Uniprocessor Feasibility of Sporadic Tasks with Constrained Deadlines is Strongly CONP-COMPLETE

Pontus Ekberg \& Wang Yi

Uppsala University
ECRTS 2015

Context on the Uniprocessor Feasibility Problem

Context on the Uniprocessor Feasibility Problem

	General case	Utilization bounded by a constant $c<1$
Asynchronous periodic	$?$	$?$
Synchronous periodic (or sporadic)	$?$	$?$

Context on the Uniprocessor Feasibility Problem

	General case
Asynchronous periodic	Utilization bounded by a constant $c<1$
(Weakly) coNP-hard	(Weakly) coNP-hard
conchronous periodic (or sporadic)	?

Context on the Uniprocessor Feasibility Problem

	General case	Utilization bounded by a constant $c<1$
Asynchronous periodic	$\begin{aligned} & \text { (Weakly) } \\ & \text { coNP-hard } \end{aligned}$	$\begin{aligned} & \text { (Weakly) } \\ & \text { coNP-hard } \end{aligned}$
Synchronous periodic (or sporadic)	$?$	$?$

Context on the Uniprocessor Feasibility Problem

How?

SCP \propto in-Feasibility

How?

How?

How?

How?

The Simultaneous Congruences Problem (SCP)

The Simultaneous Congruences Problem (SCP)

An SCP instance is given by a pair (A, k).

The Simultaneous Congruences Problem (SCP)

An SCP instance is given by a pair (A, k).
Example: $\quad A=\{(2,4),(4,6),(3,8),(0,3)\}$

The Simultaneous Congruences Problem (SCP)

An SCP instance is given by a pair (A, k).
Example: $\quad A=\{(2,4),(4,6),(3,8),(0,3)\} \quad k=2$

The Simultaneous Congruences Problem (SCP)

An SCP instance is given by a pair (A, k).
Example: $\quad A=\{(2,4),(4,6),(3,8),(0,3)\} \quad k=2$

The Simultaneous Congruences Problem (SCP)

An SCP instance is given by a pair (A, k).
Example: $\quad A=\{(2,4),(4,6),(3,8),(0,3)\} \quad k=2$
$(2,4)$

The Simultaneous Congruences Problem (SCP)

An SCP instance is given by a pair (A, k).
Example: $\quad A=\{(2,4),(4,6),(3,8),(0,3)\} \quad k=2$

The Simultaneous Congruences Problem (SCP)

An SCP instance is given by a pair (A, k).
Example: $\quad A=\{(2,4),(4,6),(3,8),(0,3)\} \quad k=2$

The Simultaneous Congruences Problem (SCP)

An SCP instance is given by a pair (A, k).
Example: $\quad A=\{(2,4),(4,6),(3,8),(0,3)\} \quad k=2$

The Simultaneous Congruences Problem (SCP)

An SCP instance is given by a pair (A, k).
Example: $\quad A=\{(2,4),(4,6),(3,8),(0,3)\} \quad k=2$

$(A, 2)$?

The Simultaneous Congruences Problem (SCP)

An SCP instance is given by a pair (A, k).
Example: $\quad A=\{(2,4),(4,6),(3,8),(0,3)\} \quad k=2$

$(A, 2)$?

The Simultaneous Congruences Problem (SCP)

An SCP instance is given by a pair (A, k).
Example: $\quad A=\{(2,4),(4,6),(3,8),(0,3)\} \quad k=2$

$(A, 2)$?

The Simultaneous Congruences Problem (SCP)

An SCP instance is given by a pair (A, k).
Example: $\quad A=\{(2,4),(4,6),(3,8),(0,3)\} \quad k=2$

$(A, 2) ? \rightarrow$ Yes

The Simultaneous Congruences Problem (SCP)

An SCP instance is given by a pair (A, k).
Example: $\quad A=\{(2,4),(4,6),(3,8),(0,3)\} \quad k=2$

$$
\begin{equation*}
(A, 2) ? \rightarrow \text { Yes } \tag{A,3}
\end{equation*}
$$

The Simultaneous Congruences Problem (SCP)

An SCP instance is given by a pair (A, k).
Example: $\quad A=\{(2,4),(4,6),(3,8),(0,3)\} \quad k=2$

$$
(A, 2) ? \rightarrow \text { Yes }
$$

$(A, 3) ? \rightarrow$ No

Feasibility and Demand Bound Functions

$$
\mathbf{T}=\left\{\tau_{1}, \tau_{2}, \tau_{3}\right\}
$$

Feasibility and Demand Bound Functions

$$
\mathbf{T}=\left\{\tau_{1}, \tau_{2}, \tau_{3}\right\}
$$

Feasibility and Demand Bound Functions

$$
\mathbf{T}=\left\{\tau_{1}, \tau_{2}, \tau_{3}\right\}
$$

Feasibility and Demand Bound Functions

$$
\mathbf{T}=\left\{\tau_{1}, \tau_{2}, \tau_{3}\right\}
$$

Feasibility and Demand Bound Functions

$$
\mathbf{T}=\left\{\tau_{1}, \tau_{2}, \tau_{3}\right\}
$$

Feasibility and Demand Bound Functions

$$
\mathbf{T}=\left\{\tau_{1}, \tau_{2}, \tau_{3}\right\}
$$

Demand bound functions capture feasibility exactly! (Baruah et al., 1990)

Feasibility and Demand Bound Functions

$$
\mathbf{T}=\left\{\tau_{1}, \tau_{2}, \tau_{3}\right\}
$$

Demand bound functions capture feasibility exactly! (Baruah et al., 1990)

Feasibility and Demand Bound Functions

$$
\mathbf{T}=\left\{\tau_{1}, \tau_{2}, \tau_{3}\right\}
$$

Demand bound functions capture feasibility exactly! (Baruah et al., 1990)

Feasibility and Demand Bound Functions

Feasibility and Demand Bound Functions

$$
\mathbf{T}=\left\{\tau_{1}, \tau_{2}, \tau_{3}\right\}
$$

SCP instance (A, k)

Feasibility and Demand Bound Functions

Constructing the Demand Bound Functions

$$
A=\{(2,4),(4,6),(3,8),(0,3)\}
$$

$(2,4)$

Constructing the Demand Bound Functions

$$
A=\{(2,4),(4,6),(3,8),(0,3)\}
$$

$(2,4)$

$(2,4)$

Constructing the Demand Bound Functions

$$
A=\{(2,4),(4,6),(3,8),(0,3)\}
$$

$(2,4)$

$(2,4)$

Constructing the Demand Bound Functions

$$
A=\{(2,4),(4,6),(3,8),(0,3)\}
$$

$(2,4)$

$(2,4)$

Constructing the Demand Bound Functions

$$
A=\{(2,4),(4,6),(3,8),(0,3)\}
$$

$(2,4)$

$(2,4)$

Constructing the Demand Bound Functions

$$
A=\{(2,4),(4,6),(3,8),(0,3)\}
$$

$(2,4)$

$(2,4)$

Constructing the Demand Bound Functions

$$
A=\{(2,4),(4,6),(3,8),(0,3)\}
$$

$(2,4)$

Constructing the Demand Bound Functions

$$
A=\{(2,4),(4,6),(3,8),(0,3)\}
$$

$(2,4)$

Constructing the Demand Bound Functions

Constructing the Demand Bound Functions

Constructing the Demand Bound Functions

Synthesizing the Tasks

Synthesizing the Tasks

$$
A=\{(2,4),(4,6),(3,8),(0,3)\}
$$

Synthesizing the Tasks

$$
A=\{(2,4),(4,6),(3,8),(0,3)\}
$$

Synthesizing the Tasks

$$
A=\{(2,4),(4,6),(3,8),(0,3)\}
$$

Synthesizing the Tasks

$$
A=\{(2,4),(4,6),(3,8),(0,3)\}
$$

τ_{2}

Synthesizing the Tasks

$$
A=\{(2,4),(4,6),(3,8),(0,3)\}
$$

τ_{2}

Synthesizing the Tasks

$$
A=\{(2,4),(4,6),(3,8),(0,3)\}
$$

Synthesizing the Tasks

$$
A=\{(2,4),(4,6),(3,8),(0,3)\}
$$

Synthesizing the Tasks

$$
A=\{(2,4),(4,6),(3,8),(0,3)\}
$$

Synthesizing the Tasks

Synthesizing the Tasks

Synthesizing the Tasks

Synthesizing the Tasks

Synthesizing the Tasks

$$
A=\{(2,4),(4,6),(3,8),(0,3)\}
$$

Conclusion

	General case	Utilization bounded by a constant $c<1$
Asynchronous periodic	Strongly coNP-complete	Strongly coNP-complete
Synchronous periodic (or sporadic)	Strongly coNP-complete	Pseudo-poly. solution exists

\forall Thank you!

\exists Questions?

