Uniprocessor Feasibility of Sporadic Tasks with Constrained Deadlines is Strongly coNP-complete

Pontus Ekberg & Wang Yi

Uppsala University

ECRTS 2015
Context on the Uniprocessor Feasibility Problem

<table>
<thead>
<tr>
<th></th>
<th>General case</th>
<th>Utilization bounded by a constant $c < 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asynchronous</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>periodic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synchronous</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>periodic (or sporadic)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1980 1990 2000 2010

Leung & Merrill
Baruah et al.
Eisenbrand & Rothvoß

Sporadic Feasibility is Strongly coNP-complete
Context on the Uniprocessor Feasibility Problem

<table>
<thead>
<tr>
<th></th>
<th>General case</th>
<th>Utilization bounded by a constant $c < 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asynchronous periodic</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Synchronous periodic (or sporadic)</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

- Leung & Merrill

<table>
<thead>
<tr>
<th>Year</th>
<th>1980</th>
<th>1990</th>
<th>2000</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sporadic Feasibility is Strongly coNP-complete
Context on the Uniprocessor Feasibility Problem

<table>
<thead>
<tr>
<th>General case</th>
<th>Utilization bounded by a constant $c < 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asynchronous periodic</td>
<td>(Weakly) coNP-hard</td>
</tr>
<tr>
<td>Synchronous periodic (or sporadic)</td>
<td>?</td>
</tr>
</tbody>
</table>

Leung & Merrill

- 1980
- 1990
- 2000
- 2010
Context on the Uniprocessor Feasibility Problem

<table>
<thead>
<tr>
<th></th>
<th>General case</th>
<th>Utilization bounded by a constant $c < 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asynchronous</td>
<td>(Weakly) coNP-hard</td>
<td>(Weakly) coNP-hard</td>
</tr>
<tr>
<td>periodic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synchronous</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>periodic</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>(or sporadic)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Timeline

- **1980**: Leung & Merrill
- **2000**: Strongly coNP-complete
- **2010**: Strongly coNP-complete

Sporadic Feasibility is Strongly coNP-complete
Context on the Uniprocessor Feasibility Problem

<table>
<thead>
<tr>
<th></th>
<th>General case</th>
<th>Utilization bounded by a constant $c < 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asynchronous</td>
<td>(Weakly) coNP-hard</td>
<td>(Weakly) coNP-hard</td>
</tr>
<tr>
<td>periodic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synchronous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>periodic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(or sporadic)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Leung & Merrill
- Baruah et al.

- 1980
- 1990
- 2000
- 2010
Context on the Uniprocessor Feasibility Problem

General case
- Utilization bounded by a constant $c < 1$

Asynchronous periodic
- Strongly coNP-complete

Synchronous periodic (or sporadic)
- ?
- ?

Leung & Merrill
1980

Baruah et al.
1990

Sporadic Feasibility is Strongly coNP-complete
Context on the Uniprocessor Feasibility Problem

General case

Utilization bounded by a constant $c < 1$

<table>
<thead>
<tr>
<th>Asynchronous periodic</th>
<th>General case</th>
<th>Synchronous periodic (or sporadic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly coNP-complete</td>
<td>Strongly coNP-complete</td>
<td>Pseudo-poly. solution exists</td>
</tr>
</tbody>
</table>

- Leung & Merrill
- Baruah et al.

- 1980
- 1990
- 2000
- 2010
Context on the Uniprocessor Feasibility Problem

<table>
<thead>
<tr>
<th>General case</th>
<th>Utilization bounded by a constant $c < 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asynchronous periodic</td>
<td>Strongly coNP-complete</td>
</tr>
<tr>
<td>Synchronous periodic (or sporadic)</td>
<td>?</td>
</tr>
</tbody>
</table>

Leung & Merrill 1980

Baruah et al. 1990

Eisenbrand & Rothvoß 2000

Pseudo-poly. solution exists 2010
Context on the Uniprocessor Feasibility Problem

<table>
<thead>
<tr>
<th></th>
<th>General case</th>
<th>Utilization bounded by a constant $c < 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asynchronous periodic</td>
<td>Strongly coNP-complete</td>
<td>Strongly coNP-complete</td>
</tr>
<tr>
<td>Synchronous periodic</td>
<td>?</td>
<td>Pseudo-poly. solution exists</td>
</tr>
</tbody>
</table>

Weakly coNP-hard

Strongly coNP-complete

Pseudo-poly. solution exists

1980: Leung & Merrill
1990: Baruah et al.
2000: Eisenbrand & Rothvoß

Pontus Ekberg

Sporadic Feasibility is Strongly coNP-complete
Context on the Uniprocessor Feasibility Problem

<table>
<thead>
<tr>
<th>Utilization bounded by a constant $c < 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asynchronous periodic</td>
</tr>
<tr>
<td>Strongly coNP-complete</td>
</tr>
<tr>
<td>Synchronous periodic (or sporadic)</td>
</tr>
<tr>
<td>(Weakly) coNP-complete</td>
</tr>
<tr>
<td>Pseudo-poly. solution exists</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>Leung & Merrill</td>
</tr>
<tr>
<td>1990</td>
<td>Baruah et al.</td>
</tr>
<tr>
<td>2000</td>
<td>Eisenbrand & Rothvoß</td>
</tr>
<tr>
<td>2010</td>
<td></td>
</tr>
</tbody>
</table>
Context on the Uniprocessor Feasibility Problem

General case

<table>
<thead>
<tr>
<th>Asynchronous periodic</th>
<th>Synchronous periodic (or sporadic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly coNP-complete</td>
<td>(Weakly) coNP-complete</td>
</tr>
<tr>
<td>Strongly coNP-complete</td>
<td>Pseudo-poly. solution exists</td>
</tr>
</tbody>
</table>

Utilization bounded by a constant $c < 1$

- Asynchronous periodic
 - Strongly coNP-complete
- Synchronous periodic (or sporadic)
 - (Weakly) coNP-complete

Timeline

- **1980**: Leung & Merrill
- **1990**: Baruah et al.
- **2000**: Eisenbrand & Rothvoß
- **2010**:
Context on the Uniprocessor Feasibility Problem

<table>
<thead>
<tr>
<th>Utilization bounded by a constant $c < 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>General case</td>
</tr>
<tr>
<td>Asynchronous periodic</td>
</tr>
<tr>
<td>Strongly coNP-complete</td>
</tr>
<tr>
<td>Synchronous periodic (or sporadic)</td>
</tr>
<tr>
<td>Strongly coNP-complete</td>
</tr>
</tbody>
</table>

- Asynchronous periodic: Strongly coNP-complete
- Synchronous periodic (or sporadic): Strongly coNP-complete

- Pseudo-poly. solution exists

Timeline:
- 1980: Leung & Merrill
- 1990: Baruah et al.
- 2000: Eisenbrand & Rothvoß

Notes:
- 1980: Sporadic Feasibility is Strongly coNP-complete

References:
- Pontus Ekberg

Keywords:
- Context on the Uniprocessor Feasibility Problem
- Utilization bounded by a constant $c < 1$
- Asynchronous periodic
- Synchronous periodic (or sporadic)
- Strongly coNP-complete
- Pseudo-poly. solution exists

Authors:
- Pontus Ekberg
- Sporadic Feasibility is Strongly coNP-complete

Page: 2
How?

SCP $\propto \textit{in-Feasibility}$
How?

Strongly NP-complete
(Baruah et al., 1990)

SCP \propto in-Feasibility
How?

Strongly NP-complete
(Baruah et al., 1990)

SCP \propto \textit{in-Feasibility}

Pseudo-polynomial transformation
How?

- Strongly NP-complete (Baruah et al., 1990)
- Strongly NP-hard
- SCP \propto in-FEASIBILITY
- Pseudo-polynomial transformation
How?

SCP

Strongly NP-complete
(Baruah et al., 1990)

\(\propto\)

in-FEASIBILITY

Strongly NP-hard

Pseudo-polynomial transformation

Strongly coNP-hard
The Simultaneous Congruences Problem (SCP)

Example:

\[A = (2; 4); (4; 6); (3; 8); (0; 3) \]

\[k = 2 \]

Yes

\[(A; 2) \]

?!

No

\[(A; 3) \]
The Simultaneous Congruences Problem (SCP)

An SCP instance is given by a pair \((A, k)\).
The Simultaneous Congruences Problem (SCP)

An SCP instance is given by a pair \((A, k)\).

Example: \(A = \{(2, 4), (4, 6), (3, 8), (0, 3)\}\)
The Simultaneous Congruences Problem (SCP)

An SCP instance is given by a pair \((A, k)\).

Example: \(A = \{(2, 4), (4, 6), (3, 8), (0, 3)\} \quad k = 2\)
The Simultaneous Congruences Problem (SCP)

An SCP instance is given by a pair \((A, k)\).

Example: \(A = \{(2, 4), (4, 6), (3, 8), (0, 3)\}\), \(k = 2\)
The Simultaneous Congruences Problem (SCP)

An SCP instance is given by a pair \((A, k)\).

Example: \[A = \{(2, 4), (4, 6), (3, 8), (0, 3)\} \quad k = 2\]
The Simultaneous Congruences Problem (SCP)

An SCP instance is given by a pair \((A, k)\).

Example: \(A = \{(2, 4), (4, 6), (3, 8), (0, 3)\}\) \(k = 2\)
The Simultaneous Congruences Problem (SCP)

An SCP instance is given by a pair (A, k).

Example: $A = \{(2, 4), (4, 6), (3, 8), (0, 3)\}$ \hspace{1cm} k = 2
The Simultaneous Congruences Problem (SCP)

An SCP instance is given by a pair \((A, k)\).

Example: \(A = \{(2, 4), (4, 6), (3, 8), (0, 3)\}\) \(k = 2\)
The Simultaneous Congruences Problem (SCP)

An SCP instance is given by a pair \((A, k)\).

Example: \(A = \{(2, 4), (4, 6), (3, 8), (0, 3)\} \quad k = 2\)

\((A, 2)\)?
The Simultaneous Congruences Problem (SCP)

An SCP instance is given by a pair \((A, k)\).

Example: \(A = \{(2, 4), (4, 6), (3, 8), (0, 3)\}\) \(k = 2\)
The Simultaneous Congruences Problem (SCP)

An SCP instance is given by a pair \((A, k)\).

Example: \(A = \{(2, 4), (4, 6), (3, 8), (0, 3)\}\) \(k = 2\)

\((A, 2)\)?
The Simultaneous Congruences Problem (SCP)

An SCP instance is given by a pair \((A, k)\).

Example: \[A = \{(2, 4), (4, 6), (3, 8), (0, 3)\} \quad k = 2 \]

\[(A, 2)\] → Yes
The Simultaneous Congruences Problem (SCP)

An SCP instance is given by a pair \((A, k)\).

Example: \(A = \{(2, 4), (4, 6), (3, 8), (0, 3)\} \quad k = 2\)

\((A, 2)\) \(\rightarrow\) Yes \quad \((A, 3)\)?
The Simultaneous Congruences Problem (SCP)

An SCP instance is given by a pair \((A, k)\).

Example: \(A = \{(2, 4), (4, 6), (3, 8), (0, 3)\} \quad k = 2 \)

\[(2, 4) \rightarrow \text{Yes} \quad (A, 2)\]
\[(4, 6) \rightarrow \text{No} \quad (A, 3)\]
Feasibility and Demand Bound Functions

\[T = \{ \tau_1, \tau_2, \tau_3 \} \]
Feasibility and Demand Bound Functions

\[T = \{ \tau_1, \tau_2, \tau_3 \} \]
Feasibility and Demand Bound Functions

\[T = \{\tau_1, \tau_2, \tau_3\} \]
Feasibility and Demand Bound Functions

\[T = \{\tau_1, \tau_2, \tau_3\} \]

Demand bound functions capture feasibility exactly! (Baruah et al., 1990)

Sporadic Feasibility is Strongly coNP-complete
Feasibility and Demand Bound Functions

\[T = \{ \tau_1, \tau_2, \tau_3 \} \]

Demand bound functions capture feasibility exactly! (Baruah et al., 1990)

Feasible / Infeasible SCP instance \((A; k)\)

Sporadic Feasibility is Strongly coNP-complete
Feasibility and Demand Bound Functions

\[T = \{\tau_1, \tau_2, \tau_3\} \]

Demand bound functions capture feasibility exactly!
(Baruah et al., 1990)
Feasibility and Demand Bound Functions

$T = \{\tau_1, \tau_2, \tau_3\}$

Demand bound functions capture feasibility exactly!
(Baruah et al., 1990)
Feasibility and Demand Bound Functions

\[T = \{\tau_1, \tau_2, \tau_3\} \]

Demand bound functions capture feasibility exactly!

(Baruah et al., 1990)
$T = \{ \tau_1, \tau_2, \tau_3 \}$

Sporadic Feasibility is Strongly coNP-complete
Feasibility and Demand Bound Functions

\[T = \{ \tau_1, \tau_2, \tau_3 \} \]

SCP instance \((A, k)\)
Feasibility and Demand Bound Functions

\[T = \{ \tau_1, \tau_2, \tau_3 \} \]

Demand bound functions capture feasibility exactly! (Baruah et al., 1990)

SCP instance \((A, k)\)
Constructing the Demand Bound Functions

\[A = \{ (2, 4), (4, 6), (3, 8), (0, 3) \} \]
Constructing the Demand Bound Functions

\[A = \{(2, 4), (4, 6), (3, 8), (0, 3)\} \]
Constructing the Demand Bound Functions

\[A = \{(2, 4), (4, 6), (3, 8), (0, 3)\} \]

Slope = \[\frac{1}{|A|} \]

Amount of shift depends on \(k \)
Constructing the Demand Bound Functions

\[A = \{(2, 4), (4, 6), (3, 8), (0, 3)\} \]
Constructing the Demand Bound Functions

\[A = \{(2, 4), (4, 6), (3, 8), (0, 3)\} \]
Constructing the Demand Bound Functions

\[A = \{(2, 4), (4, 6), (3, 8), (0, 3)\} \]
Constructing the Demand Bound Functions

\[A = \{(2, 4), (4, 6), (3, 8), (0, 3)\} \]
Constructing the Demand Bound Functions

\[A = \{(2, 4), (4, 6), (3, 8), (0, 3)\} \]

Sporadic Feasibility is Strongly coNP-complete
Constructing the Demand Bound Functions

\[A = \{(2, 4), (4, 6), (3, 8), (0, 3)\} \]
Constructing the Demand Bound Functions

\[A = \{(2, 4), (4, 6), (3, 8), (0, 3)\} \]
Constructing the Demand Bound Functions

\[A = \{(2, 4), (4, 6), (3, 8), (0, 3)\} \]
Synthesizing the Tasks

\[\sum \sum \sum \]

Sporadic Feasibility is Strongly coNP-complete
Synthesizing the Tasks

\[A = \{(2, 4), (4, 6), (3, 8), (0, 3)\} \]
Synthesizing the Tasks

\[A = \{(2, 4), (4, 6), (3, 8), (0, 3)\} \]
Synthesizing the Tasks

\[A = \{(2, 4), (4, 6), (3, 8), (0, 3)\} \]
Synthesizing the Tasks

\[A = \{(2, 4), (4, 6), (3, 8), (0, 3)\} \]
Synthesizing the Tasks

\[A = \{ (2, 4), (4, 6), (3, 8), (0, 3) \} \]
Synthesizing the Tasks

\[A = \{(2, 4), (4, 6), (3, 8), (0, 3)\} \]

\[\tau_1 \]

\[\tau_2 \]

\[\tau_3 \]

\[\tau_4 \]

\[\sum \]
Synthesizing the Tasks

\[A = \{(2, 4), (4, 6), (3, 8), (0, 3)\} \]
Synthesizing the Tasks

\[A = \{(2, 4), (4, 6), (3, 8), (0, 3)\} \]
Synthesizing the Tasks

\[A = \{(2, 4), (4, 6), (3, 8), (0, 3)\} \]
Synthesizing the Tasks

\[A = \{(2, 4), (4, 6), (3, 8), (0, 3)\} \]
Synthesizing the Tasks

\[A = \{(2, 4), (4, 6), (3, 8), (0, 3)\} \]
Synthesizing the Tasks

\[A = \{(2, 4), (4, 6), (3, 8), (0, 3)\} \]
Synthesizing the Tasks

\[A = \{(2, 4), (4, 6), (3, 8), (0, 3)\} \]
Conclusion

<table>
<thead>
<tr>
<th></th>
<th>General case</th>
<th>Utilization bounded by a constant $c < 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asynchronous periodic</td>
<td>Strongly coNP-complete</td>
<td>Strongly coNP-complete</td>
</tr>
<tr>
<td>Synchronous periodic</td>
<td>Strongly coNP-complete</td>
<td>Pseudo-poly. solution exists</td>
</tr>
<tr>
<td>(or sporadic)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sporadic Feasibility is Strongly coNP-complete
∀Thank you!

∃Questions?