UNIPROCESSOR FEASIBILITY OF SPORADIC TASKS WITH CONSTRAINED DEADLINES IS STRONGLY CONP-COMPLETE

Pontus Ekberg & Wang Yi

UPPSALA UNIVERSITY

ECRTS 2015

Context on the Uniprocessor Feasibility Problem

Pontus Ekberg

Pontus Ekberg

Pontus Ekberg

SCP \propto *in*-Feasibility

Strongly NP-complete (Baruah et al., 1990) $|\text{SCP}| \propto in$ -Feasibility

An SCP instance is given by a pair (A, k).

An SCP instance is given by a pair (A, k).

Example: $A = \{(2,4), (4,6), (3,8), (0,3)\}$

An SCP instance is given by a pair (A, k).

Example:
$$A = \{(2, 4), (4, 6), (3, 8), (0, 3)\}$$
 $k = 2$

An SCP instance is given by a pair (A, k).

Example:
$$A = \{(2, 4), (4, 6), (3, 8), (0, 3)\}$$
 $k = 2$

Pontus Ekberg

Pontus Ekberg

An SCP instance is given by a pair (A, k). **Example:** $A = \{(2, 4), (4, 6), (3, 8), (0, 3)\}$ k=2(2,4)(4, 6)2 4 6 8 101214 1618200

Pontus Ekberg

An SCP instance is given by a pair (A, k). **Example:** $A = \{(2, 4), (4, 6), (3, 8), (0, 3)\}$ k=2(2,4)(4, 6)(3, 8)2 4 6 8 10 1214 1618200

Pontus Ekberg

An SCP instance is given by a pair (A, k).

Example:
$$A = \{(2, 4), (4, 6), (3, 8), (0, 3)\}$$
 $k = 2$

Pontus Ekberg

SPORADIC FEASIBILITY IS STRONGLY CONP-COMPLETE

An SCP instance is given by a pair (A, k).

Example:
$$A = \{(2, 4), (4, 6), (3, 8), (0, 3)\}$$
 $k = 2$

(A, 2)?

Pontus Ekberg

An SCP instance is given by a pair (A, k).

Example: $A = \{(2, 4), (4, 6), (3, 8), (0, 3)\}$ k = 2

(A, 2)?

Pontus Ekberg

An SCP instance is given by a pair (A, k).

Example: $A = \{(2, 4), (4, 6), (3, 8), (0, 3)\}$ k = 2

(A, 2)?

Pontus Ekberg

Sporadic Feasibility is Strongly coNP-complete

4

An SCP instance is given by a pair (A, k).

Example:
$$A = \{(2, 4), (4, 6), (3, 8), (0, 3)\}$$
 $k = 2$

 $(A, 2)? \rightarrow$ Yes

Pontus Ekberg

An SCP instance is given by a pair (A, k).

Example:
$$A = \{(2, 4), (4, 6), (3, 8), (0, 3)\}$$
 $k = 2$

Pontus Ekberg

An SCP instance is given by a pair (A, k).

Example:
$$A = \{(2, 4), (4, 6), (3, 8), (0, 3)\}$$
 $k = 2$

Pontus Ekberg

SPORADIC FEASIBILITY IS STRONGLY CONP-COMPLETE

 $\mathsf{T} = \{\tau_1, \tau_2, \tau_3\}$

Pontus Ekberg

 $\mathsf{T} = \{\tau_1, \tau_2, \tau_3\}$

Pontus Ekberg

 $\mathsf{T} = \{\tau_1, \tau_2, \tau_3\}$

Demand bound functions capture feasibility exactly! (Baruah et al., 1990)

Pontus Ekberg

 $\mathsf{T} = \{\tau_1, \tau_2, \tau_3\}$

Demand bound functions capture feasibility exactly! (Baruah et al., 1990)

Pontus Ekberg

 $\mathsf{T} = \{\tau_1, \tau_2, \tau_3\}$

Demand bound functions capture feasibility exactly! (Baruah et al., 1990)

Pontus Ekberg

Pontus Ekberg

Feasibility and Demand Bound Functions

 $\mathsf{T} = \{\tau_1, \tau_2, \tau_3\}$

SCP instance (A, k)

Pontus Ekberg

Feasibility and Demand Bound Functions

Pontus Ekberg

 $A = \{ (2,4), (4,6), (3,8), (0,3) \}$

Pontus Ekberg

Pontus Ekberg

Pontus Ekberg

Pontus Ekberg

Pontus Ekberg

Pontus Ekberg

Pontus Ekberg

Constructing the Demand Bound Functions

Pontus Ekberg

Constructing the Demand Bound Functions

Pontus Ekberg

$$A = \{ (2, 4), (4, 6), (3, 8), (0, 3) \}$$

Pontus Ekberg

Pontus Ekberg

CONCLUSION

	General case	bounded by a constant $c < 1$
Asynchronous periodic	Strongly coNP-complete	Strongly coNP-complete
Synchronous periodic (or sporadic)	Strongly coNP-complete	? Pseudo-poly. solution exists

T T4:1: ___ +: _ ...

Pontus Ekberg

∀Thank you! ⇒ ∃Questions?