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Abstract

In Inductive Logic Programming, predicate invention is the process of introducing a hitherto unknown pred-
icate, and its description, into the description of the currently learned predicate. This is only necessary when
a finite axiomatization of the current predicate is otherwise impossible, in which case the description of the
invented predicate is recursive. So necessary predicate invention is a program synthesis task, and had thus best
be done by a synthesizer rather than by a general purpose learner, because one can then re-use the vast body
of knowledge about recursive algorithm design. Taking a schema-guided approach, I show how predicate in-
vention can be performed (if not avoided) by intelligent re-use from structured background knowledge, by
necessarily successful intelligent dialogue with the user, and by structural or computational generalization of
the original problem.

1 Introduction

During the learning of a hypothesisH for some positive evidenceE+ and negative evidenceE–, in the pres-
ence of some background knowledgeB, the expressionconcept invention designates the processes of (i )
introducing intoH some concept(s) that do not appear inE+, E–, orB, and (ii ) learning hypotheses for these
new concepts. This corresponds to the usage ofconstructive rules of inductive inference (where the induc-
tive consequent may involve symbol(s) that are not in the antecedent), as opposed to selective ones. Such
constructive induction thus doesn’t (simplistically) assume that the preliminary learning tasks of represen-
tation and vocabulary choice have already been solved, and represents thus a crucial field in learning.

I will here explore some issues around concept invention in the setting of machine learning where the hy-
potheses (concept descriptions), evidence, and background (prior) knowledge are expressed in (some subset
of) first-order logic. This is commonly referred to as Inductive Logic Programming (ILP). A concept is then
represented by a predicate-symbol (abbreviated predicate hereafter), and described by a logic program. I
will ignore for a while the notion of learning bias.

Let’s first have a look at two introductory examples, some arising questions, and the related work, before
I make my objectives more explicit.

Example 1: Assume the following positive evidence for thesort/2 relation (wheresort(L,S) holds iff in-
teger-listS is a non-decreasingly ordered permutation of integer-listL):

sort([],[])
sort([0],[0])
sort([2,1],[1,2])
sort([4,3,5],[3,4,5])

Assume there is no negative evidence, nor any background knowledge. Then the learning of the following
logic program forsort/2:
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sort([],[])
sort([HL|TL],S) ←

sort(TL,TS),
insert(H,TS,S)

involved the invention of theinsert/3 predicate (whereinsert(I,L,R) holds iff integer-listR is non-decreas-
ingly ordered integer-listL with integerI inserted), whose logic program hereafter is a by-product:

insert(I,[],[I])
insert(I,[HL|TL],[I,HL|TL]) ←

I ≤HL
insert(I,[HL|TL],[HL|TR]) ←

¬(I ≤HL),
insert(I,TL,TR)

Note that this required in turn the invention of the≤ /2 predicate (whose specification and program are omit-
ted here). Let’s ignore for a while that this learning session would be a quite sensational result.♦
Example 2: Assume the following positive and negative evidence of thegrandDaughter/2 relation (where
grandDaughter(G,P) holds iff personG is a grand-daughter of personP):

grandDaughter(ayşe,murat)
grandDaughter(bulut,lâle)
¬grandDaughter(ali,murat)

and the following background knowledge (whereparent(P,Q) holds iff personP is a parent of personQ,
female(P) holds iff personP is female, andmale(P) holds iff personP is male):

parent(murat,birtane)        female(birtane)        male(murat)
parent(lâle,sibel)           female(lâle)           male(ali)
parent(birtane,ali)          female(sibel)
parent(birtane,ayşe)         female(ayşe)
parent(sibel,bulut)          female(bulut)

Then the learning of the following logic program forgrandDaughter/2:

grandDaughter(G,P) ←
parent(P,Q),
daughter(G,Q)

involved the invention of thedaughter/2 predicate (wheredaughter(D,P) holds iff personD is a daughter
of personP), whose logic program hereafter is a by-product:

daughter(D,P) ←
parent(P,D),
female(D)

Note that no other predicate needed to be invented in turn.♦
Let’s now have a look at a few issues around predicate invention.

When Is Predicate Invention Necessary?In Example 1, once synthesis was committed to the recursive
call sort(TL,TS), whereTL is the tail ofL, the predicateinsert/3 had to be invented, especially that its pro-
gramcannot be unfolded into the program forsort/2. If committed to some other recursive call(s), another
predicate wouldhave to be invented. Otherwise, the background knowledge being empty,sort/2 would
have to be implemented at most in terms of itself only, which is impossible without generating the non-ter-
minating programsort(L,S) ← sort(L,S), or without generating an infinite program. In Example 2, the in-
vention ofdaughter/2 was not necessary, as its program can simply be unfolded into the program for
grandDaughter/2. However, thedaughter/2 concept is still interesting in its own right. Generally speaking:

Definition 1: Predicate invention isnecessary iff there is no finite logic program for the observational con-
cepts in the (positive and negative) evidence that uses only the fixed vocabulary of predicates from the ev-
idence and the background knowledge.

However, detecting this is an undecidable question [23], so heuristics are needed in general. Fortunately,
a theorem by Kleene shows that appropriate necessary predicate invention always achieves finite axiomati-
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zation (see [23]). Necessarily-invented predicates are always recursively defined, because otherwise their
programs could be unfolded. Moreover, I propose the following notion of usefulness (unrelated to
Muggleton’s utility [18], which is about search space pruning during predicate invention):

Definition 2: Given a partially constructed logic program for the observational concepts in the evidence,
predicate invention isuseful iff there is a way to complete the program by inventing a predicate whose logic
program is recursive.

(It is up to the reader to decide whether this concept introduction was necessary, or useful, or neither!) For
instance, if the background knowledge of Example 1 included programs forpermutation/2 andordered/1,
then predicate invention wouldnot be necessary (as naive-sort can be learned). But, once committed to the
recursive callsort(TL,TS), whereTL is the tail ofL, the invention ofinsert/3 is useful, because it avoids
having to implement the functionality ofinsert/3 in terms ofpermutation/2 andordered/1 (which would
wreak havoc on the computational complexity of the logic program under construction). In Example 2, the
invention ofdaughter/2 was neither necessary nor useful, but “interesting.” Usefully-invented predicates
are thus also recursively defined, which again prevents the unfolding of their programs.

Why Is Predicate Invention Difficult? In Example 1, once committed to the recursive callsort(TL,TS),
whereTL is the tail ofL, the implicit evidence for the necessary and useful predicateinsert/3 is as follows:

insert(0,[],[0])
insert(1,[],[1])            % abduced via oracle
insert(2,[1],[1,2])
insert(5,[],[5])            % abduced via oracle
insert(3,[5],[3,5])         % abduced via oracle
insert(4,[3,5],[3,4,5])

The problem is that this evidence seems quite insufficient to learn programs for bothinsert/3 itself and the
then necessary and useful predicate≤ /2. In general, the implicit evidence tends to be quite sparse [17], un-
less a lot of evidence was given for the given initial concepts.

What Are the Standard Techniques of Predicate Invention?The CLINT-CIA learner [4] performs con-
structive induction by analogy: previously learned clauses are abstracted into second-order clause schemata
that are then used to speed up future learning sessions (by initially restricting the focus to clauses that are
instances of known schemata) as well as to invent new predicates (by trying to group learned conjunctions
of literals according to bodies of schemata and asking the teacher to name, if possible, the so defined concept
by a predicate). However, this techniquecannot perform useful or necessary predicate invention, and aims
thus “merely” at more compact or comprehensible hypotheses.

In specific-to-general learning, predicate invention (e.g., [2], INDEX [7], CIGOL [19], ITOU [21], and others
surveyed in [23]) is usually performed by applying theW-operators of inverse resolution [19]. However, the
W-operatorscannot produce recursive clauses for the invented predicates, so theycannot perform useful
predicate invention by themselves. To do so, theV-operators of inverse resolution may then be invoked, or
the teacher may be asked to rename the invented predicate by a known one. Moreover, these operators of
inverse resolution induce a very large hypothesis space, so that only some form of “disciplined” search
would have any chance of yielding “good” hypotheses in reasonable time (but see [18]). Finally, inverting
resolution is not powerful enough, as the abduced pieces of evidence are often more than one resolution step
apart. Generally speaking now: inverse resolution is not complete with respect to induction.

TheCILP system [17] therefore uses inverse implication instead to invent predicates. A similar technique,
applicable in general-to-specific learning, is performed bySYNAPSE [8,10–12],SIERES [25], andMETAIN-

DUCE [15]: when the existence of necessary or useful predicate invention is detected (or merely conjec-
tured), then explicitly abduce the corresponding evidence and call the learner recursively from that evidence
(I will later refer to this as theSynthesis Method). Better: unless the “current” learner is itself specialized to
learning recursive programs, call such a specialized learner instead of calling the “current” general purpose
learner recursively, because the specialized one can take into advantage the knowledge (or conjecture) that
a recursive program has to be learned. The mentionedSYNAPSE, ITOU, CILP, SIERES, andMETAINDUCE sys-
tems are such specialized learners, and they all rely on some recursive program schema [9] to achieve better
performance on the class of recursive programs than general purpose learners. They are themselves recur-
sively defined, and may be called by general purpose learners for necessary or useful predicate invention.
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Objectives of this Paper. I can now state my objectives more precisely: I will here focus on the process of
useful predicate invention in a very relevant niche [13] of ILP, namely the learning of recursive logic pro-
grams. Bycomputational concepts I will mean concepts that have (among others) recursive1 logic programs
as concept descriptions; and by (inductive) synthesis I will mean the learning of recursive logic programs
for computational concepts. Thesort/2 relation is a computational concept, as it can be implemented by
recursive logic programs, such as insertion-sort, merge-sort, quick-sort, and so on. It can actually also be
implemented by non-recursive logic programs, such as naive-sort, which is however written in terms of
some computational concepts. For computational concepts, non-recursive programs tend to be very naive
and inefficient, that is they are the kind of formal specifications often provided for deductive synthesis. But
thegrandDaughter/2 concept is non-computational: I, at least, cannot imagine a recursive description of
grand-daughters (whose recursive clauses are non-redundant with the non-recursive ones). Synthesis is thus
the branch of learning that yields programs that actually compute something, whereas the learning of non-
recursive programs (be it for computational concepts or not) yields programs that “merely” classify data. A
specifier is a teacher who teaches computational concepts. A synthesizer is a learner that can only synthesize
recursive logic programs for computational concepts. Examples of inductive synthesizers are the aforemen-
tionedSYNAPSE, ITOU, CILP, SIERES, andMETAINDUCE. Their applicability as predicate inventors for general
purpose learners further strengthens my former arguments [13] for their being a relevant niche of ILP, in
addition to their relevance to (inductive) software engineering in general.

In this paper, I will show that the knowledge (or mere conjecture) that thereis a recursive program for the
invented predicate gives us some extra leverage over conventional methods of predicate invention, precisely
because we may appeal to the vast body of knowledge generated by recursive algorithm design research. In
the following, I will assume that we try to synthesize a recursive program, regardless of whether this syn-
thesis task arose from a useful or necessary predicate invention in a general purpose ILP task or from an-
other synthesis task. In any case, the synthesis of a recursive program is likely to generate its own useful or
necessary predicate inventions, so I cover the whole spectrum of possibilities.

The remainder of this paper is then organized as follows. In Section 2, I briefly introduce the concept of
logic program schema, which is crucial to the efficient guidance of synthesis and to the reader’s understand-
ing of the remaining sections of this paper. Section 3 shows various techniques of performing predicate in-
vention through re-use, including the reliance on structured background knowledge (as opposed to the
traditionally unstructured background knowledge in ILP). In Section 4, I argue that predicate invention can
also be performed by mere queries to the specifier. Section 5 discusses problem generalization techniques
and shows whether they can be used to perform predicate invention. Finally, in Section 6, I conclude on
predicate invention in inductive program synthesis.

2 Logic Program Analysis via Logic Program Schemata

Programs can be classified according to their synthesis methodologies, such as divide-and-conquer, gener-
ate-and-test, top-down decomposition, global search, and so on, or any composition thereof. Informally, a
program schema is a template program with a fixed control and data flow, but without specific indications
about the actual parameters or the actual computations, except that they must satisfy certain constraints. A
program schema thus abstracts a whole family of particular programs that can be obtained by instantiating
its place-holders to particular parameters or computations, using the specification, the program synthesized
so far, and the constraints of the schema. It is therefore interesting to guide program synthesis by a schema
that captures the essence of some methodology. This reflects the conjecture that experienced programmers
actually instantiate schemata when programming, which schemata are summaries of their past program-
ming experience. For a more complete treatise on this subject, please refer to [9].

In this section, I will introduce a schema for divide-and-conquer logic programs (Section 2.1), then argue
for schema-guided synthesis (Section 2.2), and finally identify the place-holders of the divide-and-conquer
schema whose instantiations are most likely to require useful predicate invention (Section 2.3).

1. Recursion being the only “looping” construct in logic programming, this discussion would have to be broadened in (structured)
imperative programming, so as to encompass for/while/repeat iteration.
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2.1 A Divide-and-Conquer Logic Program Schema

In this sub-section, for the purpose of illustration only, I will focus on the divide-and-conquer synthesis
methodology (which yields recursive programs), and I will restrict myself, for pedagogical purposes only,
to binary predicates. Adivide-and-conquer program for a binary predicate R over parameters X and Y works
as follows. Let X be the induction parameter. If X is minimal, then Y is (usually) easily found by directly
solving the problem. Otherwise, that is if X is non-minimal, decompose (or: divide)X into a vectorHX of
h heads of X and a vectorTX of t tails of X, the tails being of the same type as X, as well as smaller than X
according to some well-founded relation. Thet tailsTX recursively yieldt tailsTY of Y (this is the conquer
step). The headsHX are processed into a vectorHY of h' heads of Y. Finally, Y is composed (or: combined)
from its headsHY and tailsTY. Supposem subcases with different processing and composition operators
emerge: one discriminates between them according to the values ofHX, TX, andY. Them+1 clauses of logic
programs synthesized by this divide-and-conquer methodology are covered by the second-order clause
schemata of Schema 1, whereR(TX,TY) stands for the conjunction of theR(TXj ,TYj ), for 1≤ j ≤t.

R(X,Y) ←
Minimal(X),
Solve(X,Y)

R(X,Y) ←
NonMinimal(X),
Decompose(X, HX, TX),
Discriminate k( HX, TX,Y),
R(TX,TY),
Process k( HX, HY),
Composek( HY, TY,Y)

Schema 1:Divide-and-conquer schema (where 1≤k≤m)

The constraints to be verified by first-order instances of this schema are listed in [9]. The most important
one is that there must exist a well-founded relation “<” over the domain of the induction parameter, such
that the instantiation ofDecompose guarantees thatTXj “<” X, for every 1≤ j ≤t.

The insertion-sort program of Example 1 is a rewriting of the program obtained by applying the substitu-
tion {Minimal/isEmptyList, NonMinimal/isNonEmpty, Decompose/headTail, Discriminate1/true, Solve/=,
Process1/=, Compose1/insert, m/1, h/1, h'/1, t/1} to Schema 1, with the primitives defined as follows:

isEmptyList([])
isNonEmpty([_|_])
headTail([H|T],H,T)

and insert/3 is defined as in Example 1. Note that the logic program forinsert/3 is not an instance of
Schema 1: covering it would require a generalization ton-ary predicates, the handling ofnon-recursive non-
minimal clauses, and the handling of auxiliary parameters (such asI ), which can’t be induction parameters.
Such extensions are discussed in [8] [9].

2.2 Schema-Guided Synthesis

An interesting idea is to devise stepwise synthesis strategies where each step synthesizes instance(s) of
some place-holder(s) of a given schema. The schema thus actively guides the synthesis, and constitutes a
synthesis bias. A synthesisstrategy determines the order of instantiation of the place-holders of its attached
schema, and hence the order of “navigation” through the web of constraints attached to that schema.

A tool-box of schema-independentmethods can then be developed for the instantiation of place-holders.
Such methods may be merely based on databases of common instances. More sophisticated methods would
perform actual computations for inferring such instances, based on the specification, the constraints, and the
program synthesized so far. Several methods of such a tool-box might be applicable at each step, thus yield-
ing opportunities for user interaction, or for the application of synthesis heuristics. I thus here advocate a
very disciplined approach to synthesis: rather than use a uniform method for instantiatingall place-holders
of a given schema (possibly without any awareness of such a schema), one should deploy for each place-
holder thebest-suited method. I thus propose to view research on synthesis as (also see [22]):
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(1) the search for adequate schemata;
(2) the development of useful methods of place-holder instantiation; and
(3) the discovery of interesting mappings between these methods and the place-holders of these sche-

mata, these mappings being encoded in strategies.
As many methods would be schema-independent, or even place-holder-independent, one should also inves-
tigate synthesizers that are parameterized on schemata. In other words, the first synthesis step would then
be to select a schema, and the subsequent steps would be either a hardwired sequence (specific to the select-
ed schema) of applications of methods, or a user-guided selection of place-holders and methods. My grand
view of synthesizers is thus one of a largeworkbench with a disparate set of highly specialized methods and
a set of schemata that cover (as much as possible of) the space of all possible programs.

Given the specification of the top-level problem, and assuming the divide-and-conquer methodology has
been selected, the synthesis of a divide-and-conquer program thus amounts tofirst reducing this specifica-
tion to a set of 4+3·m new specifications of sub-problems, andthen synthesizing (not necessarily using the
divide-and-conquer methodology!) programs for these specifications, beforefinally assembling these pro-
grams according to a divide-and-conquer schema. It is important to realize that instances of the place-hold-
ers are not (necessarily) directly derived, but are rather the results of auxiliary syntheses from derived
specifications. A possible ordering strategy for Schema 1 would be to instantiate the place-holders as they
appear in the schema; this is a very natural sequence, especially for human programmers.

2.3 Predicate Invention and the Divide-and-Conquer Schema

Regarding our investigation of predicate invention now, the instantiation of virtually all place-holders of the
divide-and-conquer schema may require predicates that do not appear in the evidence. They could then be
retrieved, in the best case, from the background knowledge, but this would be a very undisciplined way of
proceeding and would inevitably result in a combinatorial explosion of the search space, unless that back-
ground knowledge is restricted to the necessary predicates (or a small superset thereof), which is a very un-
realistic scenario.

The most unlikely place-holders to require predicate invention areMinimal, NonMinimal, andDecom-
pose: for every datatype, there are standard ways of instantiating these manipulations of the induction pa-
rameter. This actually constitutes theonly creative part of synthesis, because all the other instantiations
necessarily and even deterministically follow from these decisions. Backtracking to these decision points
and making new choices will yield other, but of course equivalent, programs. So it would be but good soft-
ware engineering practice to start synthesis by choosing among such standard instantiations. I will discuss
this re-use issue in Section 3.

Next, theDiscriminantk place-holders are a bit more likely to require predicate invention: they are usually
“tests” rather than “computations,” and may thus require predicates that do not appear in the evidence. Of
course, “tests,” such as≤ /2 over natural numbers, actuallyare computational concepts, so they could be
synthesized in turn, but it seems more reasonable to either re-use such standard instantiations from back-
ground knowledge (if available) or to query the user for this purpose. I will discuss this latter dialogue issue
in Section 4.

Finally, the most likely place-holders to require predicate invention areSolve, theProcessk, and theCom-
posek. Especially the latter two are even likely to require useful predicate invention, because the logic pro-
gram under construction may feature nested “loops.” In case of recursive descriptions of the instantiations,
the synthesizer may use any standard method or just recursively call itself from the abduced evidence (this
is the Synthesis Method), or it may apply one of the (new) methods shown in Section 5. Otherwise, there
may be re-use methods (as shown in Section 3) or query methods (as shown in Section 4).

3 Predicate Invention through Re-Use

In my humble opinion, one of the biggest open problems of ILP in particular, and of Machine Learning in
general, is the lack of effective and efficient use of the background knowledge. Such a knowledge base is
potentially very large, and even grows after each learning session by assimilation of the newly learned
knowledge. So, with current learning methodologies, the search space would simply grow exponentially. In
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order to cope with this problem, learning sessions are usually started from very little background knowledge
(often exactly the one that is “needed,” or a small superset thereof). While this is a reasonable research sce-
nario (because it may quickly establish the existence of a solution in the smallest search space, and hence
in any large superset thereof), this is an unrealistic scenario in real life, where the background knowledge
is all the knowledge amassed so far.

Unless the background knowledge is structured in some way, just like in real life (we don’tnormally think
of daughters when synthesizing a sorting program, and vice-versa, but see below!), learning sessions will
remain unrealistic, despite their establishing the feasibility of learning. Of course, picking the “relevant”
background knowledgeis a form of knowledge structuring (by assigning a non-zero relevance factor to all
deemed-to-be-relevant predicates and a zero factor to all the other known predicates), but it is not always
easy to do so adequately. It may even be counterproductive to do so, especially in synthesis. While the teach-
ing of naive-sort, by puttingpermutation/2 andordered/1 (only) into the background knowledge, may be
a valid objective, such is not the case with specifying it: one specifies problems, not solutions! Also: why
teach a computer something we already know? By doing so, one might bypass potentially more “beautiful”
(or unknown) solutions, such as quick-sort, which would exist if only the background knowledge were large
enough and/or predicate invention powerful enough. The hitch of course is that, if the background knowl-
edge is large enough, then “ugly” solutions may be learned, such as the previously mentioned insertion-sort
whoseinsert/3 is implemented in terms ofpermutation/2 andordered/1. That’s why I proposed the notion
of useful predicate invention and why background knowledge needs to be structured. Some form of “disci-
pline” needs to be brought into learning methodologies in order to cope with these problems.

In synthesis, there are good opportunities to do so. Especially schema-guided synthesis strategies provide
us with neat opportunities for structuring the background knowledge according to standard instantiations of
the place-holders of schemata. Strictly speaking, this is of course no real predicate invention.

Inventing Minimal, NonMinimal, Decompose, and theComposek through Re-Use. My SYNAPSE syn-
thesizer features sub-knowledge bases that are specific to theMinimal, NonMinimal, andDecompose place-
holders of the divide-and-conquer schema. ItsRe-Use Method for instantiating these place-holders consists
of first detecting the type (or domain) of the chosen induction parameter, and then non-deterministically re-
using a type-specific instantiation from the corresponding sub-knowledge base. In any case, it is good soft-
ware engineering practice to start synthesis by re-using such standard operators. The other place-holders of
the divide-and-conquer schema are less “predictable,” and hence less appropriate for effective re-use via a
structured knowledge base. Exceptions to this may be theComposek, because of their symmetry withDe-
compose and because of the symmetrical role of parametersX andY: composingY from its heads and tails
can indeed be seen asdecomposingY into these heads and tails (provided these tails are smaller thanY ac-
cording to some well-founded relation, which is not necessarily the case for all composition operators), and
decomposingX into its heads and tails can be seen ascomposingX from these heads and tails, because of
the reversibility of logic programs. So, given a “simple” instantiation ofDecompose, the invention of “com-
plex” Composek can sometimes be avoided by changing the induction parameter and re-using some “com-
plex” Decompose, because theComposek might then have “simple” instantiations that are easier to invent.

Inventing the Processk and Composek through Re-Use. Another method of predicate invention
through re-use is commonly found in synthesizers, especially for the simultaneous instantiation of thePro-
cessk andComposek place-holders, sayProcCompk(HX,TY,Y), of the divide-and-conquer schema: the de-
tection of the existence of useful predicate invention usually results from some failure to find a non-
recursive logic program for the invented predicate. At present, the search for such a non-recursive descrip-
tion is restricted to re-using the=/2 primitive only: compute the most-specific generalization (msg) of the
abduced evidence (assuming it consists of positive facts only); if that msg satisfies some (dataflow) criteria,
then it can be rewritten as a logic program for the invented predicate. For instance, if the msg of the abduced
evidence isprocComp(A,B,[A|B]), then the clauseprocComp(A,B,C) ← C=[A|B] may be conjectured as
a description of the invented predicateprocComp/3. The used dataflow criteria here are that theY parameter
must be constructed in terms ofall theTY parameters (otherwise recursion would have been useless) and
may in addition be constructed in terms of theHX parameters. Similar criteria can be derived for other
place-holders. TheCILP, SIERES, andMETAINDUCE synthesizers feature such a method. TheMSG Method of
my SYNAPSE synthesizer is a bit more evolved in that it can instantiate multiple differentProcCompk in
terms of=/2, which means that there may be more than just one recursive clause (m≥1). However, if their
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msg approach to predicate invention through re-use fails, then all these synthesizers hastily conjecture the
existence of useful predicate invention and call themselves recursively from the abduced evidence (this is
the Synthesis Method). Obviously, this is not always adequate, as there might be non-recursive descriptions
of the invented predicate that are not in terms of the=/2 primitive only. Some generalization of the msg
approach is thus needed, so that other background knowledge predicates can also be re-used.

4 Predicate Invention through Queries

In useful predicate invention, we look for a recursive logic program for the invented predicate, which thus
represents a computational concept. So we may apply the entire body of knowledge of recursive algorithm
design to this objective, which knowledge can be captured in program schemata and their attached con-
straints. Divide-and-conquer logic programs are an important subclass of recursive logic programs, and it
turns out that, quite often, some of its place-holders can be easily instantiated by mere dialogue with the
specifier, because s/hemust know the predicate that would otherwise have to be invented. “Knowing a con-
cept” means that one can act as a decision procedure for answering membership queries for that concept,
but it doesn’t necessarily imply the ability to actually write that decision procedure.2

Inventing Solve through Queries. For instance, a specifier who wants a logic program synthesized for the
sort/2 relation must know what the sorted version of the empty list is. In general, given a minimal form of
the induction parameter, the specifier must know the corresponding values of the other parameters, because
otherwise s/he wouldn’t even have the need for the overall program. TheSolve operator can thus be instan-
tiated by looking for appropriate information among the evidence or by simply querying the specifier for it:

Q: What is the formula Solve/2 such that sort([],S) ← Solve([],S) ?
A: Solve([],S) ← S =[]

In general,Solve can be instantiated by any (conjunctive) formula. Such predicate invention through queries
is not always directly applicable: for instance, if synthesis for the sorting problem goes into the direction of
insertion-sort, theninsert/ 3 may be usefully invented, but the specifier cannot be queried for the
instantiation ofSolve for insert/3, because this is an auxiliary concept that is not necessarily known to the
specifier, her/his “mental” sorting algorithm being not necessarily the insertion-sort one. So such a query
would have to be rephrased in terms of thesort/2 predicate:

Q: What is the formula Solve/3 such that sort([I],R) ← Solve(I,[],R) ?
A: Solve(I,[],R) ← R =[I]

Whatever predicates are invented, it thus seems possible to discover theirSolve operators by asking appro-
priate questions in terms of the top-level predicate for which a program is being synthesized.

Inventing the Discriminatek through Queries. Similarly, a specifier who wants a logic program synthe-
sized for thesort/2 relation must also know what the sorted version of a two-element list is, andwhy it is
so. In other words, the≤ /2 predicate must be known to the specifier. In general, if the synthesizer discovers
at least two different ways (m≥2) of process-composingY from theHX andTY, then the specifier must
know how to discriminate between them, because otherwise s/he wouldn’t even have the need for the over-
all program. TheDiscriminatek operators (of the top-level predicate, or of a predicate usefully invented for
it) can thus often be instantiated by looking for appropriate information among the evidence or by simply
querying the specifier for it. The following dialogue results from the synthesis ofinsert/3, which is invented
if synthesis for the sorting problem goes into the direction of insertion-sort; the queries however had to be
rephrased in terms of the top-level predicatesort/2:

Q: What is the formula Discriminate 1/4 such that
sort([A,B],[A,B]) ← Discriminate 1(B,[],A,[A,B]) ?

A: Discriminate 1(B,[],A,[A,B]) ← A ≤B

Q: What is the formula Discriminate 2/4 such that
sort([A,B],[B,A]) ← Discriminate 2(B,[],A,[B,A]) ?

A: Discriminate 2(B,[],A,[B,A]) ← ¬(A ≤B)

2. It would be interesting to examine specifiers (oracles) that are capable of answering other kinds of queries (subset, superset, … [1])
and to investigate other meanings of the phrase “knowing a concept.”
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Very similar questions would be asked in case synthesis goes towards merge-sort; they would help instan-
tiate the discriminants of an inventedmerge/3 predicate. In general, the need for discriminants tends to ap-
pear at “lower” levels of the predicate hierarchy resulting from a synthesis.

Inventing the Processk through Queries. Let multN(L,N,R) hold iff integer-listR is integer-listL where
all elements are multiplied by integerN. A specifier who wants a logic program synthesized for themultN/3
relation must know what the result for a one-element list is. In general, given the “smallest” non-minimal
form of the induction parameter, the specifier must know the corresponding values of the other parameters,
because otherwise s/he wouldn’t even have the need for the overall program. TheProcessk operators can
thus often be instantiated by looking for appropriate information among the evidence or by simply querying
the specifier for it:

Q: What is the formula Process 1/3 such that
multN([A],N,[B]) ← Process 1(A,N,B) ?

A: Process 1(A,N,B) ← product(A,N,B)

whereproduct(X,Y,Z) holds iff integerZ is the product of integersX andY. The assumption here was that
Compose1 had already been instantiated. This need not always be the case, but doesn’t pose any problems,
because both operators can usually be instantiated simultaneously.

Inventing the Composek through Queries. Let minList(L,M) hold iff integerM is the minimum element
of integer-listL. A specifier who wants a logic program synthesized for theminList/2 relation must know
what the result for a two-element list is. In general, given a “small” non-minimal form of the induction pa-
rameter, the specifier must know the corresponding values of the other parameters, because otherwise s/he
wouldn’t even have the need for the overall program. TheComposek place-holders can thus often be instan-
tiated by looking for appropriate information among the evidence or by simply querying the specifier for it:

Q: What is the formula Compose 1/3 such that
minList([A,B],M) ← Compose 1(A,B,M) ?

A: Compose 1(A,B,M) ← min(A,B,M)

wheremin(X,Y,Z) holds iff integerZ is the minimum of integersX andY. The assumption here was that
Process1 had already been instantiated.

Evaluation of Predicate Invention through Queries. It turns out that surprisingly many place-holders of
the divide-and-conquer schema (namely all but the ones that had better be instantiated by a re-use method)
can be instantiated by mere queries to the specifier. These queries can be kept entirely in terms of the spec-
ifier’s conceptual language, and are simple, because they need only ask what “happens” when the induction
parameter is of a minimal form or of a “small” non-minimal form. Even better, the specifiermust know the
answers to these queries, because otherwise s/he wouldn’t even feel the need for the synthesized program.
The answers are thus also in the specifier’s conceptual language, and the predicates they contain are either
part of the background knowledge (in which case there is a “nice” knowledge transfer, without the usual
efficiency problems of re-use and the sometimes automa-g-ic flavor of inductive synthesis) or new predi-
cates (in which case auxiliary syntheses need to be started for them).

All this indicates that synthesis may start from very little evidence, as the synthesizer can query the spec-
ifier for the missing minimal information. Of course, if the specifier has given (some of) that information,
then the synthesizer must be able to locate it and appropriately use it. If all the information was given, then
synthesis should even be fully automatic. In any case, the evidence language should be at least as sophisti-
cated as the answer language for the queries. For instance, mySYNAPSE synthesizer features Horn-clauses
as evidence language, and expects as evidence some facts as well asall the answers (called properties) to
such queries. ItsProofs-as-Programs Method3 “transfers” predicates from the clause bodies into the appro-
priate place-holders of the synthesized program. An interactive version that asks for missing information,
rather than expect all the minimal information, is in preparation. TheCLINT learner [3] also features an ev-
idence language that is more expressive than just positive and negative facts (namely clauses), but it works
in a completely different way, because it is a general purpose learner.

3. This method actually performs some kind of abduction, and might be renamed in the future.
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5 Predicate Invention through Problem Generalization

When synthesizing a divide-and-conquer program, it sometimes becomes “difficult,” if not impossible, to
process-composeY from theHX andTY. Besides changing the induction parameter, or the well-founded
relation over its domain (and hence the instances ofMinimal, NonMinimal, andDecompose), or the guiding
schema/methodology, one can also generalize the initial specification and then synthesize a recursive pro-
gram from the generalized specification as well as a non-recursive program for the initial problem as a par-
ticular case of the generalized one. Paradoxically, the new synthesis then becomes “easier,” if not possible
in the first place. As an additional and beneficial side-effect, programs for generalized problems are often
more efficient, because they feature (semi-)tail recursion (which is transformed by optimizing interpreters
into iteration) and/or because the generalization provoked a complexity reduction by loop merging. The lat-
ter phenomenon is of interest here, because if the composition loop can be merged with the loop of the top-
level predicate, then the composition operator need not be invented.

For a detailed overview of problem generalization techniques, the reader is invited to consult [5] or [6]. I
here summarize Deville’s presentation and borrow some of his examples, but adapt and extend where ap-
propriate. Basically, there are two generalization approaches:

• In structural generalization, one generalizes the structure (type) of some parameter. For instance, an
integer parameter could be generalized into a integer-list parameter, and the intended relation must then
be generalized accordingly. This is calledtupling generalization, and I shall restrict the discussion of
structural generalization to it.

• In computational generalization, one generalizes a state of computation in terms of “what has already
been done” and “what remains to be done.” If information about what has already been done is not
needed, then it is calleddescending generalization (partial results are reduced to their predecessors by
only considering a suffix of execution), otherwise it isascending generalization (partial results are ex-
tended to their successors by also considering a prefix of execution).

In Sections 5.1 to 5.3 hereafter, I will investigate whether these generalization techniques can be success-
fully applied for the purposes of predicate invention in inductive synthesis.

5.1 Predicate Invention through Structural Generalization

In this sub-section, I first briefly illustrate tupling generalization on an example, and then examine its po-
tential for predicate invention.

Example 3: Let the constantvoid represent the empty binary tree, and the compound termbtree(L,E,R)
represent a binary tree of rootE, left subtreeL, and right subtreeR. Letflat(B,F) hold iff list F contains the
elements of binary treeB as they are visited by a prefix traversal ofB. We also say thatF is theprefix rep-
resentation of B. A corresponding “naive” divide-and-conquer logic program could be:

flat(void,[])
flat(btree(L,E,R),F) ←

flat(L,U), flat(R,V),
H=[E],
append(U,V,I), append(H,I,F)

whereappend(A,B,C) holds iff listC is the concatenation of listB to the end of listA. If n is the number of
elements in treeB, then this logic program has anO(n2) time complexity (as opposed to the linear complex-
ity one might expect), because composition is done throughappend/3, whose time complexity is linear in
the number of elements in its first parameter (and not constant, as one might hope). This is all an inevitable
consequence of the definition of lists. Worse, ifh is the height ofB, then this logic program builds a stack
of h pairs of recursive calls, and it creates 2·n intermediate data structures, so it also has a very bad space
complexity. In the (+,−) mode, the call to the composition operatorappend/3 cannot be moved in front of
any of the recursive calls (well, at least not without significantly further degrading the time/space efficien-
cy), so theflat/2 logic program is not (semi-)tail-recursive (assuming a left-to-right computation rule).

Let’s now perform a tupling generalization of the initial specification: letflats(Bs,F) hold iff list F is the
concatenation of the prefix representations of the elements of binary tree listBs. Expressing the initial prob-
lem as a particular case of the generalized one yields:
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flat(B,F) ←
flats([B],F)

and a logic program for the generalized problem is:

flats([],[])
flats([void|Bs],F) ←

flats(Bs,F)
flats([btree(L,E,R)|Bs],[E|TF]) ←

flats([L,R|Bs],TF)

Note that the calls toappend/3 have disappeared: theappend/3 loops have been merged into theflat/2 loop.
So the conjunction of the last four clauses yields the idealO(n) time complexity. This logic program builds
a stack of 2·n+1 recursive calls, and it creates as many intermediate data structures; fortunately, the logic
program forflats/2 can be made tail-recursive in the mode (+,−), as the last two clauses are exclusive.♦
Inventing the Composek through Structural Generalization. Regarding predicate invention now, the
most interesting phenomenon here is the possible disappearance of the composition operator: if, at synthesis
time, an adequate structural generalization can be found, then the invention of that operator may be avoided!
(Tail recursion optimization is “only” a run-time feature, and can also be exploited by mode-specific post-
synthesis transformation.) However, it can be shown [14] that theeureka needed to adequately generalize
the initial specification comes directly from the composition operator of the initial program, provided it is
associative and has a left/right-identity element, saye. Trying to avoid having to invent a composition op-
erator thus actually requires already knowing it! For instance,flats/2 was specified in terms of aconcate-
nation precisely because the composition operator offlat/2 wasappend/3. Structural generalization is very
easy if a (naive) program is already given, as this technique is very suitable for mechanical transformation:
all operators of the generalized program are operators of the initial program, and the generalized program
is again covered by the divide-and-conquer schema, namely (for simplicity, I restrict the presentation to the
particular case where the induction parameter is decomposed into one head and two tails, and where there
is only one non-minimal clause, that ish=h'=m=1 andt=2; generalizing this is quite straightforward) [14]:

R(X,Y) ←
Rs([X],Y)

where:

Rs(Xs,Y) ←
Xs=[],                    % Minimal-Rs
Y=e                       % Solve-Rs

Rs(Xs,Y) ←
Xs=[_|_],                 % NonMinimal-Rs
Xs=[X|TXs],               % Decompose 1-Rs
Minimal(X),               % Discriminate 1-Rs
Rs(TXs,TY),
Solve(X,HY),              % Process 1-Rs
Compose(HY,TY,Y)          % Compose 1-Rs

Rs(Xs,Y) ←
Xs=[_|_],                 % NonMinimal-Rs
Xs=[X|TXs],               % Decompose 2-Rs (part 1)
NonMinimal(X),            % Discriminate 2-Rs
Decompose(X,HX,TX 1,TX 2), % Decompose 2-Rs (part 2)
Rs([TX 1,TX 2|TXs],TY),
Process(HX,HY),           % Process 2-Rs
Compose(HY,TY,Y)          % Compose 2-Rs

Schema 2:Tupling generalization schema, expressed using the divide-and-conquer operators

Moreover, ifSolve/2 convertsX into a constant “size”Y, then the conjunction Solve(X,HY), Com-
pose(HY,TY,Y) of the second clause can be partially evaluated, which usually results in the disappear-
ance of that call toCompose/3, and thus in a merging of theCompose/3 loop into theR/2 loop. Often, this
partial evaluation even results in an equality atom forY, which can then be forward-compiled (into the head
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of the second clause). The second and third clauses being mutually exclusive (by virtue of a constraint that
Minimal/1 andNonMinimal/1 must be complementary over the domain of the induction parameterX), the
recursive call Rs(TXs,TY) in the second clause can then be made iterative (by,e.g., placing a cut after
the call toMinimal/1). For instance, the prefix representation of the empty tree is the empty list (of size 0),
so partial evaluation givesF = TF, which can indeed be compiled into the head of the second clause.

Finally, if Process/2 convertsHX into a constant “size”HY, then the conjunction Process(HX,HY),
Compose(HY,TY,Y) of the third clause can also be partially evaluated, which usually results in the dis-
appearance of that call toCompose/3, and thus in a merging of theCompose/3 loop into theR/2 loop. Of-
ten, this partial evaluation even results in an equality atom forY, which can then be forward-compiled (into
the head of the third clause), so that the recursive call Rs([TX 1,TX 2|TXs],TY) in the third clause also
becomes iterative. For instance, the list [E] obtained through processing of the rootE being of size/length 1,
partial evaluation givesF = [E | TF], which can indeed be compiled into the head of the third clause.

If the last two conditions simultaneously hold (which is not unusual), thenCompose/3 effectively disap-
pears altogether and would thus not have to be invented. So one could perform structural generalization
“blindly,” that is without prior knowledge of the composition operator. One would then maintain a knowl-
edge base of composition operators satisfying the associativity and identity requirements. A “devil’s advo-
cate” argument of course shows that such a knowledge base can never be complete. One would first try to
re-use such a known composition operator (upon failure, one would instantiate it by other means) during
the synthesis of a first program, and then (if appropriate) mechanically transform it [14], using Schema 2,
into another program that reflects a structural generalization. This is certainly preferable to the alternative
of first re-using any such standard operator for a “blind” structural generalization of the specification, and
then synthesizing a program for it, because one wouldn’t know in advance whether the chosen operator is
adequate or not, nor even whether such an adequate operator even exists for the problem at hand. This latter
approach would certainly be very difficult in the case of inductive synthesis from incomplete evidence, be-
cause the new evidence for the structurally generalized problem (derived by applying the chosen composi-
tion operator to the evidence of the initial problem) grows exponentially with the initial evidence. For
instance, if the initial evidence consists ofn facts and the chosen operator is commutative, then the new ev-
idence could consist of 2n−1 facts. Relaxing the commutativity condition makes things even worse, and it
is not even clear how non-factual evidence can be structurally generalized.

As a partial conclusion, structural generalization is a very good technique for post-synthesis optimizing
transformation, especially that it can be completely mechanical and that it can be decided in advance wheth-
er or not it leads to optimizations, and even to which optimizations it would lead [14]. Its only reasonable
suitability for predicate invention seems to be via re-use from a knowledge base of standard composition
operators that have certain properties, because the otherwise necessaryeureka requires knowing what one
actually hoped not having to know.

5.2 Predicate Invention through Ascending Generalization

In this sub-section, I first briefly illustrate ascending generalization on an example, and then examine its po-
tential for predicate invention.

Example 4: Let maxPlatLen(L,M) hold iff integerM is the length of the longest plateau (sequence of iden-
tical elements) of listL. Constructing a “naive” logic program could yield:

maxPlatLen([],0)
maxPlatLen([H|T],M) ←

maxPlatLen(T,N),
Compose(H,N,M)

where theCompose/3 operator is yet to be instantiated. Unfortunately, it is impossible to do so without leav-
ing the divide-and-conquer methodology and schema, becauseT is needed to decide whetherM isN orN+1.
However, decomposingL by splitting it after its first plateau leads to a successful synthesis:

maxPlatLen([],0)
maxPlatLen([H|T],M) ←

firstPlateau([H|T],F,S),
maxPlatLen(S,N),
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length(F,P),
max(P,N,M)

wherefirstPlateau(L,F,S) holds iff listF is the first plateau of non-empty listL, and listS is the correspond-
ing suffix ofL; length(L,N) holds iff integerN is the number of elements of listL; andmax(A,B,M) holds
iff integerM is the maximum of integersA andB. If n is the number of elements inL, then this logic program
has the idealO(n) time complexity (actually O(2 ·n), but it can easily be linearized by merging the
firstPlateau/3 andlength/2 loops, which share parameterF). If q is the number of plateaus inL, then this
logic program builds a stack ofq recursive calls and createsq intermediate data structures, so it also has a
very bad space complexity. In the (+,−) mode, the call to the composition operatormax/3 cannot be moved
in front of the recursive call (but the call to the processing operatorlength/2 can), so the logic program for
maxPlatLen/2 is not tail-recursive.

Let’s now perform an ascending generalization of the initial specification: letmaxPlatLenAsc(S,M,I,E,N)
hold iff there exist listsL andP, such thatL is the concatenation ofP andS, integerI is the length of the
longest plateau inP, except for the last plateau ofP, which hasN occurrences of termE, and integerM is
the length of the longest plateau inL. ParametersE andN constitute information about the prefix of execu-
tion. This specification can be significantly simplified, but the initial problem would then barely be recog-
nizable. Expressing the initial problem as a particular case of the generalized one yields:

maxPlatLen(L,M) ←
maxPlatLenAsc(L,M,0,ayşe,0)

because the witness for prefixP is then the empty list, which indeed has a longest plateau of length 0 and a
last plateau of 0 occurrences of termayşe (which establishes that wemay after all think of daughters when
synthesizing programs!). A logic program for the generalized problem is:

maxPlatLenAsc([],M,I,_,N) ←
max(I,N,M)

maxPlatLenAsc([H|T],M,I,E,N) ←
H=E,
P is N+1,
maxPlatLenAsc(T,M,I,E,P)

maxPlatLenAsc([H|T],M,I,E,N) ←
H≠E,
max(I,N,J),
maxPlatLenAsc(T,M,J,H,1)

Note that the calls tomax/3 have not disappeared (the disappearance of the calls tofirstPlateau/3 and
length/2 is only due to the fact that decomposition is no longer done by splitting off the first plateau). The
conjunction of the last four clauses yields the idealO(n) time complexity. This logic program builds a stack
of n+1 recursive calls, but creates no intermediate data structures; fortunately, the logic program for
maxPlatLenAsc/5 can be made tail-recursive in the mode (+,−,+,+,+), as the last two clauses are mutually
exclusive. ♦

Inventing the Composek through Ascending Generalization.Regarding predicate invention now, the
most interesting phenomenon here would again be the possible disappearance of the composition operator.
However, it is at present unclear to me whether this is possible at all, and even less how the necessaryeureka
can be automatically found. The sheer necessity of introducing information about the prefix of execution
seems to prevent any kind of automation, but I have included this sub-section in the hope that some reader
has the requiredmeta-eureka!

5.3 Predicate Invention through Descending Generalization

In this sub-section, I first briefly illustrate descending generalization on an example, and then examine its
potential for predicate invention.

Example 5: Let reverse(L,R) hold iff list R is the reverse of listL. A corresponding “naive” divide-and-
conquer logic program could be:
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reverse([],[])
reverse([HL|TL],R) ←

reverse(TL,TR),
HR=[HL],
append(TR,HR,R)

If n is the number of elements in listL, then this logic program has anO(n2) time complexity (as opposed
to the linear complexity one might expect), because composition is done throughappend/3, whose time
complexity is linear in the number of elements in its first parameter. Worse, this logic program builds a stack
of n recursive calls, and createsn intermediate data structures, so it also has a very bad space complexity.
In the (+,−) mode, the call to the composition operatorappend/3 cannot be moved in front of the recursive
call (well, at least not without significantly further degrading the time/space efficiency), so thereverse/2
logic program is not tail-recursive (assuming a left-to-right computation rule).

Let’s now perform a descending generalization of the initial specification: letreverseDesc(L,R,A) hold iff
list R is the concatenation of listA to the end of the reverse of listL. Expressing the initial problem as a
particular case of the generalized one yields:

reverse(L,R) ←
reverseDesc(L,R,[])

and a logic program for the generalized problem is:

reverseDesc([],R,R)
reverseDesc([HL|TL],R,A) ←

reverseDesc(TL,R,[HL|A])

Note that the call toappend/3 has disappeared: theappend/3 loop has been merged into thereverse/2 loop.
So the conjunction of the last three clauses yields the idealO(n) time complexity. This logic program also
builds a stack ofn recursive calls, but it creates no intermediate data structures; fortunately, the logic pro-
gram forreverseDesc/3 is even tail-recursive in the mode (+,−,+). ♦

Descending generalization thus introduces an accumulator parameter, which is progressively extended to
the final result. The pair of parametersR andA can also be seen as representing the difference-listR \ A,
which itself represents the difference between listsR andA, whereA is a suffix ofR. But descending gen-
eralization yields something more general than transformation to difference-list manipulation, because it is
by no means restricted to creating difference-lists only: any form of difference-structures can be created.
Another example would be difference-integerI \ J, which could representI−J or max(I,J) or whatever.

Logic programs for descendingly generalized problems arenot covered by the divide-and-conquer sche-
ma (Schema 1), because the accumulator isextended for recursive calls rather than reduced. The corre-
sponding (tail-recursive!) schema is as follows [5] [14]:

R-desc(X,Y,A) ←
Minimal(X),
ExtendMin(X,A,Y)

R-desc(X,Y,A) ←
NonMinimal(X),
Decompose(X,HX,TX),
ExtendNonMin(HX,A,NewA),
R-desc(TX,Y,NewA)

Schema 3:Descending generalization schema

Inventing the Composek through Descending Generalization.Regarding predicate invention now, the
most interesting phenomenon here is again the possible disappearance of the composition operator: if, at
synthesis time, an adequate descending generalization can be found, then the invention of that operator may
be avoided! However, it can again be shown [5] [14] that theeureka needed to adequately generalize the
initial specification comes directly from the composition operator of the initial program, provided it is as-
sociative and has a left-identity element, saye, and provided the initial problem exhibits a functional depen-
dency from induction parameterX to parameterY. Trying to avoid having to invent a composition operator
thus actually requires already knowing it! For instance,reverseDesc/3 was specified in terms of aconcate-
nation precisely because the composition operator ofreverse/2 wasappend/3. Its formal specification:
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reverseDesc(TL,R,HR) ⇔ ∃TR reverse(TL,TR) ∧ append(TR,HR,R)

has a right-hand side built of two atoms extracted from the logic program forreverse/2. Generally speaking
now (for simplicity, I restrict the presentation to the particular case where the induction parameter has one
head and one tail, and where there is only one non-minimal clause, that ish=h'=t=m=1; generalizing this
is quite straightforward), theeureka can be mechanically found [5] [14] [20] by searching in the program
for R/2 for a (not necessarily consecutive) sub-formula of the form R(X,S), Compose(A,S,Y) , so
that the following formal specification forR-desc/3 can be postulated:

R-desc(X,Y,A) ⇔ ∃S R(X,S) ∧ Compose(A,S,Y) (1)

The key principle here is that both parts of the sub-formula share some variableS. This search is easy if the
program forR/2 was constructed in the first place so as to be an instance of Schema 1. Note that it is thus
crucial that theProcess/2 andCompose/3 operators are not merged (yet). The same principle can be em-
ployed for other loop mergers, but I am here only interested in descending generalization. For our current
purpose, it doesn’t even matter whetherCompose/3 is already instantiated or not. Descending generaliza-
tion is very easy if a (naive) program is already given, as this technique is very suitable for mechanical trans-
formation: all operators of the generalized (tail-recursive!) program are operators of the initial program:

R(X,Y) ←
R-desc(X,Y,e)

where:

R-desc(X,Y,A) ←
Minimal(X),
( Solve(X,S), Compose(A,S,Y) )

R-desc(X,Y,A) ←
NonMinimal(X),
Decompose(X,HX,TX),
( Process(HX,HI), Compose(A,HI,NewA) ),
R-desc(TX,Y,NewA)

Schema 4:Descending generalization schema, expressed using the divide-and-conquer operators

Moreover, if the intended relation behindR/2 maps the minimal form of parameterX into e, and ife is also
a right-identity element ofCompose/3, then the conjunction Solve(X,S), Compose(A,S,Y) of the
first clause can be simplified into Y =A. For instance, the reverse of the empty list is the empty list, which
is indeed the right-identity element ofappend/3, and even the minimal form of the second parameter.

Finally, if Process/2 convertsHX into constant “size”HY, then the atom Compose(A,HI,NewA) in
the second clause can be partially evaluated, which usually results in the disappearance of that call to
Compose/3, and thus in a merging of theCompose/3 loop into theR/2 loop. For instance, the processing
operator ofreverse/2 maps the first elementHL of a non-empty list into the singleton list [HL], so the atom
append([HL],A,NewA) can indeed be partially evaluated, namely into NewA=[HL|A] . Further trans-
formations yield thereverseDesc/3 program above. However, forminList/2 (see Section 4), the processing
operator, namely=/2, maps the head of the list to itself, that is to an arbitrary integer, so the call to the com-
position operator, namelymin/3, cannot be partially evaluated away. Generally speaking, if the elements of
X are of the same type asY, then that call toCompose/3 cannot be partially evaluated away, because the
elements ofX are usually not of a constant size, and hence are not processed into constant sizeHY.

If the last two conditions simultaneously hold (which is not unusual), thenCompose/3 effectively disap-
pears altogether and would thus not have to be invented. So one could perform descending generalization
“blindly,” that is without prior knowledge of the composition operator. One would then maintain a knowl-
edge base of composition operators satisfying the associativity and identity requirements, and re-use them,
along the lines laid out in Section 5.1.

Fortunately, in the case ofinductive synthesis, there exists a more convenient other approach to “blind”
descending generalization. The technique is based on the detection of the left-identity element of the com-
position operator, and this by mere inspection of the given evidence (I here assume that the left-identity also
is a right-identity). If no re-use method succeeds in instantiating theCompose/3 operator, one couldcon-
jecture the existence of useful predicate invention, and either invoke the synthesizer recursively on abduced
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evidence in order to synthesize a logic program forCompose/3 (this is the Synthesis Method), or proceed
through the following tasks (called theDescending Generalization Method):

(1) discover the left-identity element ofCompose/3 for R/2;
(2) express the initial problemR/2 in terms of its generalizationR-desc/3;
(3) generalize the evidence forR/2 into evidence forR-desc/3;
(4) synthesize a logic program forR-desc/3.

The synthesized logic program for the initial problemR/2 then consists of the conjunction of the clause ob-
tained from the second task and the program synthesized at the fourth task. Such avoidance of the poten-
tially useful invention ofCompose/3 of course requires the invention ofR-desc/3, but this is much easier
and may even result in increased efficiency of the overall synthesized logic program.

The first task is intriguing: how can left-identitye be discovered, without even knowingCompose/3?!
Suppose (for simplicity) that the typeC of induction parameterX is defined using basea and constructor
c/2 (which takes as arguments an element of some typeE and a tail of typeC ), and that the typeD of the
other parameterY is defined using baseb and constructord/2 (which takes as arguments an element of some
typeF and a tail of typeD). Then, due to the functional dependency requirement, the intended relationR /2
behind predicateR/2 reflects a functionf : C → D such that:

R (X,Y) ⇔ Y = f(X)

where:

f(X) = g if X = a

f(X) = k( p(H), f(T)) if X = c(H,T)

wherep: E → D is a function converting the elements ofX into working values that are combined intoY
by the binary functionk: D × D → D, which is associative and has left/right-identitye. (Note thatp/1 would
be the function underlying theProcess/2 operator, and thatk/2 would be the function underlying the
Compose/3 operator of a possible logic program forR/2.) Now,e is not necessarily the baseb, nor the image
g underf of the basea or of any other term of typeC, but it is often the case thate = b, or even thate = b =
g. As seen above, the latter is the case forreverse/2. So it suffices to scan theY terms inall factual ground
evidence ofR /2 for a common sub-terms and to postulate thats = e. Indeed, ife = b, thene must be com-
mon to allY terms, because they are of typeD, which has baseb. If this eventually leads to failure, then it
could actually be thatb ≠ e = f (a) = g, and it suffices to find the factR(a,g), or to query the specifier for it.
For minList/2, we have thatg = +∞, but, as seen above, the call tomin/3 cannot be eliminated, so the De-
scending Generalization Method to avoiding the invention ofCompose/3 will fail.

The second task is straightforward now, and can be done mechanically using the following formula:

R(X,Y) ⇔ R-desc(X,Y,e) (2)

Indeed, unfolding the right-hand side using (1), and simplifying the result considering thate is a left-identity
of Compose/3, provides the justification for this formula.

The third task is then trivial as well: one could use (2) again, but it would be a bad idea to do so. Indeed,
the ground terme would then be common toall generalized facts, so it would probably still be present in
the program synthesized forR-desc/3, which is obviously not what is wanted. Fortunately, the following
theorem establishes that each given factual evidenceR(X,Y) can be generalized even further than “only”
into R-desc(X,Y,e), namely intoR-desc(X,Y[e/Z],Z), whereZ is a new variable. As a consequence, the third
parameters of all generalized facts would then all be different, as desired.

Theorem 1: If the intended relationR /2 behind predicateR/2 reflects a functionf /1 defined in terms of
a processing functionp/1 (underlyingProcess/2) and a composition functionk/2 (underlyingCompose/3),
which has left-identitye, thenR(X,Y) ⇔ R-desc(X,Y[e/Z],Z), if variableZ does not occur in termY.

Proof 1: We have:
R-desc(X,Y[e/Z],Z)

⇔ ∃S R(X,S) ∧ Compose(Z,S,Y[e/Z]), by unfolding using (1), whereS is a new variable;
⇔ ∃S R(X,S) ∧ Compose(Z,S,Y[e/Z])[Z /e], by universal instantiation;
⇔ ∃S R(X,S) ∧ Compose(e,S,Y), becauseZ does not occur in termsS andY;
⇔ ∃S R(X,S) ∧ Y = S, becausee is the left-identity ofCompose/3;
⇔ R(X,Y), by properties of=/2. ❏
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Formula (2) is a corollary of this theorem, namely whenZ is instantiated toe. Note that this theorem can-
not be used instead of formula (2) for the second task, because the necessary substitution cannot be ex-
pressed at the clause level. Generalizing non-factual evidence is done by applying this theorem to all atoms
involving predicateR/2.

The fourth task is a synthesis one, and is thus a “mere” recursive invocation of the entire synthesizer on
the generalized evidence.

This Descending Generalization Method is related to theVariable Addition Technique of Summers [24]
(but also see [16]). HisTHESYS system is a trace-based synthesizer [8] ofLISP programs from positive facts,
and is in a sense the ancestor of the mentionedSYNAPSE, CILP, SIERES, andMETAINDUCE synthesizers, and
also ofITOU. He presents his technique without an explanation of why and when it works, which is remedied
here. Moreover, he directly changes the currently synthesized divide-and-conquer program into a descend-
ing generalization one, rather than explicitly generalizing the given evidence and starting a new synthesis
therefrom.

We have now finished the theoretical overview of how to perform predicate invention by descending gen-
eralization. Let’s illustrate the four tasks on ourreverse/2 problem, and then discuss implementation issues.

Example 6: Suppose the given evidence forreverse/2 consists of the following ground facts:

reverse([],[])
reverse([a],[a])
reverse([b,c],[c,b])
reverse([d,e,f],[f,e,d])

The abduced evidence for the composition operator would then consist of the following ground facts (other
abducible facts would be semantically redundant with the ones given here):

compose(a,[],[a])
compose(b,[c],[c,b])
compose(d,[f,e],[f,e,d])

The expected instantiation, namelycompose(HL,TR,R) ⇔ append(TR,[HL],R), cannot be found by the
MSG Method (see Section 3),i.e., by re-use of=/2 only. It could be found by the Synthesis Method from
this abduced evidence, which would lead to the naive program of Example 5. But one could also apply the
Descending Generalization Method. At the first task, constant [] is found to be common to all second argu-
ments of the original facts. So we conjecture thate = []. At the second task, we use formula (2) to express
the initial problemreverse/2 in terms of its generalizationreverseDesc/3:

reverse(L,R) ←
reverseDesc(L,R,[])

At the third task, using Theorem 1, we generate the following non-ground facts forreverseDesc/3:

reverse([],W,W)
reverse([a],[a|X],X)
reverse([b,c],[c,b|Y],Y)
reverse([d,e,f],[f,e,d|Z],Z)

At the fourth task, we call the synthesizer recursively on this generalized evidence, which should lead to the
efficient program of Example 5.♦

This requires that the synthesizer can be guided not only by the divide-and-conquer schema, but also by
the descending generalization schema. Moreover, it must be able to handle non-ground factual evidence.
The former requirement necessitates only a straightforward adaptation of mySYNAPSE, namely (see
Section 2.2) the preliminary selection of a schema and the encoding of a synthesis strategy for the descend-
ing generalization schema (fortunately, just as I predicted in [8], the generic methods used by my divide-
and-conquer strategy are sufficient for this). This generalization ofSYNAPSE is even desirable, as the class
of divide-and-conquer programs does not cover all possible recursive programs, so the initially specified
problem could well be a computational generalization of some other problem and hence unsolvable by
means of a divide-and-conquer program. The latter requirement necessitates only a change of the definitions
of examples and properties inSYNAPSE: the old restriction to ground examples was arbitrary, especially that
the system already worked without modification from non-ground examples (bodiless properties).



18

As a partial conclusion, descending generalization is also a very good technique for post-synthesis opti-
mizing transformation, for the same reasons as structural generalization. Fortunately, for inductive synthe-
sis, there is even another approach to predicate invention than “blind” re-use from a knowledge base of
standard composition operators that have certain properties, namely a method based on the detection of the
left-identity element of the composition operator, and this by mere inspection of the given evidence.

6 Conclusion

Predicate invention is only necessary when a finite axiomatization of the current predicate is otherwise im-
possible, which implies that the description of a necessarily invented predicate is recursive. So necessary
predicate invention is a program synthesis task, and had thus best be done by a synthesizer rather than by a
general purpose learner, because one can then re-use the vast body of knowledge about recursive algorithm
design. Taking a schema-guided approach, I showed how predicate invention can be performed (if not
avoided) by intelligent re-use from structured background knowledge, by necessarily successful intelligent
dialogue with the specifier, and by generalization of the original problem. The shown methods are easy to
graft onto most existing inductive synthesizers. The apparently “miraculous” synthesis of a sorting program
from just four examples in Example 1 is definitely within reach of such an extended synthesizer.
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