
Uniprocessor Feasibility of Sporadic Tasks with
Constrained Deadlines is Strongly coNP-complete

Pontus Ekberg and Wang Yi
Uppsala University, Sweden

Email: {pontus.ekberg | yi}@it.uu.se

Abstract—Deciding the feasibility of a sporadic task system
on a preemptive uniprocessor is a central problem in real-time
scheduling theory. The computational complexity of this problem
has been a long-standing open question. We show that it is
coNP-complete in the strong sense, even when deadlines are
constrained. This is achieved by means of a pseudo-polynomial
transformation from the strongly NP-hard Simultaneous Con-
gruences Problem to the complement of the feasibility problem.

I. INTRODUCTION

We let a sporadic task system be defined as a finite multiset
T of tasks, where each task is a triple (e, d, p) ∈ N3

+,
representing its worst-case execution time, relative deadline
and minimum inter-arrival separation (or period), respectively.

A sporadic task generates potentially unbounded sequences
of jobs. A job is an instance of the task’s workload, character-
ized by a release time, an execution time and an absolute dead-
line. A job from task (e, d, p) has execution time not larger
than e time units and absolute deadline exactly d time units
after its release time. Release times of two consecutive jobs
from (e, d, p) are separated by at least p time units. A sporadic
task system T generates any interleaving of job sequences that
can be generated by each of the tasks (e, d, p) ∈ T.

For a sequence of jobs to be successfully scheduled, every
job must be executed for a total duration equal to its execution
time, between its release time and its absolute deadline. In the
following we assume a preemptive uniprocessor, meaning that
only one job can be executed at a time, but a job can be paused
and resumed at a later time at no additional cost.

Definition I.1 (Feasibility). A task system T is feasible if and
only if there is some scheduling algorithm that will successfully
schedule all job sequences that can be generated by T.

A task system T is said to have implicit deadlines if d = p
for all (e, d, p) ∈ T, and said to have constrained deadlines
if d 6 p for all (e, d, p) ∈ T. The utilization U(T) of a task
system T is defined as U(T)

def
=
∑

(e,d,p)∈T e/p.
Liu and Layland [1] showed that a task system T with

implicit deadlines is feasible if and only if U(T) 6 1, but
this is not a sufficient condition with constrained deadlines.
Dertouzos [2] showed that Earliest Deadline First (EDF) is
an optimal scheduling algorithm on preemptive uniproces-
sors, which means that the terms “feasibility” and “EDF-
schedulability” can be used interchangeably here.

Theorem I.2 ([2]). A task system T is feasible if and only if
it is EDF-schedulable.

A related workload model is that of (strictly) periodic tasks,
where each task is a quadruple (s, e, d, p) ∈ N × N3

+. The
difference to the sporadic task model is that the release times
of two consecutive jobs from task (s, e, d, p) must be exactly
p time units apart, and the release time of the first job is
fixed at time point s. A periodic task system is synchronous if
s = 0 for all tasks (s, e, d, p), and asynchronous otherwise. It
is known [3] that feasibility testing of sporadic tasks is equally
hard as that of synchronous periodic tasks, which means that
the terms “sporadic” and “synchronous periodic” can be used
interchangeably for the results in this paper as well.

Theorem I.3 ([3]). A sporadic task system T is feasi-
ble if and only if the synchronous periodic task system
{(0, e, d, p) | (e, d, p) ∈ T} is feasible.

A classic result is that the feasibility problem for asyn-
chronous periodic task systems with constrained deadlines is
strongly coNP-complete [4], [5]. Baruah et al. [5], [3] also
developed a pseudo-polynomial time algorithm for the special
case of synchronous periodic (or sporadic) task systems with
utilization a priori bounded by some constant c < 1. However,
the complexity of the general synchronous case remained
open for many years. It was listed as one of five “open
problems” in real-time scheduling by Baruah and Pruhs [6].
Shortly thereafter it was partially resolved by Eisenbrand
and Rothvoß [7] who showed it to be weakly coNP-hard,
but the question remained if it allowed a pseudo-polynomial
time solution like the special case with bounded utilization.
Eisenbrand and Rothvoß conjectured that it did, but we show
that the feasibility problem for synchronous periodic task
systems with constrained deadlines is strongly coNP-complete,
and thus that it can have no pseudo-polynomial time solution
unless P = NP. Figure 1 summarizes the current knowledge.

General case Utilization bounded
by a constant c < 1

Asynchronous
periodic tasks

coNP-complete in
the strong sense. [5]

coNP-complete in
the strong sense. [5]

Synchronous
periodic tasks
(or sporadic)

coNP-complete in
the strong sense
(from this work).

There exists a
pseudo-polynomial
algorithm. [5], [3]

Fig. 1. The current knowledge on the feasibility problem of periodic tasks
with constrained deadlines on preemptive uniprocessors.



II. PRELIMINARIES

A. The Simultaneous Congruences Problem
The Simultaneous Congruences Problem (SCP) is a

number-theoretic decision problem that has been used to
establish several complexity results in real-time scheduling
theory.

Definition II.1 (The Simultaneous Congruences Problem). An
instance is defined by a multiset A = {(a1, b1), . . . , (an, bn)}
and an integer k, such that 2 6 k 6 n and (ai, bi) ∈ N×N+

for all i ∈ {1, . . . , n}.
The simultaneous congruences problem asks whether there

exists a subset A′ ⊆ A of at least k elements and an x ∈ N,
such that

x ≡ ai (mod bi)

for all (ai, bi) ∈ A′.
In the remainder of this paper we assume, without loss of

generality, that ai < bi for all (ai, bi) ∈ A.

SCP was first shown to be weakly NP-complete by Leung
and Whitehead [8] via a reduction from CLIQUE, and then
used by them to show various hardness results concerning
fixed-priority scheduling. Leung and Merrill [4] reduced SCP
to the complement of the asynchronous periodic feasibility
problem on uniprocessors, thus showing that problem to be
weakly coNP-hard. Baruah et al. [5] later showed that SCP is
in fact strongly NP-complete via an alternative reduction from
3-SAT, which then implied the strong coNP-hardness of the
asynchronous periodic feasibility problem.

Theorem II.2 ([5]). SCP is strongly NP-complete.

B. The Theory of Demand Bound Functions
The hardness proof we present in the next section relies

heavily on demand bound functions, and in particular the
following, well-known theorem due to Baruah et al.

Theorem II.3 ([3], [5]). A sporadic task system T is feasible
on a preemptive uniprocessor if and only if U(T) 6 1 and

∀` > 0, dbf(T, `) 6 `, (1)

where

dbf(T, `)
def
=

∑
(e,d,p)∈T

(⌊
`− d
p

⌋
+ 1

)
· e (2)

is the demand bound function of T in interval lengths `.

As a notational convenience, let dbf(τ, `)
def
= dbf({τ} , `)

for any task τ = (e, d, p).
One of the things that Baruah et al. [3] show using this

theorem is that the sporadic feasibility problem is in coNP.
A witness to the infeasibility of a task system is simply an
` > 0 such that the formula in Eq. (1) is false (if there
exists a witness, we are guaranteed that there is also one
in N representable with polynomially many bits). A similar
argument can be made for asynchronous periodic tasks.

Theorem II.4 ([3], [5]). The feasibility problem for periodic
tasks, both synchronous and asynchronous, is in coNP.

III. THE HARDNESS OF SPORADIC FEASIBILITY

Here we will show the strong coNP-hardness of the feasi-
bility problem for sporadic tasks on preemptive uniprocessors.
This is achieved by means of a pseudo-polynomial transfor-
mation (as defined by Garey and Johnson [9]) from SCP to
the complement of the feasibility problem.

A. Overview of the Transformation
First we describe the intuition behind the transformation. In

Figure 2 we have marked along a number line the x ∈ N such
that x ≡ ai (mod bi), for four example pairs (ai, bi).

x
0 2 4 6 8 10 12 14 16 18 20

(2, 4)

(4, 6)

(3, 8)

(0, 3)

Fig. 2. Congruence classes ai modulo bi for the four different pairs
(ai, bi) ∈ A, where A = {(2, 4), (4, 6), (3, 8), (0, 3)}. It is clear from
the figure that there are several x ∈ N belonging to two congruence classes
simultaneously, but it can be shown that there is no x belonging to three.
Thus, (A, 2) is a yes-instance and (A, 3) is a no-instance of SCP.

We would like to somehow match the structure of these
congruence classes with demand bound functions. For each
pair (ai, bi) we want to create a demand bound function (in
interval lengths `) that is highly regular, but has “hard points”
of slightly increased demand at those ` that in some given way
are related to the congruence class of ai modulo bi. If we have
two such functions, their hard points should align at exactly
those ` related to both congruences classes. Figure 3 illustrates
this basic idea. The goal is to take any instance (A, k) of SCP
and create |A| such functions that, when summed, result in a
violation of Eq. (1) at some ` if and only if at least k of them
align such hard points at `.

Asymptotic
utilization of 1/|A|.

Locally increased demand
at all ` related to the congruence

class of 2 modulo 4.

`
0 2 4 6 8 10 12 14 16 18 20

(2, 4)

Hard points align
at all ` related to both

congruence classes.

`
0 2 4 6 8 10 12 14 16 18 20

(4, 6)

Fig. 3. Conceptual demand bound functions corresponding to the two pairs
(2, 4) and (4, 6) from A. The marked areas are where we want slightly
increased demand. Note that these functions do not match exactly those that
we will get from the transformation.



B. Encoding into Task Systems

We now show how the high-level idea for a transformation
that was presented in the last section is encoded with actual
task systems. It does not appear possible to capture the
structure of a congruence class in a way that achieves our goals
using only a single sporadic task. We can, however, create a
set of tasks that have the sought structure in its (joint) demand
bound function. The details of this follow.

Definition III.1 (Transformation from SCP to (in-)feasibility).
The transformation takes an arbitrary instance (A, k) of SCP,
where A = {(a1, b1), . . . , (an, bn)}, and produces a sporadic
task system T(A,k).

For each (ai, bi) ∈ A, we create the following set of bi
constrained-deadline sporadic tasks:

T(ai,bi)
def
=

{
τy(ai,bi)

| y ∈ {1, . . . , bi}
}
,

where

τy(ai,bi)

def
=

 (1, ain+ k − 1, bin), if y = ai + 1,

(1, yn, bin), otherwise.
(3)

The multiset

T(A,k)
def
=

⊎
(ai,bi)∈A

T(ai,bi) (4)

is the produced task system.

Each task set T(ai,bi) has a highly regular demand bound
function, where the hard points are encoded in the slightly
shorter deadline of the task τai+1

(ai,bi)
. Figure 4 shows the

demand bound function of a generated set of tasks T(ai,bi),
corresponding to some (ai, bi) ∈ A. It can be noted that it has
the same general structure as the conceptual functions shown
in Figure 3.

Note that the number of tasks in T(A,k), as well as the
values of their parameters, are bounded by some two-variable
polynomial in the size and the maximum numerical value
found in the corresponding SCP instance (A, k). Also, the
transformation can trivially be computed in time bounded by
such a polynomial. To establish that the above is a valid
pseudo-polynomial transformation, what remains to be shown
is that T(A,k) is a no-instance of the feasibility problem if and
only if (A, k) is a yes-instance of SCP. We show this in the
next section.

C. Correctness of the Transformation

Before showing that the transformation in Definition III.1
is correct, we need to prove two auxiliary lemmas about
the characteristics of the demand bound functions of the
generated task systems. The first of the lemmas is about the
identity property of the demand bound functions at all points
` ∈ {0, n, 2n, 3n, . . .}.

0n 1n 2n 3n 4n 5n 6n 7n 8n 9n
0

2

4

6

`

bin 2binain (ai + bi)n

dbf(τ1
(2,4)

, `)

0n 1n 2n 3n 4n 5n 6n 7n 8n 9n
0

2

4

6

`

bin 2binain (ai + bi)n

dbf(τ2
(2,4)

, `)

0n 1n 2n 3n 4n 5n 6n 7n 8n 9n
0

2

4

6

`

bin 2binain (ai + bi)n

dbf(τ3
(2,4)

, `)

0n 1n 2n 3n 4n 5n 6n 7n 8n 9n
0

2

4

6

`

bin 2binain (ai + bi)n

dbf(τ4
(2,4)

, `)

0n 1n 2n 3n 4n 5n 6n 7n 8n 9n
0

2

4

6

8

10

`

bin 2binain (ai + bi)n

k − 1

dbf(T(2,4), `)

Fig. 4. The demand bound functions for the tasks in T(2,4), generated from
an SCP instance (A, k) where |A| = n = 4 and k = 3. The top four
functions are the demand bound functions for the individual tasks. The dotted
function is for the task τ3

(2,4)
, which is defined by the special case in Eq. (3).

At the bottom is the sum of their demand bound functions, dbf(T(2,4), `).
Note that dbf(T(2,4), `) has fixed size steps of width n, except for those
corresponding to steps of dbf(τ3

(2,4)
, `), which occur only k−1 points away

from the preceding steps. These shorter steps make up the “hard points” that
we envisioned earlier.

Lemma III.2 (Identity of demand). Let (A, k) be any SCP
instance, where A = {(a1, b1), . . . (an, bn)}, and let x ∈ N be
any natural number. Then,

dbf(T(A,k), xn) = xn.

Proof: Consider any pair (ai, bi) ∈ A. By construction,
all tasks (e, d, p) ∈ T(ai,bi) have e = 1 and p = bin. By
putting these values in Eq. (2) we get

dbf(T(ai,bi), xn) =
∑

(e,d,p)∈T(ai,bi)

(⌊
xn− d
bin

⌋
+ 1

)
.



Let ω be the remainder of x divided by bi,

ω
def
= x− bx/bic bi.

Now, take any of the tasks (e, d, p) ∈ T(ai,bi), and observe
that because d 6 p = bin, we have⌊

xn− d
bin

⌋
+ 1 =

⌊
x

bi
− d

bin

⌋
+ 1

=

⌊⌊
x

bi

⌋
+
ω

bi
− d

bin

⌋
+ 1

=

⌊⌊
x

bi

⌋
+
ωn− d
bin

⌋
+ 1

=

 bx/bic+ 1, if d 6 ωn,

bx/bic , otherwise.

How many of the tasks (e, d, p) ∈ T(ai,bi) have d 6 ωn?
From Eq. (3) it is clear that the only tasks (e, d, p) ∈ T(ai,bi)

with d 6 ωn are the tasks τy(ai,bi)
for which y ∈ {1, . . . , ω}.

Hence, ω out of the bi tasks in T(ai,bi) have d 6 ωn, and

dbf(T(ai,bi), xn) = bx/bic (bi − ω) + (bx/bic+ 1) ω

= bx/bic bi + ω (5)
= bx/bic bi + x− bx/bic bi
= x.

From Eq. (2), (4) and (5) we conclude that

dbf(T(A,k), xn) =
∑

(ai,bi)∈A

dbf(T(ai,bi), xn) = xn,

which is the claim of the lemma.

The second auxiliary lemma is about the increased demand
of task sets T(ai,bi) for all interval lengths ` that are related
to the congruence class of ai modulo bi. In particular, for all
` = xn+ k − 1, where x ≡ ai (mod bi).

Lemma III.3 (Increased demand at congruences). Let (A, k)
be any SCP instance, where A = {(a1, b1), . . . (an, bn)}, and
let x ∈ N be any natural number. Then,

dbf(T(ai,bi), xn+ k − 1) =

x+ 1, if x ≡ ai (mod bi),

x, otherwise,

for all (ai, bi) ∈ A.

Proof: Let `∗ def
= xn + k − 1. Again, by construction we

have e = 1 and p = bin for all (e, d, p) ∈ T(ai,bi), and
therefore

dbf(T(ai,bi), `
∗) =

∑
(e,d,p)∈T(ai,bi)

(⌊
`∗ − d
bin

⌋
+ 1

)
.

Let ω def
= x − bx/bic bi be defined as before. Take any

(e, d, p) ∈ T(ai,bi) and note that d− k+ 1 6 p = bin. Hence,⌊
`∗ − d
bin

⌋
=

⌊
xn− (d− k + 1)

bin

⌋

=

 bx/bic , if d− k + 1 6 ωn,

bx/bic − 1, otherwise.

We rewrite this to obtain⌊
`∗ − d
bin

⌋
+ 1 =

 bx/bic+ 1, if d 6 ωn+ k − 1,

bx/bic , otherwise.

From Eq. (3) it is clear that if ω 6= ai, then d 6 ωn + k − 1
holds for all the tasks τy(ai,bi)

∈ T(ai,bi), such that y 6 ω.
However, if ω = ai, then d 6 ωn + k − 1 additionally holds
for τai+1

(ai,bi)
. Hence, if we let α denote the number of tasks

(e, d, p) ∈ T(ai,bi) for which d 6 ωn+ k − 1 holds, then

α =

 ω + 1, if ω = ai,

ω, otherwise.

By the definition of ω as the remainder of x divided by bi, we
have ω = ai if and only if x ≡ ai (mod bi). Thus, we can
rewrite the above as

α =

 x− bx/bic bi + 1, if x ≡ ai (mod bi),

x− bx/bic bi, otherwise.

By applying similar steps as in Eq. (5), we conclude that

dbf(T(ai,bi), `
∗) = bx/bic (bi − α) + (bx/bic+ 1) α

= bx/bic bi + α

=

 x+ 1, if x ≡ ai (mod bi),

x, otherwise,

from which the lemma follows.

We can now prove the correctness of the transformation.

Lemma III.4 (Validity of transformation). For any SCP
instance (A, k), the corresponding task system T(A,k) is
infeasible if and only if (A, k) is a yes-instance.

Proof: Let A = {(a1, b1), . . . , (an, bn)}. First we note
that U(T(ai,bi)) = 1/n for any (ai, bi) ∈ A, and consequently
that U(T(A,k)) = 1. By Theorem II.3 it follows that the
feasibility of T(A,k) is exactly decided by the truth value of
the formula in Eq. (1).

We prove the two directions of the lemma separately,
beginning with the if-case. Figure 5 serves as an illustration.

• (A, k) is a yes-instance ⇒ T(A,k) is infeasible:
By assumption, there is a subset A′ ⊆ A of size at least
k and an x ∈ N, such that x ≡ ai (mod bi) for all
(ai, bi) ∈ A′. Without loss of generality, let that A′ be
the largest such subset.



Let `∗ def
= xn + k − 1. By Lemma III.3 and the above

assumptions, we have

dbf(T(ai,bi), `
∗) =

 x+ 1, if (ai, bi) ∈ A′,
x, otherwise.

Because |A′| > k, it follows that

dbf(T(A,k), `
∗) =

∑
(ai,bi)∈A

dbf(T(ai,bi), `
∗)

> xn+ k > `∗,

and T(A,k) is infeasible by Theorem II.3.

• (A, k) is a no-instance ⇒ T(A,k) is feasible:
From Eq. (2) it is clear that dbf(T(A,k), `) is a right-
continuous, non-decreasing step function in `. Let ∆ be
the set of points at which this function changes value,
including point 0:

∆
def
=
{
` | dbf(T(A,k), `) is discontinuous at `

}
∪ {0}

It is easily seen that if there exists some ` > 0 such that
dbf(T(A,k), `) > `, then there must exist some `′ ∈ ∆
such that dbf(T(A,k), `

′) > `′.
Hence, by showing that dbf(T(A,k), `) 6 ` for all ` ∈ ∆,
we can conclude that there exists no ` > 0 such that
dbf(T(A,k), `) > `. In order to do so we need to find a
more concrete characterization of ∆.
Note that from Eq. (3) we know that for all tasks
(e, d, p) ∈ T(A,k) we have

p = bn, for some b ∈ N,
d ∈ {yn, yn+ k − 1} , for some y ∈ N.

By the definition of demand bound functions given in
Eq. (2), it follows that the points at which dbf(T(A,k), `)
is discontinuous are of the form xn or xn + k − 1 for
some x ∈ N, and therefore

∆ ⊆ {xn | x ∈ N} ∪ {xn+ k − 1 | x ∈ N} .

From Lemma III.2 we directly have

dbf(T(A,k), `) = `, for all ` ∈ {xn | x ∈ N} .

Consider instead any `∗ = xn+ k− 1, where x ∈ N. By
Lemma III.3, we know that for any (ai, bi) ∈ A,

dbf(T(ai,bi), `
∗) =

x+ 1, if x ≡ ai (mod bi),

x, otherwise,

Now, by assumption, (A, k) is a no-instance of SCP. It
follows that there are at most k − 1 pairs (ai, bi) ∈ A
such that x ≡ ai (mod bi). Hence,

dbf(T(A,k), `
∗) =

∑
(ai,bi)∈A

dbf(T(ai,bi), `
∗)

6 xn+ k − 1 = `∗,

for all `∗ ∈ {xn+ k − 1 | x ∈ N}.

`∗ = 10n+ 2− 1

0n 2n 4n 6n 8n 10n 12n 14n
0

4

8

12

16

`

dbf(T(2,4), `)

0n 2n 4n 6n 8n 10n 12n 14n
0

4

8

12

16

`

dbf(T(4,6), `)

0n 2n 4n 6n 8n 10n 12n 14n
0

4

8

12

16

`

dbf(T(3,8), `)

0n 2n 4n 6n 8n 10n 12n 14n
0

4

8

12

16

`

dbf(T(0,3), `)

Fig. 5. Demand bound functions for task sets generated from an SCP instance
(A, k), whereA = {(2, 4), (4, 6), (3, 8), (0, 3)} and k = 2. As we have seen
in Figure 2, (A, 2) is a yes-instance of SCP and therefore T(A,2) should be
infeasible. Indeed, for any x belonging to two of A’s congruence classes (such
as x = 10) we have two “early” steps in the corresponding demand bound
functions aligning at `∗ = xn + 2 − 1, and dbf(T(A,2), `

∗) = `∗ + 1. If
instead k = 3, then the early steps would move one unit to the right in the
figures, and two such steps aligning at some `∗ = xn + 3 − 1 is no longer
enough to witness infeasibility, because dbf(T(A,3), `

∗) = `∗.

In conclusion, we have shown that dbf(T(A,k), `) 6 ` for
all ` ∈ ∆, and consequently for all ` > 0. The feasibility
of T(A,k) is ensured by Theorem II.3.

Our main theorem follows.

Theorem III.5 (Intractability). Deciding whether a sporadic
task system with constrained deadlines is feasible on a pre-
emptive uniprocessor is coNP-complete in the strong sense.

Proof: There is a pseudo-polynomial transformation from
SCP to the complement of the feasibility problem. By Theo-
rems II.2 and II.4 we know that SCP is strongly NP-hard and
that the feasibility problem is in coNP.



IV. CONCLUSIONS

We have showed that there can be no pseudo-polynomial
time algorithm for deciding the feasibility of constrained-
deadline sporadic task systems on a preemptive uniprocessor,
unless P = NP.

This highlights the inherent practical importance of the
special case where the utilization of the task system is a priori
bounded by some constant c < 1, for which Baruah et al. [3]
have described a pseudo-polynomial time feasibility test. This
test (or variations thereof) is widely used in the literature and
has proven to be quite tractable, at least for off-line analysis,
even for large c such as 0.9 or 0.95. An important outstanding
question is whether this special case also has a polynomial
time solution.

REFERENCES

[1] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM, vol. 20, no. 1,
pp. 46–61, 1973.

[2] M. L. Dertouzos, “Control robotics: The procedural control of physical
processes,” in Proceedings of the IFIP congress, vol. 74, 1974, pp. 807–
813.

[3] S. Baruah, A. Mok, and L. Rosier, “Preemptively scheduling hard-real-
time sporadic tasks on one processor,” in Proceedings of the Real-Time
Systems Symposium (RTSS), 1990, pp. 182–190.

[4] J. Y.-T. Leung and M. Merrill, “A note on preemptive scheduling of
periodic, real-time tasks,” Information Processing Letters, vol. 11, no. 3,
pp. 115–118, 1980.

[5] S. K. Baruah, L. E. Rosier, and R. R. Howell, “Algorithms and complexity
concerning the preemptive scheduling of periodic, real-time tasks on one
processor,” Real-Time Systems, vol. 2, no. 4, pp. 301–324, 1990.

[6] S. Baruah and K. Pruhs, “Open problems in real-time scheduling,” Journal
of Scheduling, vol. 13, no. 6, pp. 577–582, 2010.

[7] F. Eisenbrand and T. Rothvoß, “EDF-schedulability of synchronous
periodic task systems is coNP-hard,” in Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2010, pp. 1029–1034.

[8] J. Y.-T. Leung and J. Whitehead, “On the complexity of fixed-priority
scheduling of periodic, real-time tasks,” Performance Evaluation, vol. 2,
no. 4, pp. 237–250, 1982.

[9] M. R. Garey and D. S. Johnson, “Strong NP-completeness results:
Motivation, examples, and implications,” Journal of the ACM, vol. 25,
no. 3, pp. 499–508, 1978.

�


