes recognized by the following speed ranges:
[500, 2500), [2500, 4500), and [4500, 6500). WCETs of the respective jobs for these modes are
assumed to be 5 ms, 3 ms, and 1 ms, respectively.

Figures 4a and 4b show the corresponding DRT tasks obtained through the proposed
method when using three and six vertices, respectively. The values on edges are in milliseconds
and have been rounded down to get a safe approximation of the minimum inter-release times.
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(a) An extracted DRT with three vertices.
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(b) An extracted DRT with six vertices.

Figure 4 DRT graphs for a sample AVR task.
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Figure 5 Demand-bound functions.

In the DRT graph shown in Fig. 4a, one vertex is considered per mode. In contrast, the
graph shown in Fig. 4b has two vertices for each mode of the AVR task, providing a model
with finer granularity. For this model, we considered six speed intervals with equal lengths.

To observe how the number of vertices influences timing analysis, we have calculated
the respective demand-bound function (dbf) [20] for each DRT task. Informally, a dbf is a
function of time; for any time instant t ≥ 0 its value denotes the maximum accumulated
workload that can arrive within any time interval of length t and have a deadline in the
same interval. This function provides a direct way to express a necessary and sufficient
condition for feasibility of a DRT task set [17]. As seen in Fig. 5, the task model with six
vertices always delivers an equal or smaller (i.e., tighter) workload than that of the model
with three vertices. This means that an AVR task which is actually schedulable, may be
(pessimistically) deemed as an unschedulable task when analyzed with a coarse grain model,
i.e., the DRT graph with three vertices. But when the graph is refined to a DRT task with
more vertices, it may be (correctly) recognized as a schedulable task.

5 Faithfulness of the method

Intuitively, a DRT graph is said to be a faithful (or sound) model for an AVR task if its
schedulability implies schedulability of the AVR task. In the following, we formalize this
definition, and then, validate that our method constructs a faithful model. For this purpose,
we first provide a number of required definitions.

5.1 Definitions

For an AVR task with a given set of modes, let C(ω) denote a function which takes a
speed value ω and returns the WCET of the mode to which ω belongs. Further, by a
triple (Ri, Ci, ωi) we denote a job released by the AVR task with a WCET of Ci and an
instantaneous rotational speed of ωi at time instant Ri. Also, we define a notion of valid
trajectory as follows.

I Definition 5 (Valid trajectory). Given two speeds ω0 and ωf , and a subset of real numbers
I = [r1, r2] with r1, r2 ∈ R≥0, a function α(t) : I 7→ R is said to be a valid acceleration
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trajectory, or simply a valid trajectory, from ω0 to ωf in the domain of I if it satisfies

α− ≤ α(t) ≤ α+, ∀t ∈ [r1, r2] ∧
ωmin ≤ ω̃(t) ≤ ωmax , ∀t ∈ [r1, r2] ∧
ω̃(r2) = ωf , ∧∫ r2

r1

ω̃(t)dt = 1,

(22)

where ω̃(x) is defined as ω̃(x) = ω0 +
∫ x
r1
α(t)dt.

In order to capture the workload generated by AVR tasks, we define the notion of A-trace.

I Definition 6 (A-trace). Take an AVR task as specified in Section 2.2. Then, any sequence
of triples [(R1, C1, ω1), . . . , (Rn, Cn, ωn)] is called an “A-trace” generated by the AVR task if

Ci = C(ωi) for all i ∈ {1, . . . , n}, and
for each i ∈ {1, . . . , n− 1} there exists a valid trajectory from ωi to ωi+1, defined over
the domain of [Ri, Ri+1].

Similarly, a notion of D-trace is defined for a DRT task.

I Definition 7 (D-trace). Consider a DRT task G = (V,E). Let v1 → v2 → . . .→ vn be an
arbitrary path in G. Then, any sequence of triples [(R1, C1, v1), . . . , (Rn, Cn, vn)] is called a
D-trace generated by the task if

Ci ≤ e(vi) for all i ∈ {1, . . . , n}, and
Ri+1 −Ri ≥ p(vi, vi+1) for all i ∈ {1, . . . , n− 1}.

For specifying the workload associated to the AVR and DRT task models in an abstract
and also comparable way, we further define a notion of job sequence.

I Definition 8 (Job sequence). Any sequence of tuples [(R1, C1), . . . , (Rn, Cn)] with Ri, Ci ∈
R≥0, for 1 ≤ i ≤ n, and Ri < Ri+1, for 1 ≤ i < n, is called a job sequence.

A job sequence σ = [(R1, C1), . . . , (Rn, Cn)] is said to be producible by an AVR task if
and only if there exist values ω1, ω2, . . . , ωn such that [(R1, C1, ω1), . . . , (Rn, Cn, ωn)] is an
A-trace generated by the task. Analogously, σ can be generated by a DRT task G if and
only if there exists a path v1 → v2 → . . .→ vn in G such that [(R1, C1, v1), . . . , (Rn, Cn, vn)]
is a D-trace generated by G. Such workload characterization conforms to the semantics
of DRT [20], which enables us to employ the respective timing analysis methods [19, 20].
According to these definitions, the notion of behavioral inclusion is defined as follows.

I Definition 9 (Behavior inclusion). Consider a DRT task, denoted by TD, and an AVR task,
denoted by TA. Let σD and σA denote the set of all job sequences generated by TD and TA,
respectively. Then, the behavior of TA is said to be included by TD if σA ⊆ σD.

Finally, we define faithfulness of a model as follows.

I Definition 10 (Faithfulness). A DRT graph TD provides a faithful model for an AVR task
TA if schedulability of TD entails schedulability of TA.

5.2 Faithfulness validation
The goal is to demonstrate that Algorithm 1 reveals a faithful model for a given AVR task.
For this purpose, we first review a result with respect to behavior inclusion.



M. Mohaqeqi, J. Abdullah, P. Ekberg, and W. Yi 11:15

I Lemma 11. Consider a set of AVR tasks τA and a set of corresponding DRT tasks τD where
the behavior of each AVR task is included by the respective DRT task. Then, schedulability
of τD implies schedulability of τA.

Proof. We prove the contrapositive. Let τA be unschedulable. Then, there exists a set of job
sequences, each produced by one task, in which a job misses its deadline. As it is supposed
that the behavior of every AVR task is included by its corresponding DRT task, the same
set of job sequences can be generated by τD as well. As a result, there exists a scenario in
which τD is unschedulable, too, by which the lemma is followed. J

Now, we will show that the DRT graph created by Algorithm 1 includes the behavior of
the given AVR task. For this goal, we review the following property regarding the algorithm.

I Property 3. Consider an AVR task TA and the corresponding DRT task TD. Let
[(R1, C1, ω1), . . . , (Rn, Cn, ωn)] denote an arbitrary A-trace generated by TA. Further, let
v(ωi) denote the vertex in the graph of TD whose corresponded speed range includes ωi. Then,
based on Line 6 in Algorithm 1, we have

C(ωi) ≤ e(v(ωi)), for 1 ≤ i ≤ n. (23)

Moreover, according to Lemma 4, it holds that

p (v(ωi), v(ωi+1)) ≤ Ri+1 −Ri, for 1 ≤ i < n. (24)

Using this property, we establish a relation between an AVR task and its associated DRT
graph in terms of behavioral inclusion.

I Lemma 12. The DRT task constructed by Algorithm 1 includes the behavior of the given
AVR task.

Proof. Consider any arbitrary AVR task TA and the associated DRT task TD. Based on
Definition 9, we need to show that the set of job sequences generated by TA is a subset of
that of TD. For this purpose, we show that for any A-trace generated by the AVR task,
there exists (at least) one D-trace generated by TD which gets the same job sequence. Take
an arbitrary A-trace σ = [(R1, C1, ω1), . . . , (Rn, Cn, ωn)] generated by TA. Correspondingly,
consider a D-trace specified as σ′ = [(R1, C1, v(ω1)), . . . , (Rn, Cn, v(ωn))]. According to
Property 3, relations (23) and (24) hold for σ′. As a result, by the definition of D-trace in
Definition 7, σ′ constitutes a valid D-trace for TD. Then, since the job sequence associated
to σ and that of σ′ are the same, the proof completes. J

Putting these together, we show that Algorithm 1 provides a faithful model.

I Lemma 13. The DRT graph generated for an AVR task by Algorithm 1 is a faithful model.

Proof. Based on Lemma 12, the AVR task behavior is included by the obtained DRT graph.
According to Lemma 11, this is a sufficient condition for faithfulness defined in Definition 10,
which implies faithfulness of the DRT graph. J

6 Deriving a tight model

Up to now, we have shown that the constructed DRT graph gives a safe characterization in
terms of schedulability analysis. However, it may lead to a pessimistic result. This section
provides the criteria under which a DRT task provides a tight workload characterization, i.e.,
neither pessimistic nor optimistic, for an AVR task.
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6.1 Definitions and assumptions
Before tackling tightness of the method, we present two definitions.

I Definition 14 (Point and interval reachability). A speed ωf is said to be reachable from
a speed ω0, denoted as ω0  ωf , if there exists a valid trajectory from ω0 to ωf . Further,
a speed interval F is reachable from another speed interval I, denoted as I ∆

 F , if
∃ω0 ∈ I, ∃ωf ∈ F : ω0  ωf .

Intuitively, a speed ωf is reachable from ω0 if, starting with the speed ω0, the engine speed can
reach ωf after exactly one rotation, while speed and acceleration constraints are preserved.

I Definition 15 (Tight model). A DRT task TD is a tight model for an AVR task TA with
respect to a scheduling policy Sch if, when the system is scheduled by Sch,
1. schedulability of TD entails schedulability of TA, and
2. unschedulability of TD entails unschedulability of TA.

In the following, we assume that the absolute values of the maximum and minimum
accelerations are equal, i.e., α+ = −α−.

6.2 Sufficient conditions for tightness
In this section, we present sufficient conditions under which a DRT task is a tight model for
a given AVR task.

I Lemma 16. Consider an AVR task, denoted by TA, and a DRT task, denoted by TD, which
is obtained by Algorithm 1 when applied on TA with a given speed partitioning. Suppose that

σ̂D ⊆ σA, (25)

where σ̂D denotes the set of those job sequences generated by TD in which the inter-release
separation time between every two successive jobs is exactly equal to the corresponding
minimum inter-release time specified by TD. Then, TD is a tight model for TA with respect
to EDF and also any fixed priority scheduling algorithm.

Proof. For the proof, we need to verify the two tightness conditions specified in Definition 15.
The first one is already shown by Lemma 13. To validate the second property, we notice
that σ̂D always provides the critical scheduling instant for both EDF and fixed priority
scheduling policies [20]. In other words, if the DRT task is unschedulable, then there exists a
job sequence in σ̂D which leads to a deadline miss. In turn, according to (25), such a job
sequence is also included by σA. As a result, the considered AVR task contains a scenario
leading to a deadline miss, which means unschedulability of the task. Thus, the second
condition for the tightness also holds. J

Using the above lemma, we present conditions under which Algorithm 1 provides a tight
DRT task. Take an arbitrary AVR task with a speed range [ωmin, ωmax) and a set ofM modes.
Assume a partitioning of [ωmin, ωmax) into K sub-intervals P = {[ρ1, ρ2), . . . , [ρK , ρK+1)}
(with ρ1 = ωmin and ρK+1 = ωmax) for which the following properties hold.

∀i, j ∈ {1, . . .K} : [ρi , ρi+1) ∆
 [ρj , ρj+1) =⇒ ρi+1  ρj+1, (26)

∀m ∈ {1, . . . ,M} : ∃i ∈ {1, . . . ,K + 1} : ωm = ρi . (27)

The first property states that if there is any speed in the second range which is reachable
from one speed in the other range, then the maximum speed of the second range should be
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reachable from the maximum speed of the first range. As a result, our method for calculating
minimum inter-release times for a vertex in the corresponding DRT graphs, which assumes
the maximum feasible speeds (see Fig. 2), does not introduce a pessimism. Property (27)
requires that every speed in the boundary of a mode must be a boundary speed in one of the
sub-intervals in P .

I Lemma 17. The DRT graph obtained by Algorithm 1 for a given AVR task under a given
speed partitioning with the properties specified by (26) and (27) provides a tight model.

Proof. Let TD and TA denote the DRT task and AVR task, respectively, and σ̂D to be
as defined as in Lemma 16. According to Lemma 16, it suffices to show that (25) holds.
Consider an arbitrary job sequence in σ̂D which corresponds to a D-trace specified as σ′ =
[(R1, C1, v1), . . . , (Rn, Cn, vn)]. We show that there exists an A-trace as well which produces
the same job sequence. Let [ρl(vi), ρu(vi)) denote the speed interval associated to the vertex
vi, for i ∈ {1, . . . , n}. Then, consider theA-trace σ = [(R1, C1, ρ

−
u (v1)), . . . , (Rn, Cn, ρ−u (vn))],

where ρ−u (vi), for 1 ≤ i ≤ n, denotes a value smaller than, but sufficiently close to ρu(vi).
Due to the second condition (i.e., (27)), each vertex of the DRT task is associated to only
one mode of the AVR task. As a result, the WCET of each vertex is exactly the WCET of
that mode. Furthermore, according to the assumed D-trace, there exists at least one speed
value in [ρl(vi+1), ρu(vi+1)) which is reachable from [ρl(vi), ρu(vi)), for 1 ≤ i < n (because
otherwise, there is no edge from vi to vi+1, and then, vi and vi+1 cannot be successive jobs).
Due to the first assumption above, i.e., (26), this implies that the speed ρ−u (vi+1) is reachable
from ρ−u (vi). The corresponding edge label, that is, the specified minimum inter-release time,
in the DRT task is also equal to the time it takes to make one full rotation when the initial
speed is ρ−u (vi) and the final speed is ρ−u (vi+1) (based on Algorithm 1 and Fig. 2). As a result,
σ denotes a valid A-trace which can be generated by the AVR task. Hence, σ̂D ⊆ σA. J

6.3 An exact DRT model
In this section we provide a method to obtain a speed partitioning satisfying Properties (26)
and (27), and as a result, providing a tight DRT task.

Intuitively, in order for a speed partitioning to satisfy (26), all speeds reachable from a
boundary speed must be also a boundary speed. Based on this, the set of speeds used to
partition the speed range [ωmin, ωmax) of an AVR task which contains M modes is defined
as:

ρ = {ωi |1 ≤ i ≤M + 1} ∪ {Ωn(ωi , α
+) < ωmax |1 ≤ n, 1 ≤ i ≤M} (28)

∪ {Ωn(ωi , α
−) > ωmin|1 ≤ n, 2 ≤ i ≤M + 1}

I Corollary 18. Consider the set ρ defined in (28). For any s ∈ ρ, either Ω1(s, α+) ∈ ρ , or
Ω1(s, α+) > ωmax .

We then obtain a speed partitioning using the speeds in ρ as interval boundaries.

I Lemma 19. Consider the set ρ defined in (28) sorted in ascending order. Let the interval
between any two consecutive speeds of ρ to be a distinct speed range, leading to a set of |ρ| − 1
intervals. The speed partitioning obtained in this way satisfies Properties (26) and (27).

Proof. The second property (namely (27)) holds immediately by the definition of ρ. Suppose
that the first property does not hold. This means that, ∃i, j ∈ {1, . . . , |ρ| − 1} such that
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Table 1 Mode parameters of the considered AVR task.

i (mode) 1 2 3 4 5 6
ωi (rpm) 500 1500 2500 3500 4500 5500
Ci (µs) 965 576 424 343 277 246
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Figure 6 A partitioning of the speed range which leads to a tight characterization.

[ρi , ρi+1) ∆
 [ρj , ρj+1) but ρj+1 is not reachable from ρi+1. Without loss of generality, we

assume ρi+1 ≤ ρj . These assumptions imply that

ρj < Ω1(ρi+1, α
+) < ρj+1. (29)

However, according to Corollary 18, Ω1(ρi+1, α
+) should be a boundary speed, which

contradicts with (29). J

Putting Lemma 17 and Lemma 19 together implies that the DRT graph obtained by
using the above speed partitioning is a tight model. It is also worth noting that, based on the
definition of ρ in (28) and the definition of Ωi in (8), the number of speed ranges obtained
by the partitioning described in Lemma 19 is O(M × ω2

max−ω
2
min

2α+ ).

7 Evaluation results

For evaluation, the AVR task adopted in [5] is used. The parameters ωmin, ωmax , α−, and
α+ get the same values as in Section 4. Six modes are attributed to the task, described
in Table 1 [5]. We first applied the method presented in Section 6 to obtain a speed range
partitioning which reveals a DRT model with a tight characterization. The result is a
partitioning with 70 sub-intervals, depicted in Fig. 6. The boundary speeds of the intervals
are shown on the x-axis. To each boundary speed, a vertical line is associated which shows
the length of the interval whose starting point is that boundary speed. In higher speeds, the
intervals are typically shorter since the amount of speed evolution during one full rotation is
smaller for larger speed values.

In the following, we first examine the accuracy and runtime of the models with different
levels of granularity, as well as the models obtained by pessimistic and optimistic approaches,
in Subsection 7.1. Next, in Subsection 7.2, we show how the pessimistic and optimistic
approaches lead to inaccurate schedulability tests using two counter examples. All the
analyses is done using the Python library implemented for timing analysis of DRT tasks [20].
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Figure 7 Accuracy of DRT tasks obtained by different methods compared to the exact one.

7.1 Accuracy and run-time performance
As mentioned earlier, the accuracy of a DRT graph can be improved by using more vertices.
In our experiments, we extract five models with 3, 6, 12, 30, and 60 vertices. In each case,
the speed range [ωmin, ωmax ] is divided into equal-length intervals. The result obtained for
the task with the tight characterization is used as a reference. This task is obtained by
applying our DRT construction method to the speed partitioning of Fig. 6.

To measure the accuracy, we compute the accumulated difference between the demand-
bound function (dbf) [17] of each model and the reference one. We define this measure as
adbf (t) =

∑t
i=0

(
dbf k(t)− ˆdbf (t)

)
, where dbf k(t), for k ∈ {3, 6, 12, 30, 60}, denotes dbf of

the task with k vertices, and ˆdbf (t) denotes that of the reference task model. The results are
plotted in Fig. 7a, where the x-axis is the window size for which adbf is computed. As seen,
by increasing the number of vertices, the accuracy of the model considerably improves.

We also apply the methods proposed in [10] and [4] to the speed partitioning obtained by
our method in Section 6, depicted in Fig. 6. Compared to the tight DRT graph, which is
used as a reference, the resultant DRT graphs contain the same number of vertices. However,
for the model of [10], i.e., the pessimistic model, minimum inter-release times are equal to or
smaller than the values obtained by our method. In contrast, minimum inter-release times
for the model of [4], referred to as the optimistic model, are equal to or larger than those
of the reference one. The comparison result is shown in Fig. 7b, demonstrating that the
pessimistic and optimistic methods for calculation of minimum inter-release times introduce
inaccuracies to the analysis, even when applied to an appropriate speed partitioning. We
investigate the impact of this inaccuracy on schedulability tests in the next subsection.

We also examine the runtime of the methods. For this, the code is run using the pypy-5.1
compiler on a quad-core processor with 2.40 GHz frequency and a memory of 8 GB. Although
the reported results are platform-dependent, they provide a suitable view to the relative
complexity and scalability of the analyses. Table 2 gives the time needed for computing
the dbf for each model for the interval [0, 80000]µs. As expected, the runtime grows as the
granularity is increased from k = 3 vertices to k = 60 vertices. Runtime for the tight model
is also larger than that of the model with k = 60 vertices since it contains 70 vertices.

Additionally, the runtime for the tight model is less than the pessimistic one, and larger
than the optimistic one. To reason about this, we point out that DRT graphs in all of these
three cases contain the same number of vertices and edges. Meanwhile, to obtain dbf for
any time instant t, those paths of the graph that can be traversed within a time interval of
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Table 2 Runtime of computing dbf for different models.

DRT model k = 3 k = 6 k = 12 k = 30 k = 60 Tight Pessimistic Optimistic
Run-time (s) 0.09 0.5 0.71 1.93 10.36 15.82 16.45 14.01

t need to be enumerated. Hence, smaller minimum inter-release times potentially lead to
more number of paths for a specified t. Based on this observation, the pessimistic approach
exhibits larger runtime since it reveals smaller minimum inter-release times. On the other
hand, the optimistic method consists of equal or larger values of minimum inter-release
times, which has implied a shorter running time. Finally, it is worth mentioning that speed
partitioning and DRT graph construction steps take negligible time (less than 1%) compared
to the time needed for computing dbfs.

7.2 Comparison with respect to schedulability
In order to illustrate the influence of using imprecise models on schedulability tests, we
investigate EDF schedulability of a task set which consists of two tasks: an AVR task with the
above-described parameters, and a sporadic task whose WCET, relative deadline, and period
are denoted by C, D, and P , respectively. We recall that a set of independent real-time
tasks τ is EDF schedulable if, and only if, for all t ≥ 0 :

∑
T∈τ dbfT(t) ≤ t, where dbfT(.)

denotes the dbf of task T [20]. We denote dbf of the tight, pessimistic, and optimistic models,
respectively, by ˆdbf (.), ˆdbfP(.), and ˆdbfO(.). Further, we denote that of the sporadic task
with dbfS(.). In what follows, the time unit is microsecond.

We first focus on the pessimistic approach, i.e., the method proposed in [10]. For this,
the sporadic task parameters are assumed as C = 8980, D = 9210, and P = 20000. To
investigate the pessimism, we are interested in an instant t for which ˆdbfP(t) > ˆdbf (t). Based
on the computed dbfs, we consider t = 9210µs, for which ˆdbfP(9210) = 246, ˆdbf (9210) = 0,
and dbfS(9210) = 8980. When using the pessimistic model, we get ˆdbfP(t) + dbfS(t) =
9226 > 9210 = t, suggesting unschedulability. Besides, it can be verified that, for all t ≥ 0,
ˆdbf (t) + dbfS(t) ≤ t holds, meaning that the task set is, in fact, schedulable under EDF.

Next, the optimistic approach proposed in [4] is examined. For this case, we assume
the sporadic task parameters as: C = 25720, D = 26400, P = 50000. Considering the time
instant t = 26400, we have ˆdbfO(26400) = 620, ˆdbf (26400) = 686, and dbfS(26400) = 25720.
If we use the dbf obtained from the tight model, we get ˆdbf (t) + dbfS(t) = 26406 > 26400 = t,
which implies unschedulability of the task set. However, writing this condition using the
optimistic dbf yields ˆdbfO(t) + dbfS(t) = 26340 ≤ 26400 = t. Furthermore, by running a
feasibility test using the optimistic dbf, the task set is revealed schedulable, which is not a
valid result. The same optimistic assumption has been used in analyses in [5, 6], which can
lead to similar unsafe results. To the best of authors knowledge, except for the mentioned
studies, other work in the literature have not been impacted by this optimistic assumption.

8 Conclusion and future work

In this paper, we studied engine control applications in which real-time task parameters are
functions of the crankshaft speed. For timing analysis of such tasks, we employed the DRT
task model [17]. We formulated minimum inter-release time calculation as an optimal control
problem where the goal is to find the control input (i.e., the acceleration) that leads to the
minimum time for taking a specified change in the angular position. We used a technique
from the calculus of variations to solve this minimization problem and determine inter-release
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times in the corresponding DRT task. To construct the DRT task, one needs to partition the
engine’s speed range. In this work, we also proposed a speed range partitioning method which
leads to a tight workload characterization in the sense of timing analysis. We showed that
our approach provides faithful and tight timing analyses compared to the existing methods.

This work can be extended in multiple directions. In the current study, we focused on
independent AVR tasks. The model can be extended to specify tasks which depend on a
common rotation source [9, 2]. While the proposed method provides a pessimistic approach
to analyze this extended model, it can be improved by employing more expressive models,
e.g., the recently proposed synchronous DRT [14] task model. Another direction of extension
is considering cyber-physical systems with more general dynamic behavior, for instance, those
specified by hybrid automata [1]. One can extend our proposed approach to abstract the
behavior of such systems for efficient timing analysis, observing potential limitations.
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