
INDUCTIVE SYNTHESIS OF

RECURSIVE LOGIC PROGRAMS

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

ENGINEERING AND INFORMATION SCIENCE

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Serap Yılmaz

August 1997

ii

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Master of Science.

 --

Ass’t Prof. Pierre Flener (Principal Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Master of Science.

--

Ass’t Prof. Ilyas Çiçekli

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Master of Science.

--

Ass’t Prof. Ayşe Göker

Approved for the Institute of Engineering and Science:

--

Prof. Dr. Mehmet Baray, Director of the Institute of Engineering and Science

iii

ABSTRACT

INDUCTIVE SYNTHESIS OF

RECURSIVE LOGIC PROGRAMS

Serap Yılmaz

M.S. in Computer Engineering and Information Science

Supervisor: Ass’t Prof. Pierre Flener

August 1997

The learning of recursive logic programs (i.e. the class of logic programs where at least

one clause is recursive) from incomplete information, such as input/output examples,

is a challenging subfield both of ILP (Inductive Logic Programming) and of the syn-

thesis (in general) of logic programs from formal specifications. This is an extremely

important class of logic programs, as the recent work on constructive induction shows

that necessarily invented predicates have recursive programs, and it even turns out that

their induction is much harder than the one of non-recursive programs. We call thisin-

ductive program synthesis. We introduce a system called DIALOGS-II (Dialogue-based

Inductive and Abductive LOgic Program Synthesizer-II) whose ancestor is DIALOGS.

It is a schema-guided, interactive, and non-incremental synthesizer of recursive logic

programs that takes the initiative and queries a (possibly naive) specifier for evidence

in her/his conceptual language. It can be used by any learner (including itself) that de-

tects, or merely conjectures, the necessity of invention of a new predicate. Moreover,

due to its powerful codification of “recursion-theory” into program schemata and sche-

matic constraints, it needs very little evidence and is very fast.

Keywords: program development, inductive logic programming, automatic program

synthesis, schema-guided program synthesis.

iv

ÖZET

ÖZYINELI MANTIK PROGRAMLARININ

TÜMEVARIMSAL YOLLA SENTEZI

Serap Yılmaz

Bilgisayar ve Enformatik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Pierre Flener

Ağustos 1997

Özyineli mantık programlarının (en azından bir yantümcesi özyineli olan) tam olma-

yan bilgiden yola çıkılarak, mesela, girdi/çıktı örneklerinden, otomatik sentezi oldukça

zor bir iştir. Ve bu iş tümevarımsal mantık programlama ile otomatik program sente-

zinin bir alt çalışma alanıdır. Bu tür programlar mantık programlarının çok önemli bir

sınıfını oluştururlar. Yapıcı tümevarım çalışmaları göstermiştir ki özyineli program-

ların sentezi özyineli olmayan programların sentezinden çok daha zordur. Bu

çalışma alanı “tümevarımsal program sentezi” diye anılır. DIALOGS-II adıyla

geliştirdiğimiz sistem (bu sistemin bir önceki versiyonu DIALOGS adlı sistemdir)

taslak-yönetimli, interaktif ve artımsızdır. Sistem insiyatifi alıp kullanıcıyı kullanıcının

dilinde sorgulayarak özyineli mantık programları sentezler. Sistem kendisi tarafindan

özyineli olarak ya da başka bir sistem tarafindan, sistem özyineli bir programın sentez-

inin gerekliliğini farkettiği zaman kullanılabilir. “Özyineleme Teorisi” sistemin

içinde taslaklar tarafından etkili bir şekilde kodlandığı için sistem çok az bilgiye

gerek duyar ve çok hızlı çalışır.

Anahtar Sözcükler: program geliştirme, tümevarımsal mantık programlama, otomatik

program sentezi, taslak yönetimli program sentezi.

ACKNOWLEDGEMENTS

I am very grateful to my supervisor, Ass’t Prof. Pierre Flener, for his invaluable guid-

ance during this study. His instruction will be the closest and most important reference

in my future work. I would also like to thank Halime Büyükyıldız and Esra Erdem for

sharing their work with me, my family and my dear friend Serap Fırat for their moral

and motivating support.

vi

Contents

1 Introduction . 1

1.1 Terminology and Theoretical Results . 2

1.1.1 Approaches and Extensions to ILP (and Inductive Synthesis) 2

1.1.2 Additional Specification Information 5

1.1.3 Syntactic Bias . 6

1.1.4 Generality . 8

1.1.5 Predicate Invention . 10

1.1.6 Construction Modes and Admissibility 13

1.2 The Objective of the Thesis . 15

2 The DIALOGS -II Technique . 19

2.1 Asking For a Predicate Declaration, a Schema and a Strategy 21

2.2 Execution of the Strategy . 23

2.3 Abduction of Evidence for the Open Relations of the Open Program . . 26

2.4 Induction of Clauses: The Program Closing Method 37

2.5 Evaluation of the Program Closing Method 40

2.5.1 Necessary Predicate Invention 41

2.5.2 Handling the Sparseness Problem 52

vii

3 Comparison of DIALOGS -II with other ILP Systems 59

3.1 Comparison in Terms of the Evidence 59

3.2 Comparison in Terms of Schemata . 61

3.3 Comparison of DIALOGS-II with D IALOGS 62

4 Conclusion . 67

References . 69

Appendix A: README file for D IALOGS -II 72

Appendix B: Sample Syntheses . 74

1

Chapter 1

Introduction

In its most general form, the task of Inductive Logic Programming (ILP) is to infer a

hypothesisH from assumed-to-be-incomplete information (or: evidence)E and back-

ground knowledgeB such thatB ∧ H |==E, whereH, E, andB are sets of clauses. We

say thatH coversE (in B). In practice,B andH are often restricted to sets of Horn claus-

es (i.e. definite logic programs). EvidenceE is usually divided into positive evidence

E+ and negative evidenceE−. Often, the clauses ofE+ are restricted to ground positive

literals (or: atoms) and are called positive examples, whereas those ofE− are restricted

to ground negative literals and are called negative examples: this yields an extensional

description, whereas the hypothesis is an intensional description. In a more traditional

machine learning terminology, we would say that a concept descriptionH is to be

learned from descriptionsE of instances and counter-examples of concepts, whose fea-

tures are represented by predicate symbols. In general thus, nothing restricts the evi-

dence to be about a single concept, so that multiple (possibly related) concepts may

have to be learned at the same time.

For instance, given the positive examples (in the left column) and negative examples

(in the right column)

subset([],[]) ¬subset([k],[])

subset([],[a,b]) ¬subset([n,m,m],[m,n])

2

subset([d,c],[c,e,d])

subset([h,f,g],[f,i,g,h,j])

and given as background knowledge (among others) the logic program

select(X,[X|Xs],Xs) ←

select(X,[H|Ys],[H|Zs]) ← select(X,Ys,Zs)

a possible hypothesis is the logic program

subset([],Xs) ←

subset([X|Xs],Ys) ← select(X,Ys,Zs), subset(Xs,Zs)

though at this point we do not wonder how this could be feasible. The main issue is that

we human beings can perform this kind of task, so that the question arises whether a

machine can be designed to do it also. The usefulness of such a machine is undeniable

as it would be a step towards a form of human/machine communication that more

closely models inter-human communication, which usually features a lot of incomplete

(and hence ambiguous) information, of course in the presence of background knowl-

edge, and even noisy information. In the following two sub-sections, we will first in-

troduce some terminology and theoretical results (Section 1.1) and next we will

present our objective (Section 1.2).

1.1 Terminology and Theoretical Results

We now introduce some terminology (in Section 1.1.1 to Section 1.1.3 and in

Section 1.1.6) and mention some theoretical results (in Section 1.1.4 and

Section 1.1.5) concerning the induction of recursive clauses.

1.1.1 Approaches and Extensions to ILP (and Inductive Synthesis)

Whether for ILP in general or synthesis in particular, there is additional terminology

due to different approaches as well as extensions to the ILP task, all of which we now

discuss in a loosely connected fashion.

Often, the agent that provides the inputs to an ILP technique is called the teacher,

whereas the ILP technique is called the learner and is said to perform learning. Such a

machine learning terminology is misleading [17], and we shall use the more general

terminology ofsource, induction technique, andinduction instead.

3

An intended relation is the entire (possibly infinite) relation represented by a predi-

cate symbol. In an ILP task, onlyincomplete information (called evidence) is available,

i.e. it does not describe superset(s) of the intended relation(s). We here assume that the

evidence hascorrect information, i.e. that it describes subset(s) of the intended rela-

tion(s). In this case, one also says that there is nonoise. Often, the actually described

subset(s) are finite. An extreme case of incomplete but correct information is complete

and correct information, though this can often only be achieved through some (finite)

axiomatization in the hypothesis language, but not in the evidence language.

We partition relations intosemantic manipulation relations andsyntactic manipula-

tion relations, depending on whether the actual constants occurring in a ground tuple

are relevant or not for deciding whether that tuple belongs to a relation. For instance,

subset is a syntactic manipulation relation, because it treats constants like variables,

whereassort andinsert would be semantic manipulation relations (see Section 1.1.5).

Induction can be viewed assearch through a graph (or: search space) where the nodes

correspond to hypotheses and the arcs correspond to hypothesis-transforming opera-

tors. As usual, the challenge is to efficiently navigate through such a search space, via

intelligent control (e.g., by organizing the search space according to a partial order and

using pruning techniques).

Induction may beinteractive or passive, depending on whether the technique asks

questions (or: queries) to someoracle (or: informant) or not. The oracle may or may

not be the source. The questions may be of various kinds, such as the request for clas-

sification of invented examples as positive or negative ones.

Induction may beincremental or non-incremental, depending on whether evidence

is input one-at-a-time with occasional output of (external) intermediate hypotheses, or

input all-at-once with output of a unique final hypothesis (though there may be internal

intermediate approximations, which are however not considered as hypotheses).

Induction may bebottom-up or top-down, depending on whether hypotheses (wheth-

er internal or external) monotonically evolve from the maximally specific one (namely

the empty logic program) or from the maximally general one (namely a logic program

succeeding on all possible queries).

In the output hypothesis, some predicate symbols may be recursively defined: the

corresponding clauses are partitioned intobase clauses andrecursive clauses.

4

Once a hypothesis is accepted (for whatever reasons), one may want to validate it.

Since there is no complete description of the intended relation(s), one can only test the

hypothesis, rather than somehow mathematically verifying it. Ideally, a hypothesis

covers all the given evidence. One may thus test the hypothesis by measuring its accu-

racy (expressed in percents) in correctly covering other evidence. The given evidence

is thus also called thetraining set, whereas the additional evidence is called thetest set

and is usually in the evidence language. We here assume that the test set is also correct

w.r.t. the intended relation(s).

An identification criterion defines the moment where an induction technique has

been successful in correctly identifying the intended relation(s), whether it “knows”

this or not. Sample criteria are finite identification, identification-in-the-limit, proba-

bly-approximately-correct (PAC) identification, and so on (see [21] for details). There

are limiting theorems stating what hypothesis languages are inducable from what evi-

dence language under what identification criterion.

It seems desirable to achieve some separation of concerns regarding the logic and

control components of algorithms (or logic programs): some techniques just induce the

logic component, assuming that the control can be added later. Addingcontrol (such

as by clause re-ordering inside programs and literal re-ordering inside clauses so as to

ensure safety of negation-by-failure, termination, etc.) is something specific to the (id-

iosyncrasies of the) execution mechanism of the target language, as well as specific to

the desired ways of using the induced program (which are mentioned in additional in-

puts, see the next sub-section). If an interpreter of the target language is actually used

during the induction (say, to verify the coverage of the evidence), such control aspects

cannot be entirely ignored while constructing the logic component.

A generalization of the ILP task is known astheory-guided induction, or (inductive)

theory revision, or declarative debugging: the idea here is that an additional input is

provided, namely an initial hypothesis (or: theory)Hi, under the constraint that the final

hypothesisH should be as close a “variant” thereof as possible, in the sense that only

the “bugs” ofHi w.r.t. E should be (incrementally) found and corrected (or: “de-

bugged”) in order to produceH. This generalized scheme reduces to the normal one in

its extreme cases, that is whenHi is maximally specific or general, depending on

whether induction proceeds bottom-up or top-down. In the past, this was also known

5

asmodel-driven orapproximation-driven learning, as opposed todata-driven learning,

where there is no initial theory.

Another variant of the ILP task involves augmenting the inputs withdeclarative bias,

which is any form of input information that restricts the search space. There are two

complementary approaches to this, and we discuss them separately in the next two

sub-sections.

1.1.2 Additional Specification Information

A specification of a program contains (i) a description of what problem is (to be) solved

by the program, as well as (ii) a description of how to use the program.

The former description should define the intended relation as declaratively as possi-

ble. Whether it should be informal or formal is an on-going debate, but we don’t have

a choice here, since we want it to be processed by a machine. Ideally, it should even be

as complete as possible, but, as mentioned earlier, this is rarely achieved in practice.

The problem descriptions investigated here (the evidence) are actually even as-

sumed-to-be-incomplete. They are furthermore the most declarative (formal) descrip-

tions that we can imagine (if they are constrained to be non-recursive [16]).

The latter description should give the predicate symbol representing the intended re-

lation, the sequence of names andtypes of its formal parameters,pre-conditions (if

any) on these parameters, as well as the representation conventions of the formal pa-

rameters so that one knows how to interpret their actual values. In logic programming,

where we are concerned with relations rather than functions, there should also be an

enumeration of the input/outputmodes in which the program may be called (since full

reversibility is rarely required or rarely even achieved in practice), as well as optional

multiplicity (or: determinism) information for each mode (stating the minimum and

maximum number of correct answers to a query in that mode).

Since such information is part of a (useful) specification anyway, it is only natural to

provide (some of) it as an additional input to an ILP task, especially for a program syn-

thesis task. In the ILP literature, such information is usually calledsemantic bias (a

kind of declarative bias that restricts the behavior of hypotheses), but we find this ter-

minology insufficient, as it fails to establish the link with (good) specification practice.

Type and mode information are the most commonly used, and, not surprisingly, they

reduce search spaces drastically. Some techniques efficiently exploit a particular case

6

of multiplicity information, namely that the intended relation is a total function in a

given mode (i.e. its multiplicity is 1–1). Of course, such statements should ideally also

be provided for all the predicates defined in the background knowledge.

1.1.3 Syntactic Bias

Syntactic bias is another, complementary form of declarative bias. It restricts the lan-

guage of hypotheses. Ideally, it is a parameter of an induction technique, rather than

hardwired into it. As a parameter, it can be provided either by the source as an addi-

tional input, or made available to the technique by its designers.

One particularly useful and common approach is to bias induction by a schema. A

program schema contains a template program abstracting a class of actual programs

(called instances), in the sense that it represents their dataflow and control-flow by

means of parameterized place-holders, but does not contain (all) their actual computa-

tions nor (all) their actual data structures, together with a set ofconstraintsthat the

place-holders of the schema should satisfy.

One could for instance design a template program capturing the class of di-

vide-and-conquer programs, or a sub-class thereof, e.g. those featuring two parame-

ters, with division of the first parameter into two components that are somehow smaller

than it:

r(X,Y) ← primitive(X), solve(X,Y)

r(X,Y) ← nonPrimitive(X), decompose(X,HX,TX1,TX2),

r(TX1,TY1), r(TX2,TY2), compose(HX,TY1,TY2,Y)

The intended semantics (data-flow constraints) of this template can be informally de-

scribed as follows. For an arbitrary relationr over formal parametersX andY, an in-

stance is to determine the value(s) ofY corresponding to a given value ofX. Two cases

arise: eitherX has a value (when theprimitive test succeeds) for whichY can be easily

directly computed (throughsolve), orX has a value (when thenonPrimitive test suc-

ceeds) for whichY cannot be so easily directly computed.1 In the latter case, the di-

vide-and-conquer principle is applied by (i) division (throughdecompose) of X into

a termHX and two termsTX1 andTX2 that are both of the same type asX but smaller

1. Note thatboth cases may apply, as there may be values ofY that it is easy to directly compute from

a givenX, as well as other values ofY that it is not so easy to directly compute from thatX.

7

thanX according to some well-founded relation, (ii) conquering (throughr) in order to

determine the value(s) ofTY1 andTY2 corresponding toTX1 andTX2, respectively,

and (iii) combining (throughcompose) termsHX, TY1, TY2 in order to buildY.

Enforcing this intended semantics must be done “manually,” as the template by itself

has no semantics, in the sense that many programs can be seen as an instance of it, not

just divide-and-conquer ones. One way of doing this is to attach to the template the set

of specifications of its predicate place-holders: these specifications are in terms of each

other, including the one ofr, and are thus generic (because even the specification ofr

is unknown), but can be abduced once and for all according to the informal semantics

of the schema [15]. Such a schema (i.e. template plus specification set) constitutes an

extremely powerful syntactic bias, because it encodes algorithm design knowledge that

would otherwise have to be hardwired or rediscovered the “hard way” during each syn-

thesis.

There are two approaches for representing schemata. The first approach is represent-

ing the schemata as higher-order expressions, sometimes augmented by extra-logical

annotations and features, where the actual programs are obtained by applying high-

er-order substitutions to the schema. The reason why some researchers prefer this ap-

proach is that they find this approach suitable for some applications such as

schema-guided program transformation [6], where a schematic program transforma-

tion could begin only if one can find some form of higher-order matching between ac-

tual programs and schemata. In the second approach, the schemata are represented as

first-order programs, where actual programs are obtained by an interpretation of the re-

lations and the functions of the schema. In other words, the actual programs are ob-

tained by adding programs for itsopen relations, where openness means that an

arbitrary interpretation can apply to the relation and the function. This kind of schema-

ta is calledopen programs [15]. A synthesis strategy determines a way in which the

open relations of the schema are instantiated. There could be more than one strategy

for a given schema, depending on which open relation(s) to instantiate first (e.g. instan-

tiation ofdecompose, primitive, andnonPrimitive), and which open relations to in-

stantiate next (e.g.solve andcompose).

There are two ways of biasing synthesis by a schema.Schema-based synthesis infers

a program guaranteed to fit the template of a pre-determined schema and to satisfy its

specification set, but the schema itself is to a certain degree hardwired into the tech-

8

nique. A useful variant isschema-guidedsynthesis, where the schema is a parameter

to the technique (which is thus schema-independent) and thus actively guides the syn-

thesis. As a parameter, it can be provided either by the source as an additional input, or

made available to the technique by its designers.

Less common approaches to syntactic bias are the clause description language of [1],

antecedent description grammars [7], argument dependency graphs [27], etc., and are

surveyed in [26].

1.1.4 Generality

Given the formulaG ⇒ S, we say thatG is more general thanS, and thatS is more

specificthanG. In ILP, the aim is to compute a hypothesisH given background knowl-

edgeB and evidenceE, such that B∧ H ⇒ E. The generality relation⇒ is a partial or-

der, but doesn’t induce a lattice on the set of formulas. Indeed, there is not always a

unique least generalization under implication of an arbitrary pair of clauses. For in-

stance, the clauses p(f(X)) ← p(X) andp(f(f(X))) ← p(X) have bothp(f(f(X))) ← p(X)

andp(f(X)) ← p(Y) as least generalizations. In [22], the existence and computability of

a least generalization under implication for any finite set of clauses that contains at

least one non-tautologous function-free clause is proven. Since implication between

Horn clauses is undecidable, there are a number of different models of inductive infer-

ence.

θ-subsumption. In the model calledθ-subsumption [23], the background knowledge

B is empty. The model is defined for clauses, which are viewed as sets of literals.

Definition 1.1: A clauseg θ-subsumes a clauses iff there exists a substitutionσ such

thatgσ⊆ s. Two clauses areθ-subsumption-equivalent iff they θ-subsume each other.

A clause is said to bereduced iff it is not θ-subsumption-equivalent to any proper sub-

set of itself.

For instance, The clausep(X,Y) ← q(X,Y), r(X) θ-subsumesp(V,Z) ← q(V,Z),

q(V,T), r(V), s(Z) with the substitution {X/V, Y/Z}.

If a clauseg θ-subsumes a clauses, then g ⇒ s, but the reverse is not true for self-re-

cursive clauses [21]. For instance, for the recursive clausesp(f(X)) ← p(X) and

p(f(f(X))) ← p(X) (calledg ands respectively), althoughg ⇒ s (note thats is simplyg

9

self-resolved),g does notθ-subsumes. Therefore,θ-subsumption is not equivalent to

implication among clauses. Hence, it is not adequate for handling recursive clauses.

θ-subsumption induces a lattice on the set of reduced clauses: any two clauses have

a unique least upper bound (lub) and a unique greatest lower bound (glb). The least

generalization underθ-subsumption (abbreviated lgθ) of two clausesc andd, denoted

lgθ(c,d), is the lub ofc and d in the θ-subsumption lattice. The lgθ of two terms

f(s1,…,sn) and f(t1,…,tn), denoted lgθ(f(s1,…,sn),f(t1,…,tn)), is

f(lgθ(s1,t1),…,lgθ(sn,tn)), whereas the lgθ of the termsf(s1,…,sn) and g(t1,…, tm),

where f ≠ g or n ≠ m, is a variableV, whereV represents this pair of terms throughout.

The lgθ of two atoms (similarly for two negative literals)p(s1,…,sn) andp(t1,…,tn),

denotedlgθ(p(s1,…,sn),p(t1,…,tn)), isp(lgθ(s1,t1),…,lgθ(sn,tn)), whereas the lgθ of the

atomsp(s1,…,sn) andq(t1,…,tm), wherep ≠ q or n≠ m, isT, whereT denotes the “most

general literal”. Finally, the lgθ of two clausesc andd, denotedlgθ(c,d), is {lgθ(l1,l2)

| l1 ∈ c andl2 ∈ d}.

For instance, the lgθ of the clausesp(V,W) ← q(V,W), r(V), s(W) andp(T,N) ←

q(T,N), r(T), r(N) is the clausep(X,Y) ← q(X,Y), r(X), r(Z).

Relative θ-subsumption. An extension ofθ-subsumption that uses background

knowledgeB is called relative subsumption [23].

Definition 1.2: If the background knowledgeB consists of a conjunction of ground

facts, then therelative least generalization underθ-subsumption (abbreviated rlgθ) of

two ground atomsE1 andE2 relative to background knowledgeB is lgθ((E1 ← B),(E2

← B)).

The rlgθ of two clauses is not necessarily finite. However, it is possible [21] to con-

struct finite rlgθs under the syntactic bias of ij-determinacy.

Definition 1.3: If Li is a literal in the ordered Horn clauseA ← L1,…,Ln, then theinput

variables of the literalLi are those variables appearing inLi that also appear in the

clauseA ← L1,…,Li−1; all other variables inLi are calledoutput variables. A literal Li

isdeterminate iff its output variables have at most one possible binding, given the bind-

ing of the input variables. If a variableV appears in the head of a clause, then thedepth

of V is zero, and otherwise, ifF is the first literal containing the variableV andd is the

maximal depth of the input variables ofF, the depth ofV is d +1. A clause isij -deter-

10

minate iff it is determinate and its body contains only variables of depth at mosti and

predicate symbols that have arity at mostj [8].

Inverse Resolution. Another model of generality is inverse resolution. There are four

inductive inference rules of inverse resolution:absorption, identification, intra-con-

struction, andinter-construction [21]:

In the rules above, lower-case letters represent atoms and upper-case letters represent

conjunctions of atoms. The absorption and identification rules invert only one resolu-

tion step. The intra-construction and inter-construction rules introduce new predicate

symbols (predicate invention, see the next subsection).

1.1.5 Predicate Invention

Predicate invention can be defined as follows: (i) introducing into the hypothesis some

predicate(s) that are not in the evidence, nor in the background knowledge (this is

called shifting the bias by extending the hypothesis language [25]), and (ii) inducing

programs of these new predicates. This requires the usage of constructive rules of in-

ductive inference (where the inductive consequent may involve symbol(s) that are not

in the antecedent), as opposed to selective ones. Such constructive induction thus

doesn’t (simplistically) assume that the preliminary induction tasks of representation

and vocabulary choice have already been solved, and represents thus a crucial field in

induction.

One can distinguish two types of predicate invention:necessary predicate invention

andnon-necessary predicate invention.

Necessary Predicate Invention.We’ll first give an example of necessary predicate

invention, and then define it.

Example 1: In the absence of background knowledge, the induction from positive and

negative examples of the following logic program for thesort predicate (where

q A←() p A B,←()
q A←() p q B,←()

--- p A B,←() p A q,←()
q B←() p A q,←()

p A B,←() p A C,←()
q B←() p A q,←() q C←()

-- p A B,←() q A C,←()
p r B,←() r A←() q r C,←()

--

11

sort(L,S) holds iff S is a non-descendingly ordered permutation ofL, whereL, S are

integer-lists):

sort([],[]) ←

sort([H|T],S) ← sort(T,Y), insert(H,Y,S)

involved the invention of the insert predicate (whereinsert(E,L,R) holds iff inte-

ger-list R is non-descendingly ordered integer-listL with integerE inserted), whose

logic program hereafter is a by-product:

insert(E,[],[E]) ←

insert(E,[H|T],[E,H|T]) ← E≤H

insert(E,[H|T],[H|R]) ← ¬(E≤H), insert(E,T,R)

Note that the invention of theinsert predicate required in turn the invention of the≤

predicate (whose obvious specification and program are omitted here).

Definition 1.4: Predicate invention isnecessary iff there is no finite logic program for

the observational concepts in the evidence that uses only the fixed vocabulary of pred-

icate symbols from the evidence and the background knowledge.

In Example 1, once synthesis was committed to the recursive callsort(T,Y), where

T is the tail ofL (i.e. L=[H|T]), the predicateinsert had to be invented, especially that

its recursive program cannot be unfolded into the program forsort. If committed to

some other recursive call(s), another predicate would have had to be invented. Other-

wise, the background knowledge being empty,sort would have to be implemented at

most in terms of itself only, which is impossible without generating the non-terminat-

ing programsort(L,S) ← sort(L,S), or without generating an infinite program (which

extensionally encodes the model).

Non-necessary Predicate Invention.One can distinguish two types of non-neces-

sary predicate invention:useful predicate invention andpragmatic predicate invention

[12].

First, we discuss useful predicate invention. If there werepermutation andordered

predicates in the background knowledge of Example 1, the invention ofinsert such

that it is recursively defined (e.g. as above) would be useful. Indeed, otherwise thein-

sert predicate would not have to be invented as its unfoldable (because non-recursive)

program would involve thepermutation andordered predicates:

12

insert(E,L,R) ← permutation([E|L],R), ordered(R)

and would have a complexity of O(n!), wheren is the length of the list L, and would

thus be inefficient compared to the recursiveinsert program above, which is O(n).

Hence, the use of a recursiveinsert program would decrease the complexity of the

overallsort program. The invention of a recursiveinsert program is thus considered

useful although non-necessary.

Definition 1.5: Given a partially constructed logic program for the observational con-

cepts in the evidence, predicate invention isusefuliff there is a way to complete the

program by inventing a predicate whose logic program is recursive.

Let’s now give an example of pragmatic predicate invention.

Example 2: Given evidence of the grandDaughter relation (where

grandDaughter(G,P) holds iff personG is a grand-daughter of personP), and back-

ground knowledge of theparent, female, andmale relations (whereparent(P,Q)

holds iff personP is a parent of personQ), the induction of the following logic program

for grandDaughter:

grandDaughter(G,P) ← parent(P,Q), daughter(G,Q)

involved the invention of thedaughter predicate (wheredaughter(D,P) holds iff per-

sonD is a daughter of personP), whose logic program hereafter is a by-product:

daughter(D,P) ← parent(P,D), female(D)

The invention of thedaughter predicate was pragmatic since, although thedaughter

program could be unfolded into the program of the grandDaughter predicate, i.e. its

invention was non-necessary, inventing it caused thegrandDaughter program to be-

come more compact, and since thedaughter concept has now been defined and can be

reused in the future.

Definition 1.6: Given a partially constructed logic program for the observational con-

cepts in the evidence, predicate invention ispragmaticiff it is neither necessary nor

useful.

The task of inductive inference amounts in the limit to finding a finite axiomatization

for a given model. If the intended model cannot be finitely axiomatized within a lan-

guageL, inductive inference will never succeed. However, detecting this is undecid-

able. This follows from Rice’s theorem (see [25]):

13

Theorem 1: Given a recursively enumerable set of ground atomsE in a languageL0,

it is undecidable whetherE is finitely axiomatizable in some languageL such thatL ⊇

L0.

Fortunately, introducing a new predicate allows finding a finite axiomatization, as

proved by Kleene (see [25]):

Theorem 2: Any recursively enumerable set of formulas in a first-order languageL is

finitely axiomatizable in the predicate calculus using additional predicate symbols not

in L.

In other words, Kleene’s theorem states that inductive inference will always succeed

provided the system invents the appropriate new predicates. Thus, predicate invention

is crucial in inductive inference.

1.1.6 Construction Modes and Admissibility

In this sub-section, we will introduce the concepts of construction modes and admissi-

bility [10]. The informal definitions of these two concepts are as follows: aconstruc-

tion mode for a relation states which parameter(s) are used to “construct” the other

parameters, also expressing whether such usage is mandatory or optional. Construction

modes should not be confused with input/output modes, which state which parameters

must be ground or may be variables at call/return-time. The concept ofadmissibility

captures the notion of what it means for anatom to satisfy a construction mode for its

relation. Now, let us give the formal definitions of these new concepts. In these defini-

tions, when we want (or need) to group several terms into a single term, we represent

this as a tuple, using angled brackets. For instance, 〈f(X,Y),g(X,Y,Z)〉 is a term represent-

ing the couple built of two termsf(X,Y) andg(X,Y,Z).

Definition 1.7: The leaves of a termt, denotedleaves(t), are the set of the variables

and constants occurring int.

Thevertices of a termt, denotedvertices(t), are the multi-set of the variables and func-

tion symbols (including the constants symbols) occurring int.

For instance,leaves(1⋅B⋅1⋅nil) = {1, B, nil}, and leaves(a⋅T) = {a, T}, whereas

vertices(1⋅B ⋅1⋅nil) = {1, ⋅, B, ⋅, 1, ⋅, nil}, andvertices(a⋅T) = {a,⋅,T}.

Definition 1.8: Terms is syntactically obtained from termt iff leaves(t) ⊆ leaves(s).

We denote this byt ⊆ s.

14

Term s syntactically contains term t iff vertices(t) ⊆m vertices(s), where⊆m denotes

multi-set inclusion. We denote this byt ⊆m s.

For instance,〈a,b〉 is syntactically obtained from〈a,a〉, becauseleaves(〈a,a〉) = {a}

⊆ {a,b} = leaves(〈a,b〉). However,〈a,b〉 does not syntactically contain〈a,a〉, because

vertices(〈a,a〉) = {a,a} /⊆m{ a,b} =vertices(〈a,b〉).

Definition 1.9: A construction modem for a relationr of arity n is a total function

from the set {1, 2,…,n} into the set {may1,…, mayn, mayall, must1,…, res1,…, resn,

not}, such thatresj is in the range ofm iff mayj or mustj also is in the range ofm, and

such that everyresj is at most once in the range ofm. We also saym(i) is the mode of

the ith parameter ofr.

A construction modem is often written in the more suggestive formr(m(1),…,m(n)).

Do not confuse the positioni of a parameter and the indexj of its modem(i), saymustj.

The intended semantics of a mode is as follows:

• modemustj means the parameter in the corresponding position is mandatory in syn-

tactically constructing the parameter in the corresponding position ofresj;

• modemayj means the parameter in the corresponding position is optional for syn-

tactically constructing the parameter in the corresponding position ofresj;

• modemayall means the parameter in the corresponding position is optional for syn-

tactically constructing all other parameters;

• modenot means the parameter in the corresponding position is not used at all in

syntactically constructing any of the parameter(s) in the corresponding position(s)

of all resj.

Let m be a mode for a relationr, and letr(t1,…, tn) be the considered atom, wheren is

natural number. Let the indexes inm run from 1 tok inclusive, wherek is a natural

number. LetMustj = 〈ti | m(i) = mustj〉, and letMust = 〈ti | m(i) = mustj for some j〉. Sim-

ilarly for Mayj, Mayall, May, Resj, Res, andNot.

For instance, let the construction mode bearelation(mayall, must1, must2, res1, res2)

and the atom bearelation(1, [b], [], [a, b], [a]), then we have that k = 2,Must1 = 〈[b]〉,

Must2 = 〈[] 〉, Must = 〈[b], [] 〉, May1 = May2 = 〈〉, May = Mayall = 〈1〉, Res1 =〈[a, b]〉,

Res2 =〈[a]〉, andRes = 〈[a, b], [a]〉.

Definition 1.10: A variable is linked in a clause if it occurs in the head or if it occurs

in a literalL of the body andL contains a linked variable.

15

Definition 1.11: A clause that has no equality atoms and no recursive calls, noT (see

Definition 1.1) and no unlinked variables in the body:

r(X,Y,Z) ← C

is admissible with respect to a modem for r iff

∀1 ≤ j ≤ k: Mustj ⊆m 〈Resj, C′〉 (1)

where C′ is a tuple built of the atoms (seen as terms) of conjunctionC, and

leaves(Res) \ sharedLeaves(Res) ⊆ leaves(May, Mayall, Must, C′) ∪ {0,nil,…} (2)

wheresharedLeaves(t) denotes the set of leaves shared by all components of tuplet.

Now, we present the objective of the thesis based on the terminology and theoretical

results given in Section 1.1.

1.2 The Objective of the Thesis

The learning of recursive logic programs (i.e. the class of logic programs where at least

one clause is recursive, e.g. thesubset program given in Section 1) from incomplete

information, such as input/output examples, is a challenging subfield both of ILP (In-

ductive Logic Programming) and of the synthesis (in general) of logic programs from

formal specifications. This is an extremely important class of logic programs, as the re-

cent work on constructive induction [12] [25] shows that necessarily invented predi-

cates (see Section 1.1.5) have recursive programs, and it even turns out that their

induction is much harder than the one of non-recursive programs. We call this (induc-

tive) program synthesis.

When it comes to programming applications, we believe the ideal technique is inter-

active (in the sense of DIALOGS [13]) and non-incremental, has a clausal evidence lan-

guage plus type, mode, and multiplicity information (like SYNAPSE [11], DIALOGS),

can handle semantic manipulation relations, actually uses (structured) background

knowledge and a syntactic bias, which are both problem-independent and intensional

(like in SYNAPSE), is guided by (and not just based on) at least the powerful di-

vide-and-conquer schema of SYNAPSE and DIALOGS (using the implementation ap-

proach of METAINDUCE [18]), discovers additional base case and recursive case

examples (like CILP [19]), can perform both necessary and useful predicate invention

(like SYNAPSE, DIALOGS), even from sparse abduced evidence (like CILP), actually dis-

16

covers the recursive atoms, and makes a constructive usage of the negative evidence

(through abduction, like theConstructive Interpreter [9] and SYNAPSE).

Our aim was thus to study this important class of logic programs, i.e. recursive logic

programs, and to develop a system that induces logic programs of this class. The clos-

est system to our considerations was DIALOGS (Dialogue-based Inductive and Abduc-

tive LOgic Program Synthesizer) [13]. Therefore, we improved this system into a new

one called DIALOGS-II. Thus, our aim became to improve DIALOGS, whose ancestor

was the SYNAPSE system [11] [14], which induces recursive logic programs from a set

of positive examples, and a set of Horn clauses that are calledproperties.The draw-

backs of SYNAPSE are that the specifier may not always provide properties that are

needed to induce a logic program that is correct with respect to its specification, and

that most positive examples are redundant with the properties.

DIALOGS-II is a schema-guided, interactive, and non-incremental synthesizer of re-

cursive logic programs that takes the initiative and queries a (possibly naive) specifier

for evidence in her/his conceptual language. DIALOGS-II needs no properties, and only

asks for the minimal knowledge a specifiermust have in order to want a (logic) pro-

gram, and it can be used by any learner (including itself) that detects, or merely con-

jectures, the necessity of invention of a new predicate. Moreover, due to its powerful

codification of “recursion-theory” into program schemata and schematic constraints, it

needs very little evidence and is very fast.

DIALOGS-II is schema-guided. The reason why it is schema-guided is as follows:

most (but not all) inductive/abductive synthesizers require large amounts of ground

positive and negative examples of the intended concept. This is because ground exam-

ples are not an adequate way of communicating a concept to a computer and/or because

the underlying “recursion theory” of the synthesizer is poor. In order to overcome this

deficiency, some researchers used non-ground examples [20], or Horn clauses [11] [14]

as evidence language instead of using only ground examples, and some experimented

with schema-based synthesis [11] [14] to address the poor “recursion theory” problem

[17]. We chose the schema-guided approach, because we think that it is the best ap-

proach to handle “recursion theory”. The schemata of DIALOGS-II are open programs

and are available to the system together with their synthesis strategies. In other words,

for a particular synthesis, a schema together with a synthesis strategy is chosen.

17

DIALOGS-II can be used to synthesize programs by making use of the available sche-

mata and strategies that are already existing in the system. Moreover, the specifier can

provide additional schemata using the declarative syntax of the schemas of the system

to encode new schemata, and adding the code for strategies for those new schemata. In

that way, the specifier can make syntheses of programs by executing the strategies that

fit to the schemata added.

DIALOGS-II is interactive, because the specifier is assumed to be “lazy” in the sense

that s/he is reluctant to take the initiative and type in evidence of the intended concept

without knowing whether it will be “useful” to the synthesizer or not [13]. Therefore,

DIALOGS-II takes the initiative and queries the specifier only for strictly necessary ev-

idence. The query and answer languages are carefully designed so that even a compu-

tationally naive specifier can use the system. Moreover, it is guaranteed that the

specifier can answer such queries, because otherwise the specifier would not need the

synthesized program.

DIALOGS-II is a system that only induces recursive logic programs because we be-

lieve that inducing recursive logic programs is important [12], especially that they are

strictly necessary (see Section 1.1.5).

DIALOGS-II is a recursive synthesizer, which means it recursively calls itself when a

necessary predicate invention is conjectured during the synthesis. It is then a natural

solution for the system to call itself recursively to make this new synthesis since the

problem (of synthesizing a program for a necessary new predicate) has the same nature

as the problem of synthesizing a program for the top-level predicate. That is, for both

cases, the necessity of predicate invention is conjectured before starting a synthesis.

DIALOGS-II is non-incremental, because we believe that using an incremental ap-

proach is not practical for program synthesis [17]. Recursive programs are so fragile

objects that they should be handled with utmost care. Therefore, we believe that using

general-purpose induction techniques to synthesize programs by incrementally “de-

bugging” the empty program (or an approximate program) according to incomplete ev-

idence is not an appropriate way of synthesizing programs. Moreover, in incremental

synthesis, the order of the evidence is important. That means the system can be forced

into the synthesis of infinite, redundant, or dead code. We strongly believe that the only

way to reliably and efficiently synthesize recursive programs from incomplete infor-

mation is through guidance by a schema capturing a design methodology (e.g. a di-

18

vide-and-conquer schema), as well as through non-incremental handling of the

evidence.

In the remainder of this thesis, we will examine the DIALOGS-II technique closely in

Chapter 2. This will be followed by a comparison of DIALOGS-II with current ILP sys-

tems in Chapter 3, and finally, we reach a conclusion in Chapter 4.

19

Chapter 2

The DIALOGS -II Technique

As mentioned earlier, DIALOGS-II is a schema-guided, interactive, recursive, and

non-incremental recursion synthesizer that takes the initiative and queries a (possibly

computationally naive) specifier for evidence in her/his conceptual language. In the

following sub-sections, we will illustrate how the DIALOGS-II mechanism works by

means of sample syntheses. First, we illustrate the synthesis of a program for thede-

lOdds(L,R) predicate, wheredelOdds(L,R) holds iffR is L without its odd elements,

whereL, R are integer-lists. Next, we examine the synthesis of a program for the pred-

icatereverse(L,R), wherereverse(L,R) holds iff listR is the reverse of listL, to il-

lustrate the recursive call of DIALOGS-II to itself. Before giving the sample syntheses,

we give an algorithm call chart of the basic synthesis algorithm of how DIALOGS-II

works and the basic synthesis algorithm itself:

20

Algorithm 1: schemaGuidedDialogs-II(Pgm)

Inputs: (none)

Outputs: Pgm

ask for the predicate declaration of the predicate for which a program is being

synthesized

PredDecl := ask(‘Predicate Declaration’)

ask for a schema and a strategy for the schema

selectSchemaStrategy(Schema,Strategy)

call Dialogs-II with Schema, Strategy and PredDecl to induce Pgm

dialogsII(Schema,Strategy,PredDecl,Pgm)

As shown in Algorithm 1, after executing the first two statements, the system executes

the statementdialogsII(Schema,Strategy,PredDecl,Pgm) whose algorithm is given

as follows:

Algorithm 2: dialogsII(Schema,Strategy,PredDecl,Pgm)

Inputs: Schema, Strategy, PredDecl

Outputs: Pgm

execute the strategy in order to obtain an open program from the schema, where

the open program has open relations to be “closed” by the end of the next two

statements (i.e. abduce and induce). ParamRoles denotes the information about

Algorithm2

Algorithm3 Algorithm4 Algorithm5 Algorithm8 Algorithm9&10

Algorithm6 Algorithm7

Algorithm1

21

the names, types, and roles of the parameters (e.g. induction, result).

Strategy(PredDecl,Schema,OpenPgm,ParamRoles)

abduce the evidence necessary for “closing” the open relations p and q of the

open program by means of querying the specifier, where the open relation of the

non-recursive clause is p, whereas the open relation of the recursive clause is q.

The atoms of these relations are supposed to be the last atoms of the

non-recursive and recursive clauses of the open program respectively.

abduce(OpenPgm,ParamRoles,PredDecl,pEvidence,qEvidence)

induce the programs for the open relations by using the Program Closing

Method based on the evidence abduced in the previous step according to the

construction modes pMode and qMode of the relations p and q respectively.

induce(pEvidence,qEvidence,pMode,qMode,pClauses,qClauses)

evaluate the result of the Program Closing Method to conjecture if there is a need

for inventing a new predicate

evaluate(Schema,Strategy,OpenPgm,pClauses,qClauses,PredDecl,Par

amRoles,Pgm)

Now, we go through the statements of the basic synthesis algorithm (Algorithm 1) for

the synthesis of a program for thedelOdds(L,R) predicate. We will first discuss the

first two statements of this algorithm: asking for a predicate declaration, selecting a

schema and a strategy in Section 2.1. Next we will gothrough the statements of

Algorithm 2 by first discussing the execution of the strategy in Section 2.3 and abduc-

tion of evidence in Section 2.4, which is followed by the discussion of the induction of

program clauses in Section 2.5, and finally by the evaluation of the program clauses to

conjecture necessary predicate invention and sparseness problem in Section 2.5.2.

2.1 Asking For a Predicate Declaration, a Schema

and a Strategy

DIALOGS-II first needs to know for which predicate it is synthesizing a program. There-

fore, it asks the predicate declaration of the predicate. The specifiermust be able to give

such a declaration, because otherwise s/he would not have the need to have a program

22

for this predicate. Thus, the first step in the synthesis is prompting the specifier for a

predicate declaration and obtaining it:

Predicate declaration? delOdds(L:list(int),R:list(int))

where the type ofL andR is list(int). Other available types are in the set{atom, int,

nat, list(_),…}.

As mentioned earlier, DIALOGS-II is a schema-guided synthesizer. Therefore, it needs

a schema and a strategy for the schema in order to be able to start a synthesis. Thus,

the next step in the synthesis is prompting the specifier for a schema and a strategy for

this schema.

A basic algorithm for selecting a schema and a strategy for it is given below, where

SchemaDefaults is a parameter representing the list of available schemata in the sys-

tem,Schema is a schema inSchemaDefaults, andStrategy is a strategy forSche-

ma.

Algorithm 3: selectSchemaStrategy(Schema,Strategy)

Inputs: none

Outputs: Schema, Strategy

ask the specifier to select Schema from SchemaDefaults in the system

Schema := ask(‘Schema’, SchemaDefaults)

determine StrategyDefaults, the list of available strategies for Schema

StrategyDefaults := determineStrategyDefaults(Schema)

ask the specifier to select Strategy from StrategyDefaults

Strategy := ask(‘Strategy’, StrategyDefaults)

Now, let us see how is this done during the synthesis of a program fordelOdds(L,R).

Note that the questions of this dialog are in thetypewriter font, the specifier’s answers

are inhelvetica font, and the default answers of the system are given inside curly brac-

es, i.e. {}, and suppose that one of the schemata available in the system is a “di-

vide-and-conquer” schema together with a strategy for it:

Schema? {divide-and-conquer1} divide-and-conquer1

Strategy? {divide-and-conquer-Strategy1} divide-and-con-

quer-Strategy1

Now, DIALOGS-II knows that it will use a divide-and-conquer schema with a particular

strategy, i.e.divide-and-conquer-Strategy1.

23

2.2 Execution of the Strategy

The next step is to execute the strategy selected by the specifier. Before giving the al-

gorithm of a particular strategy, let us see what the considered divide-and-conquer

schema looks like. The considered schema is:

r(X,Y,Z) ← solve_r(X,Y,Z)

r(X,Y,Z) ← decompose_r(X,HX,TX), r(TX1,TY1,Z),…,r(TXt,TYt,Z),

compose_r(HX,TY,Y,Z)

whereHX=HX1,…,HXh, TX=TX1,…,TXt, TY=TY1,…,TYt, andZ=Z1,…,Zz.

A divide-and-conquer program for a predicater over parametersX, Y, andZ works

as follows. Suppose thatX is the induction parameter,Y is the result parameter, andZ

the (repetitive) passive parameter(s), where apassive parameter is a parameter that

does not change through a recursive call. There are two possibilities of howY can be

computed: the first one is thatY is directly computed fromX andZ by means of

solve_r(X,Y,Z). There could be more than one way in whichY is directly computed

from X andZ (in other words, there could be more than one clause whose head is

solve_r(X,Y,Z) in the final synthesized program). In the second one, firstX is decom-

posed intoh heads andt tails by means ofdecompose_r(X,HX,TX). Next,t recursive

calls are done, one for eachTXi. Last, the result parameterY is constructed fromHX,

TY, andZ by means ofcompose_r(HX,TY,Y,Z). To be precise, theHX are processed

and composed with theTY andZ in order to yieldY. Again, there could be more than

one way of computingY from HX, TY, andZ. The schema given above is a represen-

tation of this algorithm description.

So, in order to generate an open program from this schema according to the strategy

divide-and-conquer-Strategy1, the system must determine and use the roles of the pa-

rameters, the number of passive parameter(s) (if any), i.e. 0≤ z, the program for the

open relationdecompose_r, andh andt.

Now, let us give the algorithm for executing the strategy for the divide-and-conquer

schema given above:

24

Algorithm 4: divide-and-conquer-Strategy1(PredDecl,Schema,Pgm,

ParamRoles)

Input: PredDecl, Schema

Output: Pgm, ParamRoles

determine the induction parameter, which is of an inductively defined type, the

result parameter (if any), and the passive parameter(s) (if any), and the number

of result and passive parameters, i.e. y and z respectively, from the predicate

declaration PredDecl

〈ParamRoles,y,z〉 := paramRoles(PredDecl)

determine decompose using the system-defined decomposition operators, i.e.

DecomposeDefaults

〈decompose_r,h,t〉 := selectDecompose(DecomposeDefaults)

Pgm := generateOpenPgm(Schema,decompose_r,h,t,z)

Now, we examine the execution of the strategydivide-and-conquer-Strategy1 by

means of the synthesis of a program fordelOdds(L,R).

First, we show the determination of the parameter roles using the predicate declara-

tion delOdds(L:list(int),R:list(int)): DIALOGS-II creates a sequence of potential induc-

tion parameters, which are of inductively defined types, keeps the first one as the (first)

default answer, and the remaining ones as default ones upon backtracking. Similarly

for the result parameter, which is also likely to be of an inductively defined type: from

the currently remaining parameters, DIALOGS-II can create a sequence of potential re-

sult parameters, keep the first one as the (first) default answer, and the remaining ones

as default answers upon backtracking. Finally, DIALOGS-II can propose as the passive

parameter(s) (if any) the remaining parameter(s) (if any). Providing default answers is

good for naive specifiers, where naive specifiers are the ones who do not have the ca-

pability for answering every question of the system, since if s/he has no idea of deter-

mining the roles of the parameters, s/he can simply accept the default answers and go

on with the synthesis without blocking at this step. Note that a passive parameter may

accidentally be declared as a result parameter, without any influence on the existence

of a correct program: it would be found to be always equal to its tail by post-synthesis

transformations, where in that case the synthesis would be a bit slower, because unnec-

essary computations would need to be done for its construction using its tail,HX, and

the actually declared passive parameters.

25

How the parameter roles ofdelOdds(L,R) are determined is shown by the dialogue

below, supposing that the specifier accepts the default answers proposed by the system.

First, the specifier is prompted for the induction parameter, where the system proposes

the parameterL as the default answer:

Induction parameter? {L} L

Next, the specifier is prompted for the result parameter, where the system proposes the

(remaining) parameterR as the result parameter since there is only one remaining pa-

rameter according to the predicate declaration and it has to be a result parameter since

the result parameter is asked before passive parameters.

Result parameter? {R} R

Note that there is (are) no passive parameter(s).

The strategy selected by the specifier makes DIALOGS-II create a sequence of poten-

tial decomposition operators using available decomposition operators in the system,

keep the first one as the (first) default answer, and the remaining ones as default ones

upon backtracking. The specifier can select the default one or can write her/his own

decompose_delOdds as an answer, where the predicates in the body must already be

defined as procedures in the system; let us assume that the specifier selects the default

one, which is a head-tail decomposition of the list:

Decomposition operator? {decompose_delOdds(L,HL,TL)←

L=[HL|TL]}

decompose_delOdds(L,HL,TL) ← L=[HL|TL]

The other pre-defined decomposition operators of the typelist(_) are given below,

whereh denotes the number of heads andt denotes the number of tails:

decompose_r(L,H1,H2,T) ← L=[H1,H2|T] h/2, t/1

…

decompose_r(L,H,T1,T2) ← L=[H|T], partition(T,H,T1,T2) h/1, t/2

decompose_r(L,T1,T2) ← L=[_,_|_], halves(L,T1,T2) h/0, t/2

…

Similar sequences are also available for other inductively defined types, e.g.nat. Next,

h andt are instantiated according to the selected decomposition operator: for head-tail

decomposition, bothh andt are 1. At this time of the synthesis, from a programming

point of view, all creative decisions have been taken, but alternative decisions are ready

26

for any occurrence of backtracking (either because DIALOGS-II fails due to some deci-

sion at a later step of Algorithm 2, or because the specifier wants another program after

successful completion of all the steps).

Knowing decompose_delOdds, and the values ofh, t, z, the following open pro-

gram fordelOdds(L,R) is generated from the input schema:

delOdds(A,B) ← solve_delOdds(A,B)

delOdds(A,B) ← decompose_delOdds(A,C,D), delOdds(D,E),

compose_delOdds(C,E,B)

decompose_delOdds(F,G,H) ← F=[G|H]

Note that the relationssolve_delOdds andcompose_delOdds are open: they will

be “closed” after the execution of the second and the third statements (abduction of ev-

idence and induction of clauses) of Algorithm 2. This open program is passed as an

input to the second statement of Algorithm 2.

2.3 Abduction of Evidence for the Open Relations of

the Open Program

Let the open relations of an open program bep andq, wherep is the open relation of

a non-recursive clause andq is the open relation of a recursive clause of the open pro-

gram.

In DIALOGS-II, the process of finding programs for the open relationsp andq is also

interactive and is based on the notions of abduction through (naive) unfolding and que-

rying, and induction through the Program Closing Method (computation of least gen-

eral generalizations).

We will illustrate naive unfolding and querying by means of the open relations of an

open program of the divide-and-conquer schema given previously. The basic principle

of (naive) unfolding and querying is as follows. Based on an open program

r(A,B) ← solve_r(A,B)

r(A,B) ← decompose_r(A,C,D), r(D,E), compose_r(C,E,B)

decompose_r(F,G,H) ← F=[G|H]

whose induction parameter isA, result parameter isB, decomposition operator is a

head-tail one, and open relations aresolve_r andcompose_r (wheresolve_r denotes

27

p andcompose_r denotesq, respectively), the possible computation “traces” for var-

ious most general values of the induction parameter are:

r([],D1) ← solve_r([],D1)

r([E1],F1) ← solve_r([E1],F1)

r([E1],F1) ← r([],F2), compose_r(E1,F2,F1)

r([G1,G2],H1) ← solve_r([G1,G2],H1)

r([G1,G2],H1) ← r([G2],H2), compose_r(G1,H2,H1)

…

The basic principle is to (i) query the specifier for an instance of the last atom of each

trace, using previous answers to resolve recursive calls, (ii) induce a program for

solve_r from some of the answers so that it is not an open relation afterwards, (iii) in-

duce a program forcompose_r from the other answers so that it is not an open relation

after this induction. The criterion of how to make such a division of the answers fol-

lows from the construction modes (see Section 1.1.6) of the schema. Before giving the

steps above in detail, we introduce a new concept.

Definition 2.1: (Most general form of a parameter)

The most general form of a parameter of a certain typet and of a certain sizes is de-

noted by

mostGenForm(t,s)

and is found using type-specific programs. For instance, for typelist, the program is as

follows:

list(nil,0) ←

list(H.T,M) ← list(T,N), M is N+1

The most general formX of a parameter of typelist and of size 3 is computed by SLD

resolution of the goal

← list(X,3)

with the program given above yielding the listA.B.C.nil. Similarly, for typenat, the

program is

nat(0,0) ←

nat(s(N),M) ← nat(N,T), M is N+1

28

The most general formX of a parameter of typenat and of size 2 is computed by SLD

resolution of the goal

← nat(X,2)

with the program given above yielding the natural numbers(s(0)).

Step(i) is realized by means of a basic loop: for each most general form of the induc-

tion parameter a goal for the top-level predicate is generated. For each clause whose

head unifies with that goal, the atom of an open relation in the body of the clause is

found by resolving the body atoms (“executing” the body) using the primitives, spec-

ifier-introduced predicates (which are introduced while the specifier gives answers to

the queries about the predicate for which a program is being synthesized), and the

clauses abduced during the previous iterations of the loop. And for each such an

“open” atom, a query is generated. From the specifier’s answer to the query, some ev-

idence is abduced for the open relation. This basic loop is repeated until the user an-

swers a query bystop-it.

Let us now give an algorithm for Step(i) (note that Step(ii) and Step(iii) will be dis-

cussed in the following sub-sections). The algorithm abduces evidence, i.e.pEvi-

dence and qEvidence, for the open relationsp and q, wherePgm is the open

program,ParamRoles is information about the parameters ofPgm, i.e. names, types,

and the positions of the parameters in the heads of the clauses ofPgm, which is com-

puted using the predicate declarationPredDecl by Algorithm 4, andTopPred is the

name of the predicate for which a program is being induced.

Algorithm 5: abduce(Pgm,ParamRoles,PredDecl,pEvidence,qEvidence)

Inputs: Pgm, ParamRoles, PredDecl

Outputs: pEvidence, qEvidence

Shortcuts are abduced clauses for the open relations p, q and for TopPred

Shortcuts := {}

pEvidence := {}

qEvidence := {}

i := 0

repeat

 let Xi be the most general form of the induction parameter of type t of size i

 Xi := mostGenForm(t,i)

 construct a goal using Xi and variable result and passive parameter(s)

29

 TopPred := predName(PredDecl)

 Goal := TopPred(Xi,Y,Z)

 find a clause (in Pgm) whose head unifies with Goal and whose body unifies

 with Body (under the same substitution)

 Body := pgmClause(Pgm,Goal)

 prove Body in order to find an atom of open relation p or q

demo(Body,Pgm,TopPred,Shortcuts,Background,Assumptions,

ResidueAtom)

 query the specifier to abduce evidence for the open relation of Body

 askQuery(Goal,ResidueAtom,Assumptions,Answer)

 if Answer ≠ “false” and Answer ≠ “stop-it” then

abduce evidence for open relations p or q using the answer Answer to the

query made in askQuery

if ResidueAtom is of predicate p then

〈pExs,Shortcut〉 := abduceClauses(Answer,ResidueAtom)

assert pExs and Shortcut

pEvidence := pEvidence ∪ pExs

 else

〈qExs,Shortcut〉 := abduceClauses(Answer,ResidueAtom)

 assert qExs and Shortcut

 qEvidence := qEvidence ∪ qExs

 Shortcuts := Shortcuts ∪ {Shortcut}

 else

 abduce nothing

 increment i

until Answer = “stop-it”

retract all Shortcuts to prevent them being used for further syntheses

Now let us give the algorithm fordemo:

30

Algorithm 6: demo(Goal,Pgm,TopPred,Shortcuts,Background,

Assumptions,ResidueAtom)

Input: Goal, Pgm, TopPred, Shortcuts, Background

Output: Assumptions, ResidueAtom

(Pgm + Shortcuts) ∪ Background ∪ Assumptions ∪ ResidueAtom |--- SLD

Goal

Let us explain howdemo works now: the proof ofGoal is done by usingShortcuts

andBackground. Shortcuts are abduced clauses for the open relationsp, q and for

TopPred, where these clauses have precedence over the clauses of during SLD reso-

lution (note that abduced clauses for the open relationsp, q are also called evidence

since they will be used as evidence for closing these open relations). That is, when the

head of a shortcut clause unifies with an atom inGoal, these shortcut clauses are used

instead of the clauses ofPgm (note that + is used instead of∪ to indicate this prece-

dence in Algorithm 6). If there is neither a shortcut for an atom nor a clause inPgm

whose head unifies with that atom, then resolution is impossible and the resolution of

Goal stops there, where this atom isResidueAtom. The resolution ofGoal also stops

whenGoal is proved to betrue. Background is a set of programs for pre-defined prim-

itives, such as “=”, “>”, etc. The atoms of specifier-introduced predicates (introduced

by the answers that the specifier gives to the queries) encountered inGoal are called

Assumptions, meaning that these atoms are assumed to be true during the SLD reso-

lution since these atoms are introduced by the specifier and, thus, there is not any pro-

gram for the specifier-introduced predicates that is known to the system, which implies

that the resolution will be blocked by the atoms of the specifier-introduced predicates,

if they are not assumed to be true.Assumptions are collected (through conjunction)

in order to be passed to the query-asking during which the query is designed by con-

sideringAssumptions to be true (see askQuery below). Now, we give the algorithm

for asking queries:

Algorithm 7: askQuery(Goal,ResidueAtom,Assumptions,Answer)

Inputs: Goal, ResidueAtom, Assumptions

Output: Answer

if ResidueAtom is true then

do not query the specifier, because there is no atom for which any evidence

should be abduced, thus Answer is an empty set

31

Answer := {}

else if ResidueAtom is an atom of the relation p or q then

if Assumptions = [] then

 ask the query: “When does Goal hold?” and get Answer from the specifier

Answer := ask(‘When does’ Goal ‘hold?’)

else

ask the query: “When does Goal hold, assuming Assumptions?” and get

Answer from the specifier

Answer := ask(‘When does’ Goal ‘hold assuming’ Assumptions?)

Now we know how the evidence is abduced for the open relations of an open program.

Let us now examine how the abduction of evidence for the open relations

solve_delOdds andcompose_delOdds is done during the synthesis of a program

for thedelOdds predicate by considering the open program

delOdds(A,B) ← solve_delOdds(A,B)

delOdds(A,B) ← decompose_delOdds(A,C,D), delOdds(D,E),

compose_delOdds(C,E,B)

decompose_delOdds(F,G,H) ← F=[G|H]

and considering that the relationsolve_delOdds plays the role of the relationp, and

the relationcompose_delOdds plays the role of the relationq. This correspondence

of the relations is due to the fact thatsolve_delOdds is the open relation of the non-re-

cursive clause of the open program, andcompose_delOdds is the open relation of

the recursive clause of the open program.

First Iteration for Abducing Evidence. The specifier must know the value of the re-

sult parameter when the induction parameter is the empty list, otherwise s/he would not

have the need for a program fordelOdds. Thus, the first most general form of the in-

duction parameterA is [], where the query generation process proceeds by first resolv-

ing the goaldelOdds([],B) with the head of the recursive clause of the open program

and finding a goal for resolution. But, this attempt fails after resolvingdecompose

with the recursive clause since the induction parameter has a value, i.e.[], that cannot

be decomposed. Therefore, the non-recursive clause is considered next. The recursive

clause of the open program is tried first, because in that way the answers that the spec-

ifier gives to the queries are shorter (thus it is less boring for the specifier to answer the

32

queries) than in the case where the non-recursive clause is used first. This is because

during the resolution of a goal that has been generated by resolving the goal with the

head of the recursive clause, more assumptions are likely to be collected to be passed

to the queries than in the case where the goal is resolved with the non-recursive clause.

More assumptions during the querying causes the specifier to write less conditions in

order to make the goal (the one that includes a most general form of the induction pa-

rameter) hold.

Thus, next the goaldelOdds([],B) is resolved with the non-recursive clause of the

open program yielding the goal:

← solve_delOdds(A,B)

Resolving this goal is impossible, so the unfolding process stops here, and DIALOGS-II

extracts the following query to abduce evidence forsolve_delOdds:

When does delOdds([],B) hold?

from this goal (see Algorithm 7). Note that the specifier should be able to answer this

query, since otherwise s/he would not need a program for the predicatedelOdds, in

that sense the specifier is guaranteed to answer the queries. The answer should be a for-

mulaF [B], where onlyB may be free, explaining how to computeB from [] such that

delOdds([],B) holds. In other words,solve_delOdds([],B) should be “equivalent” to

F [B]. The answer to the query is:B=[]. Using this answer, DIALOGS-II abduces the fol-

lowing evidence and shortcuts forsolve_delOdds anddelOdds (see Algorithm 5):

solve_delOdds([],A) ← A=[]

delOdds([],A) ← A=[] (s1)

Second Iteration for Abducing Evidence.The specifier must also know the result

when the induction parameter is a one-element list. The query generation process starts

by unifying the goaldelOdds([A],B) with the head of the recursive clause of the open

program yielding the goal:

← decompose_delOdds(A,C,D), delOdds(D,E),

compose_delOdds(C,E,B)

Resolvingdecompose_delOdds(A,C,D) and resolving the resulting equality atom

gives

← delOdds([],E), compose_delOdds(C,E,B)

33

Using the shortcuts1 and resolving the resulting equality atom yields:

← compose_delOdds(C,[],B)

Now the following query can be extracted from this goal since resolving this goal is

impossible. The specifier answers the query as follows (note that the comma “,” stands

for conjunction, and the semi-colon “;” stands for disjunction, where the comma has a

higher precedence than the semi-colon):

When does delOdds([A],B) hold? B=[], odd(A); B=[A], even(A).

Note that the predicatesodd andevenare introduced by the specifier, where the atoms

odd(X) andeven(X) are from now on assumed by the system to be true. Otherwise, re-

solving these atoms would be impossible and the resolution will be blocked because

there are no programs for the predicatesodd andeven. Instead of blocking when such

atoms are encountered, the system keeps these atoms to pass them to the queries (see

the third iteration for abducing evidence given below). Using this answer to the query,

DIALOGS-II abduces the following evidence and shortcuts (note the correspondence

between the answers in the answer disjunct and the bodies of the shortcut and evidence

clauses):

compose_delOdds(A,[],B) ← B=[], odd(A) (s2)

compose_delOdds(A,[],B) ← B=[A], even(A) (s3)

delOdds([A],B) ← B=[], odd(A) (s4)

delOdds([A],B) ← B=[A], even(A) (s5)

Now, upon backtracking, unifying the goaldelOdds([A],B) with the head of the

non-recursive clause of the open program yields the goal:

← solve_delOdds([A],B)

where resolving this goal is impossible. In this case, DIALOGS-II directly collects evi-

dence forsolve_delOdds using the shortcutss4 ands5 instead of generating a query

that would be identical to the one made for the abduction of evidence for

compose_delOdds(C,[],B). Thus, the evidence collected forsolve_delOdds is the

following:

solve_delOdds([A],B) ← B=[], odd(A)

solve_delOdds([A],B) ← B=[A], even(A)

34

Third Iteration for Abducing Evidence. Next, the specifier is queried for the result

when the induction parameter is a two-element list. Again, the specifiermust know the

answer. DIALOGS-II first creates the following clause by unifying the goal

delOdds([A,B],C) with the head of the recursive clause of the open program yielding

the goal:

← decompose_delOdds([A,B],HA,TA), delOdds(TA,TB),

compose_delOdds(HA,TB,C)

Resolvingdecompose_delOdds([A,B],HA,TA) and the resulting equality atom, and

using the shortcuts4 reduces this goal to:

← odd(B), compose_delOdds(A,[],C)

Note that the atomodd(B) is an atom of the specifier-introduced predicateodd, and

remember that during the SLD resolution of a goal, if such an atom is encountered, then

this atom is assumed to be true since it was introduced by the specifier, and kept since

it is passed to the next query. Thus, the goal becomes:

← compose_delOdds(A,[],C)

Usings2, this becomes:

← odd(A), C=[]

Again note thatodd(A) is assumed to be true since it is an atom of the specifier-intro-

duced predicate, and it is kept for the next query. So, now Assumptions becomes equal

to the set {odd(B), odd(A)}. Thus, the goal becomes:

← C=[]

which is finally resolved to:

← true

Since there is no atom of any open relation in that goal, no query can be generated from

it (thus, in that case the assumptions collected are not used).

Next, upon backtracking, by the use of the other shortcut, i.e.s5, the following goal

is obtained:

← even(B), compose_delOdds(A,[B],C)

where the atomeven(B) is assumed to be true and collected as an assumption to be

passed to the next query, again because it is an atom of a specifier-introduced predicate.

Thus, the goal becomes:

35

← compose_delOdds(A,[B],C)

where resolving this goal is impossible, so that the following query is generated (note

the usage of the assumptioneven(B) in the query):

When does delOdds([A,B],C) hold, assuming even(B)?

C =[B], odd(A); C=[A,B], even(A).

The following shortcuts and evidence are abduced from the answer:

compose_delOdds(A,[B],C) ← C=[B], odd(A)

compose_delOdds(A,[B],C) ← C=[A,B], even(A)

delOdds([A,B],C) ← C=[B], odd(A), even(B) (s6)

delOdds([A,B],C) ← C=[A,B], even(A), even(B) (s7)

Unifying the goaldelOdds([A,B],C) with the head of the non-recursive clause of the

open program would yield the goal

← solve_delOdds([A,B],C)

Since the system now knows whendelOdds([A,B],C) holds (see shortcutss6 ands7),

the specifier is not queried, and by using the shortcutss6 ands7, DIALOGS-II directly

abduces the evidence:

solve_delOdds([A,B],C) ← C=[B], odd(A), even(B)

solve_delOdds([A,B],C) ← C=[A,B], even(A), even(B)

If first the goaldelOdds([A,B],C) had been unified with the non-recursive clause

yielding the goal

← solve_delOdds([A,B],C)

where resolving this goal is impossible, then the specifier would have been queried as

follows:

When does delOdds([A,B],C) hold?

where s/he should have answered this query as:

C =[B], odd(A), even(B); C=[A,B], even(A), even(B); C=[], odd(A), odd(B);

C=[A], even(A), odd(B)

Note that the specifier would have to write a longer answer for this query than for the

one that was asked forcompose_delOdds. That is why the goal is unified first with

the recursive clause rather than the non-recursive one as explained earlier.

36

Stopping the Query Session.Next, the specifier is queried for the result when the in-

duction parameter is a three-element list. Suppose that the specifier is bored or believes

having said sufficiently many useful things aboutdelOdds and does not want to an-

swer any queries anymore. In that case, the specifier answers the query by the keyword

“stop-it”, so that the query session is ended:

When does delOdds([A,B,C],D) hold, assuming even(B),

even(C)? stop-it.

Stopping the querying is thus fully manual (specifier-dependent). Actually, there are

two other possibilities to stop querying: the first one is fully automatic, the second one

is semi-automatic.

In the first one, a heuristic is used to conjecture whether the system has to stop que-

rying or not. The heuristic is as follows: after abducing evidence forp andq after each

query, all the abduced evidence forp and q is processed (by the Program Closing

Method) and compared with the result of the same process done on the evidence col-

lected for the previous query. If the results of these two processes are the same, then it

is assumed that the potential next queries would also yield the same results, so it is con-

jectured that the system can stop querying and rely on the evidence that was collected

until that time. This method is fully-automatic, because the system makes its decision

without any interaction with the specifier. But, due to its being a heuristic, the system

can be defeated.

The second method is a combination of the other two methods. The system processes

all the evidence after each query, and if the last two successive results are the same, it

asks the specifier to conjecture whether to continue querying or not, since there is a

possibility that the abduced evidence is adequate for induction of a correct program. If

the specifier thinks that this much evidence is sufficient to induce a correct program,

then a program is induced from this evidence, otherwise s/he is further queried until

s/he decides that the abduced evidence is adequate.

We think that the DIALOGS-II method is the most appropriate one. Its method is better

than the fully-automatic one since it leaves the decision to the specifier, so that it is al-

ways possible to induce a correct program either by a first correct decision of the spec-

ifier on stopping querying, or by successive syntheses that would let the specifier

synthesize a correct program in the end, by making the specifier learn that s/he should

answer more queries each time the system is re-run. This method has a drawback be-

37

cause of its being a heuristic. It fails when a correct program can only be induced after

some other queries. That is, abduction of some more new evidence could cause a

change in the result of each process done after each query. In that case, the program

induced could be incomplete/incorrect. The second method is mostly for expert speci-

fiers since the decision whether the abduced evidence is adequate or not is not an easy

decision for a naive specifier, where a specifier who has the knowledge and capability

to make such a decision is considered an expert specifier, whereas a specifier who is

not capable of making such a decision is considered a naive one. However, the naive

specifier could decide to stop querying the first time the system asks to make a deci-

sion. In that case, this method boils down to a combination of the other two methods.

Now, let us see how the abduced evidence forsolve_delOdds and

compose_delOdds will be processed in order to find programs for these relations.

2.4 Induction of Clauses: The Program Closing

Method

The Program Closing Method discussed in this section is based on the Program Clos-

ing Method discussed in [10]. There, the open program has only one relation that will

be closed using evidence for that relation. According to our Program Closing Method,

there are two open relations of the open program, i.e.p andq. Let us see now how it

works.

The evidence abduced for the open relationsp andq during the execution of the third

statement of Algorithm 2 is divided into subsets such that the lgθ of each subset yields

a clause for eitherp or q. In order to understand how this division into subsets and tak-

ing the lgθ of each subset is done, we have to first analyze the dataflow of the programs

that havep andq as open relations. In other words, we have to look inside the open

relationsp andq.

Here, we analyze the data-flow of divide-and-conquer programs, which havesolve_r

andcompose_r as open relations (see the divide-and-conquer schema on page 23).

Using general knowledge of the divide-and-conquer design methodology, it is possi-

ble to conjecture that, in general, the construction mode (see Section 1.1.6) of

compose_r(HX,TY,Y,Z) is

38

compose_r(may, must, res,may),

where the firstmay denotesmay,…,may with h occurrences ofmay, the secondmay

denotesmay,…,may with zoccurrences ofmay,andmust denotesmust,…,must with t

occurrences ofmust (remember thath is the number of headsHXi, thatz is the number

of passive parameters, and thatt is the number of tailsTYi).

Indeed, theTYi being obtained through recursion, they must all somehow be used to

constructY, because some of the recursive calls would otherwise have been useless.

TheHXi need not always be used to constructY, as it depends on the particular pro-

gram. So there is no fixed mode for the head(s) of the induction parameter, and their

most general mode thus ismay. The passive parameter(s)Z also need not always be

used to constructY. So there also is no fixed mode for the passive parameter(s), and

their most general mode thus also ismay.

Similarly, one can argue that the mode ofsolve_r(X,Y,Z) is solve_r(may,res,may),

wheremay denotesmay,…,may with zoccurrences ofmay. The inductive parameterX

and the passive parameter(s)Z need not always be used to construct the result param-

eterY. So there are no fixed modes forX andZ, and their most general mode thus is

may.

The evidence abduced for the open relationsp andq needs to be processed according

to the Program Closing Method so that admissible clauses (see Section 1.1.6) for the

open relationsp andq are obtained. We give an algorithm below for the realization of

this process (note thatsolve_r plays the role ofp, andcompose_r plays the role ofq):

Algorithm 8: induce(pEvidence,qEvidence,pMode,qMode,

pClauses,qClauses)

Inputs: pEvidence, qEvidence, pMode, qMode

Outputs: pClauses, qClauses

divide the (evidence) clause set for q, i.e. qEvidence, into a minimal number of

subsets (called cliques) of which any two elements have an admissible lgθ, i.e.

qCliques (see [10] for an efficient algorithm for this NP-complete problem)

qCliques := division(qEvidence,qMode)

analyze every such clique: if the lgθ of the counterpart subset of the clauses for

p is also admissible, then delete the clique from the clauses for q; otherwise

delete that counterpart subset from the clauses for p, and thus obtain

NewqCliques and NewpEvidence.

39

〈NewqCliques, NewpEvidence〉 := prune(qCliques,pMode,pEvidence)

take the lgθs of the remaining cliques, i.e. NewqCliques, as clauses of q, i.e.

qClauses

qClauses := {lgθ(c)|c∈NewqCliques}

divide the remaining clause set for p, i.e. NewpEvidence, into a minimal number

of cliques such that any two elements in each clique have an admissible lgθ, i.e.

pCliques

pCliques := division(NewpEvidence,pMode)

build admissible clauses, i.e. pClauses, of the p from their lgθs, i.e. pCliques

pClauses := {lgθ(c)|c∈pCliques}

Let us now turn back to the synthesis of a program fordelOdds and see how the “clos-

ing” of open relationssolve_delOdds andcompose_delOdds is done according to

Algorithm 8. The evidence collected for the open relationssolve_delOdds and

compose_delOdds is (see previous sub-section):

solve_delOdds([A,B],[A,B]) ← even(A), even(B) (1) compose_delOdds(A,[B],[A,B]) ← even(A)

solve_delOdds([A,B],[B]) ← odd(A), even(B) (2) compose_delOdds(A,[B],[B]) ← odd(A)

solve_delOdds([A],[A]) ← even(A) (3) compose_delOdds(A,[],[A]) ← even(A)

solve_delOdds([A],[]) ← odd(A) (4) compose_delOdds(A,[],[]) ← odd(A)

solve_delOdds([],[]) ← (5) (no counterpart)

Following the statements of Algorithm 8, DIALOGS-II first divides the

compose_delOdds evidence into the following cliques:

compose_delOdds(A,B,[A|B]) ← even(A) (1,3)

compose_delOdds(A,B,B) ← odd(A) (2,4)

where the first clique is constructed by taking the lgθ of (1) and (3), and the second one

by taking the lgθ of (2) and (4) of thecompose_delOdds evidence. Next, it analyzes

the counterpart sets forsolve_delOdds. That is, it takes the lgθ of (1) and (3), as well

as the lgθ of (2) and (4) of the solve_delOdds evidence, and thus obtains:

solve_delOdds([A|B],[A|B]) ← even(A), even(C) (1,3)

solve_delOdds([A|B],B) ← odd(A), T (2,4)

None of these two clauses is admissible since the first one contains a literal, i.e.

even(C), in its body, which has an unlinked variable, i.e.C. And, the second one is

not admissible because the body containsT (see Section 1.1.6). Thus, the counterpart

sets of solve_delOdds, i.e. {(1), (3)} and {(2), (4)} are eliminated from the

40

solve_delOdds evidence set and the cliques ofcompose_delOdds are kept. The

lgθs of these two cliques become thus clauses ofcompose_delOdds, namely the

clauses that will be in the final program. The remaining set forsolve_delOdds is

solve_delOdds([],[]) ←

and since this set is a clique and is admissible, its lgθ (i.e. itself) becomes a clause for

solve_delOdds.

Now, the open relationssolve_delOdds andcompose_delOdds are “closed”, that

is they have an interpretation, and the open program constructed from the initial sche-

ma is also “closed” since it has no open relations. The final step in the synthesis is add-

ing the clauses of the open relations to the open program to close the open program. In

that way, the final program becomes:

delOdds(A,B) ← solve_delOdds(A,B)

delOdds(A,B) ← decompose_delOdds(A,C,D), delOdds(D,E),

compose_delOdds(C,E,B)

decompose_delOdds(F,G,H) ← F=[G|H]

solve_delOdds([],[]) ←

compose_delOdds(A,B,[A|B]) ← even(A)

compose_delOdds(A,B,B) ← odd(A)

This program is correct with respect to its specification. Post-synthesis transformations

that optimize the final programs are not our concern in this thesis. See [6] if you want

to know more about them.

2.5 Evaluation of the Program Closing Method

Finding a program for the open relation of the recursive clause of an open program, i.e.

the relationq, via the Program Clausing Method assumes that there is a finite non-re-

cursive program for that relation. However such is not always the case. That is, there

might be a recursive one instead. In other words, the system might have to do a neces-

sary predicate invention.

41

2.5.1 Necessary Predicate Invention

How can the system possibly decide that the result of the Program Closing Method is

wrong, that is that the finite non-recursive program that was induced for the relationq

via the Program Closing Method is incomplete, and that it has to invent a predicate

with a recursive program after rejecting the result of the Program Closing Method?

These questions imply that some heuristic needs to be used for detecting and handling

necessary predicate invention [12] [25].

Since the Program Clausing Method has been devised to always succeed (indeed, in

the worst case, it divides a clause set into cliques of one element each), a heuristic is

needed for rejecting the results of the Program Clausing Method and conjecturing ne-

cessity of the predicate invention. For the time being, we do not have an acceptable

heuristic that frequently correctly conjectures necessary predicate invention, whenever

there is a need to synthesize a recursive program. Therefore, in DIALOGS-II, the deci-

sion of predicate invention is specifier-dependent. That is, the specifier is asked wheth-

er the system should reject the result of the Program Closing Method and synthesize a

recursive program (do a necessary predicate invention), or whether it should use the

result of the Program Closing Method. If the result of the Program Clausing Method is

rejected by the specifier, then DIALOGS-II re-invokes itself under the assumption that a

recursive logic program exists for the open relation.

In general, DIALOGS-II is called with astart program: this is the empty set in the case

of a new synthesis (for thetop-level predicate), or a set of clauses for a (unique)

top-level predicate and its (directly or indirectly) used predicates, in case DIALOGS-II

is used (possibly by itself) for a necessary invention of a predicate that is (directly or

indirectly) used by the top-level predicate. In case there is a predicate invention, the

new program synthesized for the new predicate is added to the start program, otherwise

the clauses induced by the Program Closing Method are added to the start program,

yielding the final program.

We saw how query generation and answering take place when there is no predicate

invention and how the result of the Program Closing Method is used for “closing” the

open relations during the synthesis of a program fordelOdds. Now let us see how this

is done in case of necessary predicate invention: when a necessity of predicate inven-

tion is conjectured, query generation during the synthesis of the new predicate is al-

ways done for the top-level predicate, but resolution will eventually be blocked by an

42

open relation of the current predicate and thus the system will extract a question for it

in terms of the top-level one. This is because the user does not always (see the next

sub-section for an exceptional case) need to know the predicate being invented, but

s/he has to know the top-level predicate since otherwise s/he would not even have the

need for a program for the top-level predicate. Thus, DIALOGS-II generates queries for

the new predicate in terms of the top level predicate, but resolution is eventually

blocked by an open atom of the program of the new predicate, i.e. current predicate,

and extract a question for it in terms of the top-level one.

Now, we introduce two new concepts: the concept of giving hints and the concept of

calling DIALOGS-II in a certain mode:aloudor mute. Let us first discuss the concept of

giving hints: hints about the roles of the parameters of a certain parameter declaration

can be given to the system. In a recursive call of DIALOGS-II itself, it is possible to hint

about the parameter roles of the new predicate (how this is done will be explained lat-

er). So, we can say that DIALOGS-II can be called with hints about the roles of the pa-

rameters (if there are any hints), where the initial call of DIALOGS-II for the top-level

predicate is done with an empty hint list. DIALOGS-II has preference of hints over de-

faults. In other words, if there are any hints, then the system uses these hints instead of

using the defaults.

Now let us introduce the concept of calling the system inmute or aloudmode: DIA-

LOGS-II is said to be inaloud mode when it asks the specifier for a predicate declara-

tion, a schema, a strategy, parameter roles and a decomposition operator, and gets the

answer from the specifier whereas it is said to be inmute mode when the specifier is

queried for nothing, where the system itself answers the questions by itself. By default,

the system is inaloud mode when it starts synthesis, but it is called inmute mode when

there is necessary predicate invention. Now, we give an algorithm that realizes all the

observations and discussions explained so far. What this algorithm basically does is

that itevaluates the result of the Program Closing Method based on the specifier’s eval-

uation of the Program Closing Method and calls DIALOGS-II recursively, inmute mode,

to synthesize a recursive program for the predicateq if predicate invention is neces-

sary, otherwise it uses the result of the Program Closing Method to produce a non-re-

cursive program for the relationq:

43

Algorithm 9: evaluate(Schema,Strategy,CurrOpenPgm,

pClauses,qClauses,PredDecl,ParamRoles,Pgm)

Inputs: Schema, Strategy, CurrOpenPgm, pClauses, qClauses,

PredDecl, ParamRoles

Outputs: Pgm

display the result of the Program Closing Method

display(pClauses,qClauses)

ask the specifier if predicate invention is necessary

Answer := ask(‘Please evaluate the Program Closing Method: need for

recursive synthesis? [yes/no]’)

 if Answer=yes then

determine the predicate declaration for the new predicate for which a

recursive program is being synthesized using ParamRoles of TopPred,

where TopPred is the name of the predicate given in PredDecl

NewPredDecl := predDecL(ParamRoles)

TopPred := predName(PredDecl)

add the clauses for the relation p, i.e. SelectedpClauses, which are from

pClauses and have no counterparts among the clauses of qClauses, to

CurrOpenPgm to obtain NewOpenPgm

SelectedpClauses := select(pClauses,qClauses)

NewOpenPgm := CurrOpenPgm ∪ SelectedpClauses

construct hints about the roles of the parameters

Hints := constructHints(NewPredDecl)

setMode(mute)

call DIALOGS-II recursively with the new predicate declaration and hints to

induce a program for the new predicate

dialogsII(Schema,Strategy,NewPredDecl,NewOpenPgm,Hints,

TopPred,Pgm)

 else

add the clauses pClauses and qClauses to CurrOpenPgm to obtain Pgm

Pgm := CurrOpenPgm ∪ pClauses ∪ qClauses

Note that in Algorithm 9, DIALOGS-II is now called withNewPredDecl andHints

about the parameter roles, where the final program for the new predicate will be added

44

to NewOpenPgm, which is an open program (whose relationq is still open) forTop-

Pred.

Synthesis of a Program forreverse(L,R). Now we will illustrate how Algorithm 9

works by means of the synthesis of a program forreverse(L,R), wherereverse(L,R)

holds iff list R is the reverse of listL. Since we already discussed the first two state-

ments of the basic synthesis algorithm, i.e. Algorithm 1, and first two statements of

Algorithm 2, in terms of the synthesis of a program fordelOdds, we will skip these

statements in the illustration of the synthesis of a program forreverse(L,R), where we

will only give the results of these statements.

By the execution of the first statement (execution of the strategy) of Algorithm 2, the

following open program forreverse(L,R) has been generated:

reverse(A,B) ← solve_reverse(A,B)

reverse(A,B) ← decompose_reverse(A,C,D), reverse(D,E),

compose_reverse(C,E,B)

decompose_reverse(F,G,H) ← F=[G|H]

whereA is the induction parameter andB is the result parameter.

Remember that by executing the second statement of Algorithm 2, the evidence for

the open relations, i.e.p andq, is abduced. So, at the end of the second statement, the

evidence forsolve_reverse andcompose_reverse is as given below in the form of

counterparts:

solve_reverse([A],[A]) ← (1) compose_reverse(A,[],[A]) ←

solve_reverse([A,B],[B,A]) ← (2) compose_reverse(A,[B],[B,A]) ←

solve_reverse([A,B,C],[C,B,A]) ← (3) compose_reverse(A,[B,C],[B,C,A]) ←

solve_reverse([A,B,C,D],[D,C,B,A]) ← (4) compose_reverse(A,[B,C,D],[B,C,D,A]) ←

solve_reverse([],[]) ← (5) (no counterpart)

where the Program Closing Method results in the following clauses for the open rela-

tion solve_reverse (note that there is nocompose_reverse clause):

solve_reverse(A,A) ←

solve_reverse([A,B],[B,A]) ←

solve_reverse([A,B,C],[C,B,A]) ←

Now, it is time to query the specifier about the result of the Program Closing Method

to conjecture whether predicate invention is necessary or not.

45

Please evaluate the Program Closing Method: need for

recursive synthesis? [yes/no] yes

The specifier here answers the query byyesbelieving that there exists a recursive pro-

gram for the predicate of the recursive clause of the open program, i.e.

compose_reverse, rejecting the result of the Program Closing Method. Since the

system now knows that it should synthesize a recursive program for the

compose_reverse predicate, it needs to call itself recursively. But, before doing this

it should first elaborate a predicate declaration for the predicate, and construct hints

about the parameter roles, and compute the new start program for the new synthesis by

adding the clauses for the relationsolve_reverse that have no counterparts among the

clauses ofcompose_reverse.

Determination of a Predicate Declaration for the New Predicate.Now, let us go

through the steps of determination of a predicate declaration for the new predicate one

by one to see how they are realized. First, we discuss how the new predicate declaration

is elaborated. A predicate declaration has two components: the name of the predicate

and the list of parameters together with their types. The name of the new predicate is

already known, which iscompose_reverse. The list of parameters together with their

types is elaborated as follows: it is known that the new predicate has three parameters.

The type of the first parameter is found to beint, since in the open program given above

the first parameter ofcompose_reverse, i.e.C, is the head (namely, an element) of

the listA, where the type of the parameterA is list(int). The type of the second param-

eter is found to belist(int), since in the open program the second parameter of

compose_reverse, i.e. E, is the result parameter of the recursive call, i.e.re-

verse(D,E), where the result parameter of thereverse predicate is of typelist(int). Fi-

nally, the third parameter is found to be of typelist(int), since it also is the result

parameter of the open program, where its type is list(int). Thus, using the information

about the name of the new predicate and the parameters together with their types, the

predicate declaration for the new predicate is constructed as shown below:

compose_reverse(HL:int,TR:list(int),R:list(int))

Now, the system has a predicate declaration of the new predicate for which it will call

itself to induce a program.

46

Construction of Hints. Next, it has to construct hints about the parameter roles, i.e.

which parameter is the induction parameter, which one is (are) the result parameter(s)

(if any), and which one is (are) the passive parameter(s) (if any), in order to call itself

in mute mode with these hints (remember that DIALOGS-II has a preference of hints

over defaults inmute mode). It is reasonable thatR (see the predicate declaration

above) is hinted as the result parameter since the corresponding parameterB in the

open program (see the open program on page 44) is the result parameter of the pro-

gram, and it is also reasonable to hintTR as the induction parameter since it is of an

inductively defined type, and finally to hint the remaining parameterHL as the passive

parameter. In general, the result parameter of the open relationq in the open program

can be hinted as a result parameter for the new predicate, a parameter which is the re-

sult parameter of the recursive call in the open program can be hinted as an induction

parameter if it is of an inductively defined type, and the remaining parameters as the

passive parameters. Here we described the determination of hints about the parameter

roles for a divide-and-conquer schema, since we are illustrating the synthesis of a pro-

gram that fits a divide-and-conquer schema. The construction of hints would be differ-

ent if the schema were another one, e.g. descending-generalization, since the parameter

roles of the schema would be different.

Construction of a Start Program for the New Synthesis.What DIALOGS-II does

after elaboration of the new predicate declaration and construction of hints is that it

constructs a start program for the new synthesis by using the evidence clauses abduced

during execution of the second statement of Algorithm 2. How this is done is as fol-

lows: the system adds the abduced clauses for the relationp that have no counterparts

among the abduced clauses for the relationq to the open program to obtain the start

program for the new synthesis. The clause

solve_reverse([],[]) ←

has no counterparts among the abduced clauses for the relationcompose_reverse

(see page 45). Thus the start program for the new synthesis is:

reverse(A,B) ← solve_reverse(A,B)

reverse(A,B) ← decompose_reverse(A,C,D), reverse(D,E),

compose_reverse(C,E,B)

47

decompose_reverse(F,G,H) ← F=[G|H]

solve_reverse([],[]) ←

Now, it is time for the system to re-invoke itself on this start program using the new

predicate declaration and the hints.

Calling DIALOGS -II Recursively. Before calling the system recursively, the synthe-

sis mode is converted intomute mode. DIALOGS-II first determines the roles of the pa-

rameters that are given inside the predicate declaration using the hints and the

decomposition operator using the defaults. Next, an open program is generated for the

new predicate, and this open program is added to the start program to obtain the new

open program that will be used for the abduction of the new evidence for the open re-

lations of the open program of the new predicate. The second and third statements (ab-

duction of evidence and induction of clauses) of Algorithm 2 are then executed using

this new open program to “close” the open relations of the open program of the new

predicate. Let us now see how all this is done during the synthesis of a program for the

reverse(L,R) predicate.

DIALOGS-II first determines the roles of the parameters of the predicate declaration:

compose_reverse(HL:int,TR:list(int),R:list(int))

using the hints determined previously. That is, the induction parameter isTR, the result

parameter isR, and the passive parameter isHL (note that DIALOGS-II does not query

the user for that since it uses the hints).

Induction parameter? {TR} TR

Result parameter? {R} R

Passive parameter(s)? {[HL]} [HL]

Next, it determinesdecompose_compose_reverse by using the default one.

Decomposition operator?

{decompose_compose_reverse(L,H,T) ← L =[H|T]}

decompose_compose_reverse(L,H,T) ← L=[H|T]

Next, it generates the following open program using

decompose_compose_reverse:

reverse(A,B) ← solve_reverse(A,B)

reverse(A,B) ← decompose_reverse(A,C,D), reverse(D,E),

48

compose_reverse(C,E,B)

decompose_reverse(F,G,H) ← F=[G|H]

solve_reverse([],[]) ←

compose_reverse(G,M,N) ← solve_compose_reverse(G,M,N)

compose_reverse(G,H,I) ← decompose_compose_reverse(H,J,K),

compose_reverse(G,K,L), compose_compose_reverse(J,L,I,G)

decompose_compose_reverse(F,G,H) ← F=[G|H]

Now, it is time to abduce evidence for the open relations, i.e.

compose_compose_reverse andsolve_compose_reverse, where during the ab-

duction of the evidence for these relations, the system does not query the specifier, but

uses the shortcuts for the top-level predicatereverse, except in the case where there is

no shortcut left after using the available shortcuts:

reverse([],[]) ← (s1)

reverse([A],[A]) ← (s2)

reverse([A,B],[B,A]) ← (s3)

reverse([A,B,C],[C,B,A]) ← (s4)

reverse([A,B,C,D],[D,C,B,A]) ← (s5)

After that point, the SLD resolution of a goal for the top-level predicate is blocked by

an open atom, and the system extracts a query for this open atom, where the answer to

that query is found using the shortcuts of the top-level predicate. Let us now go through

the steps of “closing” the open relations of the open program given above.

The most general form of the goal when the size of the induction parameter, i.e.A, is

0 is the following:← reverse([],X). This goal is first tried to be resolved with the re-

cursive clause of thereverse predicate, where this attempt fails since resolving

decompose_reverse when the induction parameterA is the empty list, i.e.[], is im-

possible. The system next resolves the goal with the non-recursive clause of the open

program. As a result of this resolution, the goal

← true

is reached because the predicatesolve_reverse is already closed (there are clauses for

thesolve_reverse predicate), and thus there is no need to abduce evidence for it.

49

Next, the goal← reverse([X],Y), where the induction parameter is a one-element

list, is resolved with the clauses of thereverse predicate, first with the recursive clause

yielding the goal:

← decompose_reverse([X],C,D), reverse(D,E),

compose_reverse(C,E,Y)

Resolvingdecompose_reverse([X],C,D) and the resulting equality atom, and using

the shortcuts1 gives:

← compose_reverse(X,[],Y)

Since there is no shortcut forcompose_reverse(X,[],Y) (shortcuts obtained before

starting the new synthesis are not kept, to prevent them from being accidentally used

by the new synthesis as shortcuts, see Algorithm 5), the goal←

compose_reverse(X,[],Y) is resolved with the non-recursive clause of

compose_reverse (note that the recursive clause cannot be resolved since the induc-

tion parameter, i.e.[], cannot be decomposed) yielding the goal:

← solve_compose_reverse(X,[],Y)

There is neither a shortcut nor a program for the predicatesolve_compose_reverse,

so resolving this goal is impossible. Therefore, it is time to make a query out of this

goal. Since there is a shortcut, i.e.s2, the system uses the shortcuts2 to abduce the

following evidence and shortcuts for solve_compose_reverse and

compose_reverse without any need for a query:

solve_compose_reverse(X,[],[X]) ←

compose_reverse(X,[],[X]) ← (s6)

The system resolves the goal← reverse([X],Y) with the non-recursive clause of the

reverse predicate. As a result of this resolution, the goal

← true

is reached because the predicatesolve_reverse is already closed (there are clauses for

thesolve_reverse predicate), and thus there is no need to abduce evidence for it.

Next, the goal← reverse([X,Y],W) is resolved with the recursive clause of there-

verse predicate, yielding the goal:

← decompose_reverse([X,Y],C,D), reverse(D,E),

compose_reverse(C,E,W)

50

Resolvingdecompose_reverse([X,Y],C,D) and the resulting equality atom, and

using the shortcut(s2), the goal becomes

← compose_reverse(X,[Y],W)

Since there is no shortcut forcompose_reverse(X,[Y],W), it is resolved with the re-

cursive clause of thecompose_reverse predicate yielding the goal

← decompose_compose_reverse([Y],J,K), compose_reverse(X,K,L),

compose_compose_reverse(J,L,W,X)

Resolvingdecompose_compose_reverse([Y],J,K) and the resulting equality atom,

and using(s6) gives

← compose_compose_reverse(Y,L,W,X)

Resolving this goal is impossible since there is neither a shortcut nor a clause for

compose_compose_reverse. So, the following evidence and shortcuts are abduced

using the shortcuts3:

compose_compose_reverse(Y,[X],[Y,X],X) ←

compose_reverse(X,[Y],[Y,X) ← (s7)

Upon backtracking, the goal

← compose_reverse(X,[Y],W)

is resolved with the non-recursive clause of thecompose_reverse yielding the goal:

← solve_compose_reverse(X,[Y],W)

Using the shortcuts7 the following evidence is abduced:

solve_compose_reverse(X,[Y],[Y,X]) ←

Next, this resolution process is also done for the most general values of the induction

parameterA of the reverse predicate (see the open program forreverse) when the

size of the induction parameter is three and then four, i.e.reverse([X,Y,W],V), andre-

verse([X,Y,W,V],Z). And, as a result of this process the following evidence and short-

cuts are abduced:

solve_compose_reverse(X,[W,Y],[W,Y,X]) ← (2)

solve_compose_reverse(X,[V,W,Y],[V,W,Y,X]) ← (1)

compose_compose_reverse(X,[W,Y],[X,W,Y],Y) ← (2)

compose_compose_reverse(X,[W,Y,V],[X,W,Y,V],V) ← (1)

51

compose_reverse(X,[W,Y],[W,Y,X]) ←

compose_reverse(X,[V,W,Y],[V,W,Y,X]) ←

The evidence given above for solve_compose_reverse and

compose_compose_reverse together with the following evidence

solve_compose_reverse(X,[],[X]) ← (no counterpart)

solve_compose_reverse(X,[Y],[Y,X]) ← (3)

compose_compose_reverse(Y,[X],[Y,X],X) ← (3)

compose_reverse(X,[],Y) ←

compose_reverse(X,[Y],[Y,X]) ←

abduced previously is input to the Program Closing Method in order to find programs

for these open relations. Following Algorithm 8, DIALOGS-II first divides the

compose_compose_reverse evidence into a clique and computes its lgθ:

compose_compose_reverse(L,[M|N],[L,M|N],P) ← (1,2,3)

where the clique is constructed by taking the lgθ of (1), (2) and (3) of

compose_compose_reverse evidence (see Algorithm 8). Next, it analyzes the

counterpart set forsolve_compose_reverse. That is, it takes the lgθ of (1), (2), and

(3) of the solve_compose_reverse evidence, and thus obtains:

solve_compose_reverse(A,[B|C],[B,D|E]) ← (1,2,3)

Since this clause is not admissible (see Section 1.1.6), it is not kept. The remaining

clause

solve_compose_reverse(X,[],[X]) ←

that has no counterpart is kept in the final program. Thus, as a result of the Program

Closing Method the following two clauses are induced

solve_compose_reverse(K,[],[K]) ←

compose_compose_reverse(L,[M|N],[L,M|N],P) ←

Adding these clauses to the open program gives the following program for thereverse

predicate, which is correct with respect to its specification:

reverse(A,B) ← solve_reverse(A,B)

reverse(A,B) ← decompose_reverse(A,C,D), reverse(D,E),

compose_reverse(C,E,B)

decompose_reverse(F,G,H) ← F=[G|H]

52

solve_reverse([],[]) ←

compose_reverse(P,V,W) ← solve_compose_reverse(P,V,W)

compose_reverse(P,Q,R) ← decompose_compose_reverse(Q,S,T),

compose_reverse(P,T,U), compose_compose_reverse(S,U,R,P)

decompose_compose_reverse(F,G,H) ← F=[G|H]

solve_compose_reverse(K,[],[K]) ←

compose_compose_reverse(L,[M|N],[L,M|N],P) ←

2.5.2 Handling the Sparseness Problem

DIALOGS-II faces thesparseness problem [19] when not every value of the induction

parameter of the new predicate, i.e. q, is “reachable” by the values of the induction pa-

rameter of the top-level predicate. That is, queries about the new predicate cannot al-

ways be asked in terms of the top-level one. To show how we solve this problem, we

will examine the synthesis of a program for thefactorial predicate, wherefactori-

al(N,F) holds iff natural numberF is the factorial of natural numberN. What happens

during the synthesis of afactorial program, in short, is that the synthesis requires the

invention of themultiplication predicate, wheremultiplication(A,B,C) holds iff natu-

ral numberC is the product of natural numbersA andB, but actually only uses a sparse

subset of themultiplication relation. That is, it uses the following subset of themulti-

plication relation.

multiplication(s(0),s(0),s(0))

multiplication(s(0),s2(0),s2(0))

multiplication(s2(0),s3(0),s6(0))

multiplication(s6(0),s4(0),s24(0))

…

So, the evidence abduced for the open relations of the open program of themultiplica-

tion relation is a sparse set of evidence from which it is not possible to induce a correct

and completemultiplication program, nor in turn a correct and completefactorial pro-

gram with respect to its specification. Here, we introduce a new solution to the sparse-

ness problem. Before explaining this new approach, let us first give a new conjecture.

The “Yılmaz Conjecture”. We conjecture that if there is a relation such that during

the synthesis of a program for that relation the sparseness problem occurs, then the

53

specifier should be able to answer the queries related to the relations that are intrinsic

to the relation being induced (this is the exception that was mentioned in Section 2.5).

For instance, during the synthesis of a program forfactorial, if the specifier is able

to answer the query

When does factorial(s3(0),L) hold?

then s/he should also be able to answer the following query aboutmultiplication, after

having seen some evidence of themultiplication relation that was abduced and is dif-

ferent from the one given below:

When does multiplication(s2(0),s3(0),M) hold?

since, what s/he is actually doing while finding an answer to the query of thefactorial

relation is that s/he is using themultiplication relation, because otherwise s/he would

not be able to answer the query about thefactorial relation. In other words,multipli-

cation is “intrinsic” to factorial.

In our approach to handling the sparseness problem, we use the idea given by the

conjecture above. Before explaining how we use this idea, let us first investigate how

the system conjectures that there is a sparseness problem. In DIALOGS-II, this detection

is done by means of a heuristic. How this heuristic works is as follows: if the abduced

evidence for the open relations in the open program for the new predicate (the evidence

for the solve_compose_q and compose_compose_q) is unbalanced, that is, if

there are at least three moresolve_compose_q clauses thancompose_compose_q

clauses, then the system conjectures that there is a sparseness problem. The number

three has been determined empirically (e.g. based on the results obtained during the

synthesis of a program for thefactorial predicate). When the system conjectures that

there is a sparseness problem, the evidence abduced forsolve_compose_q and

compose_compose_q is discarded, and a new synthesis, inaloud mode, is started

for theq predicate, after letting the specifier know that there will be a new synthesis

for the new predicate, and s/he would need to answer the queries of that new synthesis.

Let us now refine the algorithmevaluate(Algorithm 9) such that it conjectures the

sparseness problem:

54

Algorithm 10: evaluate(Schema,Strategy,CurrOpenPgm,

pClauses,qClauses,PredDecl,ParamRoles,Pgm)

Inputs: CurrOpenPgm, pClauses,qClauses,TopPred,ParamRoles

Outputs: Pgm

display the result of the Program Closing Method

display(pClauses,qClauses)

ask the specifier if predicate invention is necessary

Answer := ask(‘Please evaluate the Program Closing Method: need for

recursive synthesis? [yes/no]’)

 if Answer = yes then

determine the predicate declaration for the new predicate for which a

recursive program is being synthesized using ParamRoles of TopPred,

where TopPred is the name of the predicate given in PredDecl

NewPredDecl := predDecL(ParamRoles)

TopPred := predName(PredDecl)

add the clauses for the relation p, i.e. SelectedpClauses, which are from

pClauses and have no counterparts among the clauses of qClauses, to

CurrOpenPgm to obtain NewOpenPgm

SelectedpClauses := select(pClauses,qClauses)

NewOpenPgm := CurrOpenPgm ∪ SelectedpClauses

check if there is sparseness problem by calling DIALOGS-II recursively with

the new predicate declaration in mute mode using the heuristic

qAndpEvidence := collectAssertedEvidence(q,p)

SynthesisMode := getMode()

setMode(mute)

dialogsII(Schema,Strategy,NewPredDecl,NewOpenPgm,[],

TopPred, Pgm)

setMode(SynthesisMode)

Sparseness := sparsenessHeuristic(qAndpEvidence)

if Sparseness = no then

Hints := constructHints(NewPredDecl)

setMode(mute)

call DIALOGS-II recursively with the new predicate declaration and

55

hints to induce a program for the new predicate such that final Pgm is

obtained

dialogsII(Schema,Strategy,NewPredDecl,NewOpenPgm,Hints,

TopPred,Pgm)

else

let the specifier know that a new synthesis for new predicate is being

started and display the abduced clauses for the new predicate

NewPred := predName(NewPredDecl)

Clauses := collectAssertedEvidence(NewPred)

display(Clauses)

setMode(aloud)

Hints := constructHints(NewPredDecl)

call DIALOGS-II recursively with the new predicate declaration and an

empty hint list to induce a program for the new predicate in aloud mode

dialogsII(Schema,Strategy,NewPredDecl,NewOpenPgm,Hints,

NewPred,Pgm)

else

add the clauses pClauses and qClauses to the CurrOpenPgm to obtain

Pgm

Pgm := CurrOpenPgm ∪ pClauses ∪ qClauses

Note that if there is a sparseness problem, then the system will call DIALOGS-II recur-

sively to induce a new program for the new predicate.

Now, let us examine the synthesis of a program for thefactorial predicate. Suppose

that the following open program for thefactorial predicate is generated at the end of

the execution of the first statement of Algorithm 2:

factorial(A,B) ← solve_factorial(A,B)

factorial(A,B) ← decompose_factorial(A,C,D), factorial(C,E),

compose_factorial(D,E,B)

decompose_factorial(F,G,H) ← F=s(G), H=F

And, also suppose that the Program Closing Method yields the following clauses for

solve_factorial (note that no clause forcompose_factorial has been induced):

56

solve_factorial(s3(0),s6(0)) ←

solve_factorial(s(A),s(A)) ←

solve_factorial(0,s(0)) ←

Now, suppose that the specifier is asked to evaluate the result of the Program Closing

Method, and s/he rejects it (s/he thinks that predicate invention is necessary), and thus

the open program given above becomes (see Algorithm 10):

factorial(A,B) ← solve_factorial(A,B)

factorial(A,B) ← decompose_factorial(A,C,D), factorial(C,E),

compose_factorial(D,E,B)

decompose_factorial(F,G,H) ← F=s(G), H=F

solve_factorial(0,s(0)) ←

Next, the predicate declaration forcompose_factorial is determined, as it was done

for thecompose_reverse predicate, which is:

compose_factorial(A:nat,B:nat,C:nat)

Now, it is time for the system to detect if there is a sparseness problem. The sparseness

problem is detected by calling DIALOGS-II in mute mode using the new predicate dec-

laration (the shortcuts abduced for thefactorial predicate previously are used for this

new synthesis). Thus, the system abduces the following evidence for

solve_compose_factorial (note that no clause forcompose_compose_factorial is

induced) at the end of the Program Closing Method of this new synthesis:

solve_compose_factorial(s(0),s(0),s(0)) ←

solve_compose_factorial(s2(0),s(0),s2(0)) ←

solve_compose_factorial(s3(0),s2(0),s6(0)) ←

The system now uses the heuristic to see if there is any sparseness problem: the number

of clauses forsolve_compose_factorial is three (at least three) more than the number

of clauses forcompose_compose_factorial. So, a correct program for the relations

solve_compose_factorial and compose_compose_factorial, and thus for

compose_factorial in turn, cannot be induced from this evidence, and therefore the

evidence is eliminated. Thus, a new synthesis for a program forcompose_factorial is

started inaloud mode by letting the specifier know about this:

You must know the relation compose_factorial since it

is intrinsic to the factorial relation. The clauses of

57

this relation obtained during the synthesis are given

below. The system is starting a new synthesis for that

relation, so please answer the queries about it:

compose_factorial(s(0),s(0),s(0)) ←

compose_factorial(s2(0),s(0),s2(0)) ←

compose_factorial(s3(0),s2(0),s6(0)) ←

Note that the relationcompose_factorial is actually themultiplication relation. And,

with the new predicate declaration, the system is called recursively with an empty hint

list yielding the resulting open program forcompose_factorial at the end of the exe-

cution of these statements:

compose_factorial(T,U,V) ← solve_compose_factorial(T,U,V)

compose_factorial(T,U,V) ← decompose_compose_factorial(T,W,X),

compose_factorial(W,U,Y), compose_compose_factorial(X,Y,V,U)

decompose_compose_factorial(F,G,H) ← F=s(G), H=F

Next, the query session for the synthesis of programs forsolve_compose_factorial

andcompose_compose_factorial takes place to abduce evidence for these relations,

where the specifier answers the queries:

When does compose_factorial(0,A,B) hold? B=0.

When does compose_factorial(s(0),A,B) hold? B=A.

When does compose_factorial(s(s(0)),A,B) hold? B=A+A.

When does compose_factorial(s(s(s(0))),A,B) hold?

B=A+A+A.

The abduced evidence from this query is:

solve_compose_factorial(0,A,0) ←

solve_compose_factorial(s(0),A,A) ←

solve_compose_factorial(s(s(0)),A,A+A) ←

solve_compose_factorial(s(s(s(0))),A,A+A+A) ←

compose_compose_factorial(s(0),0,A,A) ←

compose_compose_factorial(s(s(0)),A,A+A,A) ←

compose_compose_factorial(s(s(s(0))),A+A,A+A+A,A) ←

From this evidence, using the Program Closing Method, the following program is in-

duced forcompose_factorial:

58

compose_factorial(T,U,V) ← solve_compose_factorial(T,U,V)

compose_factorial(T,U,V) ← decompose_compose_factorial(T,W,X),

compose_factorial(W,U,Y), compose_compose_factorial(X,Y,V,U)

decompose_compose_factorial(F,G,H) ← F=s(G), H=F

solve_compose_factorial(0,S,0) ←

solve_compose_factorial(s(0),R,R) ←

compose_compose_factorial(s(s(O)),P,P+Q,Q) ←

Finally, this new program forcompose_factorial is added to the open program for

factorial yielding the following program for thefactorial predicate:

factorial(A,B) ← solve_factorial(A,B)

factorial(A,B) ← decompose_factorial(A,C,D), factorial(C,E),

compose_factorial(D,E,B)

decompose_factorial(F,G,H) ← F=s(G), H=F

solve_factorial(0,s(0)) ←

compose_factorial(T,U,V) ← solve_compose_factorial(T,U,V)

compose_factorial(T,U,V) ← decompose_compose_factorial(T,W,X),

compose_factorial(W,U,Y), compose_compose_factorial(X,Y,V,U)

decompose_compose_factorial(F,G,H) ← F=s(G), H=F

solve_compose_factorial(0,A,0) ←

solve_compose_factorial(s(0),B,B) ←

compose_compose_factorial(s(s(C)),D,D+E,E) ←

where thisfactorial program is correct with respect to its specification. If we partially

evaluate this program, then we obtain the following program that is more “readable”:

factorial(0,s(0)) ←

factorial(A,B) ← A=s(C), factorial(C,E), compose_factorial(A,E,B)

compose_factorial(0,A,0) ←

compose_factorial(s(0),B,B) ←

compose_factorial(T,U,V) ← T=s(W), compose_factorial(W,U,Y),

compose_compose_factorial(T,Y,V,U)

compose_compose_factorial(s(s(C)),D,D+E,E) ←

59

Chapter 3

Comparison of DIALOGS -II with other

ILP Systems

We compare DIALOGS-II with other ILP systems in terms of the evidence given as input

to the system, and in terms of the power of their schemata. We first discuss (in

Section 3.1) the evidence given in the form of examples and given in the form of syn-

tactic bias (see Section 1.1.3), and then (in Section 3.2) we compare other ILP systems

with DIALOGS-II in terms of the schemata available to these systems.

3.1 Comparison in Terms of the Evidence

FOIL [24] is a general purpose system that induces recursive and non-recursive logic

programs. In order to learn a recursive program forlength(A,L), wherelength(A,L)

holds iff natural numberL is the length of the listA, it needs in the order of thousands

of positive and negative examples. On the other hand, DIALOGS-II can synthesize a re-

cursive logic program forlength(A,L) from as few as three positive examples. The rea-

son for FOIL to consume that many examples for the synthesis of such a simple

recursive program is that it is a general purpose synthesizer that does not differentiate

between the synthesis of non-recursive programs and the synthesis of recursive ones.

This leads to poor “recursion” handling, and, as a result, the necessity of thousands of

60

examples for “encoding” the recursion. As advocated by Biermann [4], we believe that

it is more efficient to try a suite of fast and reliable class-specific synthesizers (and, if

necessary, to fall back onto a general purpose synthesizer) than to simply run such a

slow, if not unreliable, general-purpose synthesizer.

The TRACY system [3] gets a description of the hypothesis space in the form of a syn-

tactic bias and induces recursive logic programs using that bias. Suppose that for the

append predicate (whereappend(A,B,C) holds iff listC is the concatenation of list

A in front of listB), the following bias, positive and negative examples, and mode dec-

laration are given as inputs, where the program and mode declaration of the= predicate

are considered given as background knowledge:

append(A,B,C) ← {B=C, A=[]}

append(A,B,C) ← {A=[H|T], B=[E|F], append(T,{E,B,A},{D,F}), C=[H|D]}

+append([a],[b],[a,b])

−append([a],[b],[a])

−append([a],[b],[b])

append_inout(in,in,out)

The curly braces used for writing the body atoms and the parameters denote one ele-

ment of the powerset of the elements inside the braces. After generating all possible

clauses in the hypothesis space encoded by the bias above, the set of clauses used in

the derivation of the positive example such that these clauses do not cover any of the

two negative examples yields the final program:

append(A,B,C) ← B=C, A=[]

append(A,B,C) ← A=[H|T], append(T,B,D), C=[H|D]

Note that the recursive call is already encoded in the bias: the technique itself cannot

discover recursion. In that sense, the source already knows how to write a possible pro-

gram forappend. If the same synthesis would be done with DIALOGS-II, the source

would not need to know how to write a program forappend. In fact, this is the ideal

scenario since the very aim of a synthesizer is to synthesize a program that is unknown

(or not completely known) to the source; it is not to extract a possible program from

the evidence that encodes this program.

In summary, DIALOGS-II synthesizes recursive logic programs from little evidence,

and the source can use DIALOGS-II to synthesize a recursive logic program that is un-

known to it.

61

3.2 Comparison in Terms of Schemata

METAINDUCE [18] is almost exactly a subset of DIALOGS-II. Its schema is a particular

case of the divide-and-conquer schemata of DIALOGS-II, namely for ternary relations,

induction parameter of type list, exactly one base clause (when the list is empty), ex-

actly one recursive clause (when the list is non-empty), and head-tail decomposition of

the list (i.e. exactly one recursive call). In other words, the divide-and-conquer sche-

mata that can be used by DIALOGS-II is more powerful: the induction parameter is not

necessarily of type list, as it can be of any type that is inductively defined, multiple base

clauses and multiple recursive clauses are possible, and the decomposition is not nec-

essarily a head-tail one.

CRUSTACEAN [1] [2] synthesizes recursive logic programs of the following schema:

p(A1,…,An) ←

p(A1,…,An) ← p(B1,…,Bn)

where theAi andBi are terms. This is a very restricted schema compared to the possible

divide-and-conquer schemata of DIALOGS-II. It has only one base clause and one re-

cursive clause. Moreover, because of the schema, there is no possibility of any kind of

predicate invention.

The schema of the CILP system [19] is a superior to that of CRUSTACEAN:

p(…) ←

p(…) ← p(…)

or, in the case of necessary predicate invention, it is:

q(…) ←

q(…) ← q(…), newp(…)

newp(…) ←

newp(…) ← newp(…)

The CILP schema is superior to the schema of CRUSTACEAN. When there is no predicate

invention, the schema of CILP is the same as that of CRUSTACEAN; when there is pred-

icate invention, the schema has one base clause and one recursive clause, which has an

invented predicate whose program has only one base clause and one recursive clause.

When there is predicate invention, DIALOGS-II invents predicates whose programs are

62

also be of the divide-and-conquer schemata of DIALOGS-II, which implies DIALOGS-II

can make use of divide-and-conquer schemata that are more general than that of CILP.

The hypothesis language of the FORCE2 system [8] is two-clause linear and closed

recursive ij-determinate logic programs. A clause is linear and closed recursive if the

body of the clause has a single recursive atom that is closed, i.e. has no output vari-

ables. Thus, the schema is:

p(…) ← q1(…), …, qm(…)

p(…) ← r1(…), …, rn(…), p(…)

where eachqk and rk is an ij -determinate literal that is defined in the background

knowledge, and the recursive atomp(…) has no output variables. This schema is re-

stricted with respect to the possible divide-and-conquer schemata of DIALOGS-II since

it has only one base clause and only one recursive clause, where the recursive clause

has only one recursive call. Moreover, the schema above is further restricted byij -de-

terminacy, where the divide-and-conquer schemata of DIALOGS-II have no such con-

straint.

In summary, there exist divide-and-conquer schemata that can be used by

DIALOGS-II, which are superior to those of all other ILP systems known to us.

3.3 Comparison of DIALOGS -II with D IALOGS

DIALOGS-II enables the specifier to select a certain schema together with a strategy,

whereas DIALOGS does not have such a concept of selection of a schema and a strategy,

i.e. the concept of schema-guidedness; however, DIALOGS is schema-based (has a

hard-wired divide-and-conquer schema together with a strategy), and it was thus the

first step towards the schema-guidedness of DIALOGS-II, and, to the best of our knowl-

edge, DIALOGS-II is the first in schema-guided synthesis in the field of ILP.

DIALOGS-II uses the open program approach (a first-order approach) in representing

schemata, whereas DIALOGS uses a second-order approach in representing its di-

vide-and-conquer schema. Using the open program approach simplifies the represen-

tation and manipulation of the schemata of the system.

DIALOGS-II handles the sparseness problem, thus enabling the system to induce pro-

grams, e.g.factorial, that were not inducable by DIALOGS.

63

Another difference between DIALOGS and DIALOGS-II is that the DIALOGS imple-

mentation did not make a difference between the semantics of the answersfalse and

stop-it to the queries. Actually,false means that there does not exist any condition such

that the goal in the query might hold, whereasstop-itmeans that the specifier wants to

stop the query session. In the DIALOGS-II implementation,false andstop-it have their

intended meanings.

DIALOGS -II Uses Clause lgθ. DIALOGS uses term lgθs in its MSG Method, whereas

DIALOGS-II uses clause lgθs in its Program Closing Method, since clause lgθ is a more

powerful way of handling generality among clauses.

If we had used term lgθ instead of clause lgθ in the Program Closing Method, then

the order of the atoms inside a clause would matter. For instance, if the two clauses

whose lgθ is to be computed were

sort([A,B,C],[B,A,C]) ← C≥A, A≥B (c1)

sort([D,E,F],[E,D,F]) ← F≥D, D≥E (c2)

then the clause lgθ of these two clauses would be:

sort([A,B,C],[B,A,C]) ← C≥A, D≥E, F≥G, A≥B

After reducing (see Definition 2.1) this clause, we would obtain the resulting clause

sort([A,B,C],[B,A,C]) ← C≥A, A≥B

If we write these two clauses in the form of two terms, i.e.

if(sort([A,B,C],[B,A,C]),and(C≥A,A≥B))

if(sort([D,E,F],[E,D,F]),and(F≥D,D≥E)) (t2)

and then take their term lgθ, the resulting term would be

if(sort([A,B,C],[B,A,C]),and(C≥A,A≥B))

where this lgθ corresponds to the clause obtained after taking the (reduced) clause lgθ

of the two clausesc1 andc2.

Now, suppose that we change the order of the literals in the body of the clausec2, e.g.

sort([A,B,C],[B,A,C]) ← C≥A, A≥B

sort([D,E,F],[E,D,F]) ← D≥E, F≥D

and compute their clause lgθ, i.e.

sort([A,B,C],[B,A,C]) ← D≥E, C≥A, A≥B, F≥G

64

After reducing this clause, we obtain the same clause that was computed above when

the order of the literals was not changed:

sort([A,B,C],[B,A,C]) ← C≥A, A≥B (c3)

However, if we make this order change for termt2, and then take the term lgθ of the

resulting terms, then we obtain the following term

if(sort([A,B,C],[B,A,C]),and(D≥E,F≥G))

where this lgθ does not correspond to the lgθ for clauses, i.e.c3. As we can see, this

term is different from the one where the order has not been changed. So, changing the

order of the terms matters when term lgθ is used, though it should not matter. Because

of that reason, DIALOGS-II uses clause lgθ instead of term lgθ; in that way it also guar-

antees that there are no second-order lgθs. For instance, suppose that the two clauses,

i.e.

delOdds([A,B],[A,B]) ← even(A), even(B)

delOdds([A],[A]) ← even(A)

are given and their clause lgθ is computed as

delOdds([A|B],[A|B]) ← even(A), even(C)

Note that there is no second order variable in the clause lgθ of these two clauses. How-

ever, if we write these two clauses in the form of two terms, i.e.

if(delOdds([A,B],[A,B]),and(even(A),even(B)))

if(delOdds([A],[A]),even(A))

and then take their term lgθ, the resulting term would be

if(delOdds([A|B],[A|B]),V)

where the variableV is a second-order variable.

DIALOGS -II Eliminates Redundant Answers. Another new concept related to the

queries of DIALOGS-II is “elimination of redundant answers”. Before discussing this

concept, we introduce some terminology. We assume that conjunctions of literals can

also be viewn as sets of literals.

Definition 3.1: A conjunction of literalsC1 θ-subsumes a conjunction of literalsC2

(denotedC1≥C2) iff there exists a substitutionσ such thatC2σ ⊆ C1.

65

For instance, letC1beB=[C], C=A andC2 beB=[A]. The conjunctionC1θ-subsumes

C2 since there exists a substitutionσ, which is {A/C}, such thatC2{ A/C} ⊆ C1.

Theorem 3: (C1 ≥C2) ⇒ (C1 ⇒ C2)

Proof 3: FromC1, we can build a clause, namely¬C1. FromC2, we can build a clause,

namely¬C2. Now, note thatC1 ⇒ C2 is equivalent to¬C2 ⇒ ¬C1. So, to check for

C1 ⇒ C2, one may approximate this (correctly but incompletely) by checking for¬C2

≥ ¬C1 (according to Plotkin’s definition, i.e. Definition 2.1, for clauses) (since¬C1

and¬C2 are clauses), i.e. by finding a substitutionσ such that¬C2σ ⊆ ¬C1, which is

obviously equivalent toC2σ ⊆ C1.

When, to a query (i.e. atom)Q, the specifier gives a DNF answerC1 ∨ C2 ∨…∨ Cn

(n≥0), then the system must eliminate thoseCi for which there exists j such thatCi ≥Cj

(i≠j) (i.e. eliminate those that are more general than some other one), and then only

build the clausesQ ← Ck, where k is in the set of remaining indices.

What happens when the system does not eliminate redundant answers? We illustrate

this point by means of a case that occurs during the synthesis of a program for

efface(E,L,R), whereefface(E,L,R) holds iff listR is listL without the first (existing)

occurrence of termE in L. Let the query and its answer be:

When does efface(A,[B,A],C) hold? C=[A], B=A; C=[B].

The system would abduce the following shortcuts and evidence from this answer:

compose_efface(B,[],C,A) ← C=[A], B=A

compose_efface(B,[],C,A) ← C=[B]

solve_efface(A,[B,A],C) ← C=[A], B=A

solve_efface(A,[B,A],C) ← C=[B]

efface(A,[B,A],C) ← C=[A], B=A (s1)

efface(A,[B,A],C) ← C=[B] (s2)

Next, the system generates the query

When does efface(A,[B,A,A],C) hold?

where the answer to the query is:

C=[A,A], A=B; C=[B,A], B≠A.

Using the answer, the system would abduce the following shortcuts and evidence:

66

compose_efface(B,[A],C,A) ← C=[A,A], A=B (c4)

compose_efface(B,[A],C,A) ← C=[B,A], B≠A (c5)

efface(A,[B,A,A],C) ← C=[A,A], A=B

efface(A,[B,A,A],C) ← C=[B,A], A≠B

Upon backtracking to shortcuts2, the system would also abduce the following evi-

dence:

compose_efface(B,[A],C,A) ← C=[A,A], A=B (c6)

compose_efface(B,[A],C,A) ← C=[B,A], B≠A (c7)

Upon backtracking, the following evidence forsolve_efface would be abduced using

the answer to the query:

solve_efface(A,[B,A,A],C) ← C=[A,A], A=B

solve_efface(A,[B,A,A],C) ← C=[B,A], A≠B

Now, note thatc4 andc6 are identical, as well asc5 andc7. This redundancy in the

evidence clauses is due to the redundancy in the answer to the query asked foref-

face(A,[B,A],C). There are now two morecompose_efface clauses than

solve_efface clauses. This means that in the resulting set of evidence clauses that is

passed to the Program Closing Method, there will be morecompose_efface clauses

thansolve_efface, which makes the Program Closing Method fail, because the divi-

sion algorithm of the Program Closing Method (see Algorithm 8) works under the as-

sumption that there are lesscompose_efface clauses thansolve_efface clauses.

This is a correct assumption since there should always be more number ofsolve_r

clauses than the number ofcompose_r clauses, if the evidence is correctly abduced.

This is due to the existence of a decomposition operator in the recursive clause, which

does not resolve for some values of the induction parameter, e.g.[] for lists,0 for nat-

ural numbers, which in turn causes less evidence to be abduced for the open relation of

the recursive clause than the one of the non-recursive clause.

Thus, the system must eliminate the answerC=[A], B=A (which is more general than

C=[B]) from C=[A], B=A; C=[B]. So,C=[A], B=A is redundant and is eliminated from

the answer, leaving onlyC=[B] as the answer to the query, where this elimination pre-

vents the redundancy in the evidence clauses, which in turn makes the system to ab-

duce a usable set of evidence clauses.

67

Chapter 4

Conclusion

The inductive synthesis of recursive (logic) programs is a challenging and important

sub-field of ILP. Challenging because recursive programs are particularly delicate

mathematical objects that must be designed with utmost care. Important because recur-

sive programs (for certain predicates) are sometimes the only way to complete the in-

duction of a finite hypothesis (involving these predicates).

When it comes to programming applications, we believe that the ideal technique is

interactive (in the sense of DIALOGS [13]) and non-incremental, has a clausal evidence

language plus type, mode, and multiplicity information (like SYNAPSE [11], DIALOGS),

can handle semantic manipulation relations, actually uses (structured) background

knowledge and a syntactic bias, which are both problem-independent and intensional

(like in SYNAPSE), is guided by (and not just based on) at least the powerful di-

vide-and-conquer schema of SYNAPSE and DIALOGS (using the implementation ap-

proach of METAINDUCE [18]), discovers additional base case and recursive case

examples (like CILP [19]), can perform both necessary and useful predicate invention

(like SYNAPSE, DIALOGS), even from sparse abduced evidence (like CILP), actually dis-

covers the recursive atoms, and makes a constructive usage of the negative evidence

(through abduction, like theConstructive Interpreter [9] and SYNAPSE).

Thus, we aimed to design and implement a synthesizer that induces recursive logic

programs, which is non-incremental, schema-guided, and interactive, and finally de-

veloped DIALOGS-II, which is based on the system DIALOGS [13].

68

DIALOGS-II is a schema-guided, interactive, and non-incremental synthesizer of re-

cursive logic programs that takes the initiative and queries a (possibly naive) specifier

for evidence in her/his conceptual language. DIALOGS-II only asks for the minimal

knowledge a specifiermust have in order to want a (logic) program, and it can be used

by any learner (including itself) that detects, or merely conjectures, the necessity of in-

vention of a new predicate. Moreover, due to its powerful codification of “recur-

sion-theory” into schemata and schematic constraints, it needs very little evidence and

is very fast.

The main difference between DIALOGS-II and its ancestor DIALOGS is as follows: DI-

ALOGS-II enables the specifier to select a certain schema together with a strategy,

whereas DIALOGS does not have such a concept of selection of a schema and its strat-

egy, i.e. the concept of schema-guidedness; indeed, DIALOGS is schema-based (has a

hard-wired divide-and-conquer schema together with a strategy). To the best of our

knowledge, DIALOGS-II is the first schema-guided synthesizer.

Other differences are that DIALOGS-II uses the open program approach (a first-order

approach) to representing schemas, whereas DIALOGS uses a second-order approach to

representing its divide-and-conquer schema. Using the open program approach simpli-

fies the representation and manipulation of the schemas of the system.

DIALOGS-II handles the sparseness problem, thus enabling the system to induce pro-

grams that were not inducable by DIALOGS, e.g. forfactorial.

DIALOGS uses term lgθs in its MSG Method, whereas DIALOGS-II uses clause lgθs in

its Program Closing Method, since clause lgθ is a more powerful way of handling gen-

erality among clauses.

DIALOGS-II can induce correct recursive logic programs from less evidence than

other ILP systems, e.g. FOIL [24] and TRACY [3]. Moreover, the divide-and-conquer

schemata that can be used by the system may be more general than the ones of some

other important ILP systems, e.g. CILP [19], CRUSTACEAN [1] [2], and METAINDUCE

[18].

DIALOGS-II can be further improved in several ways: a heuristic for the necessary

predicate invention would conjecture when to do predicate invention, and finding more

powerful admissibility criteria for the evidence of the open relations of the di-

vide-and-conquer schema would increase the probability of synthesizing a correct pro-

gram.

69

References

[1] D.W. Aha, S. Lapointe, C.X. Ling, and S. Matwin. Inverting implication with

small training sets. In F. Bergadano and L. De Raedt (eds),Proc. of ECML’94,

pp. 31–48. LNAI 784, Springer-Verlag, 1994.

[2] D.W. Aha, S. Lapointe, C.X. Ling, and S. Matwin. Learning recursive relations

with randomly selected small training sets. In W.W. Cohen and H. Hirsh (eds),

Proc. of ICML’94. Morgan Kaufmann, 1994.

[3] F. Bergadano and D. Gunetti. Learning clauses by tracing derivations. In S. Wro-

bel (ed),Proc. of ILP’94, pp. 11–29. GMD-Studien Nr. 237, Sankt Augustin

(Germany), 1994.

[4] A.W. Biermann. Dealing with Search. In W. Biermann, G. Guiho, and Y. Kodrat-

off (eds),Automatic Program Construction Techniques, pp. 375–392. Macmill-

an, 1984.

[5] H. Büyükyıldız.Schema-based Logic Program Transformation. M.Sc. Thesis,

Bilkent University, Department of Computer Science, 1997.

[6] H. Büyükyıldız and P. Flener.Generalized Generalization Generalizers. In N. E.

Fuchs (ed),Proc. of LOPSTR’97. LNCS, Springer-Verlag, forthcoming.

[7] W.W. Cohen. Compiling prior knowledge into an explicit bias. In P. Edwards and

D. Sleeman (eds),Proc. of ICML’92, pp. 102–110. Morgan Kaufmann, 1992.

70

[8] W.W. Cohen. PAC-learning a restricted class of recursive logic programs. In S.

Muggleton (ed),Proc. of ILP’93, pp. 73–86. TR IJS-DP-6707, J. Stefan Institute,

Ljubljana (Slovenia), 1993.

[9] N. Dershowitz and Y.-J. Lee. Logical debugging.Journal of Symbolic Computa-

tion, Special Issue on Automatic Programming 15(5–6):745–773, May/June

1993.

[10] E. Erdem and P. Flener. A redefinition of least generalizations and its application

to inductive logic program synthesis. In preparation.

[11] P. Flener.Logic Program Synthesis from Incomplete Information. Kluwer Aca-

demic Publishers, 1995.

[12] P. Flener. Predicate Invention in Inductive Program Synthesis. TR

BU-CEIS-9509, Bilkent University, Ankara, Turkey, 1995.

[13] P. Flener.Inductive logic program synthesis with DIALOGS. In S. Muggleton

(ed),Proc. of ILP’96. LNAI, Springer-Verlag, 1997.

[14] P. Flener and Y. Deville. Logic program synthesis from incomplete specifica-

tions.Journal of Symbolic Computation, Special Issue on Automatic Program-

ming 15(5-6):775–805, May/June 1993.

[15] P. Flener, K.-K. Lau, and M. Ornaghi.On Correct Program Schemas. In N. E.

Fuchs (ed),Proc. of LOPSTR’97. LNCS, Springer-Verlag, forthcoming.

[16] P. Flener and L. Popelínský. On the use of inductive reasoning in program syn-

thesis: Prejudice and prospects. In L. Fribourg and F. Turini (eds),Joint Proc. of

META’94 and LOPSTR’94, pp. 69–87. LNCS 883, Springer-Verlag, 1994.

[17] P. Flener and S. Yılmaz. Inductive synthesis of recursive logic programs:

Achievements and prospects. Submitted to theJournal of Logic Programming.

[18] A. Hamfelt and J. Fischer Nilsson. Inductive metalogic programming. In S. Wro-

bel (ed),Proc. of ILP’94, pp. 85–96. GMD-Studien Nr. 237, Sankt Augustin

(Germany), 1994.

71

[19] S. Lapointe, C. Ling, and S. Matwin. Constructive inductive logic programming.

In S. Muggleton (ed),Proc. of ILP’93, pp. 255–264. TR IJS-DP-6707, J. Stefan

Institute, Ljubljana (Slovenia), 1993.

[20] S. Muggleton and W. Buntine. Machine invention of first-order predicates by in-

verting resolution. InProc. of ICML’88, pp.339–352. Morgan Kaufmann, 1988.

[21] S. Muggleton and L. De Raedt. Inductive logic programming: Theory and meth-

ods.Journal of Logic Programming, Special Issue on 10 Years of Logic Pro-

gramming19–20:629–679, May/July 1994.

[22] S.H. Nienhuys and R. de Wolf. Least generalizations and Greatest Specializa-

tions of Sets of Clauses.Journal of Artificial Intelligence Research 4: 341–363,

1996.

[23] G. Plotkin. A note on inductive generalization. In B. Meltzer and D. Michie

(eds), Machine Intelligence 5:153–163. Elsevier North Holland, New York,

1970.

[24] J. R. Quinlan and R. M. Cameron-Jones. Induction of logic programs: FOIL and

related systems.New Generation Computing, pp. 287–312, 1995.

[25] I. Stahl.Predicate Invention in ILP: An Overview. TR 1993/06, Fakultät Infor-

matik, Universität Stuttgart (Germany), 1993.

[26] B. Tausend. A unifying representation for language restrictions. In S. Muggleton

(ed).Proc. of ILP’93, pp. 205–220. TR IJS-DP-6707, J. Stefan Institute, Ljubl-

jana (Slovenia), 1993.

[27] R. Wirth and P. O’Rorke. Constraints for predicate invention. In S. Muggleton

(ed),Inductive Logic Programming, pp. 299–318. Volume APIC-38, Academic

Press, 1992.

72

72

Appendix A: README file for

DIALOGS -II

After loading the file dialogsII.pl, start a new synthesis by typing “d2.” (without the

quotes). The system is composed of the following programs:

• phase0.pl: asks for predicate declaration, schema and strategy, and executes the

strategy in order to obtain an open program to be passed to the next phase.

• phase1and2.pl: abduces evidence, induces program clauses by the Program Clos-

ing Method and evaluates the result of the Program Closing Method to conjecture

necessary predicate invention.

• schemas.pl: contains the currently available schemata and the strategies of the sys-

tem.

• cliques.pl: finds (admissible) cliques of clauses.

• clausemsg.pl: computes the lgθ of two clauses.

• primitives.pl: contains primitives used by the system.

• grammar.pl: contains Definite Clause Grammar for parsing predicate declarations.

• utilities.pl: contains procedures frequently used by the system

• dedotify.pl: dedotifies initial schemata of the system to convert them to open pro-

grams

Variable names start with an uppercase letter; predicate names, functor and constants

start with a lowercase letter. Conjunction is expressed by a comma (,), disjunction by

a semi-colon (;), negation by wrapping the atom with a prefixneg/1 functor, truth by

“true”, and falsity by “false” (without the quotes). The available primitives are:=/2,

\==/2, length/2, append/3, member/2, nat/1, list/1, add/3, mult/3, lt/2, gt/2, le/2,

73

ge/2, partition/4, andhalves/3 (see file primitives.pl). Natural numbers should be

typed in as Peano numbers, using 0 for zero and prefix functors/1 for successor.

Please note that during the determination of the predicate declaration, parameter

roles and decomposition operator, answers should not be terminated by a full-stop (.).

The default answer (always between curly braces) can be selected by simply hitting the

RETURN/ENTER key. You can force backtracking to a previous question using the

answer “back” (without the quotes). Note that parameters that can be any number of

(e.g. passive parameters) are indicated as lists, using the Prolog notation; that means

the absence of such parameters is indicated using the empty list ([]). For the schema

language please refer to [5]. A new schema can be added to the system using that sche-

ma language. You also need to make sure that the parameter roles of the parameters of

the programs that fit to the schema, modes of the open relations, and the positions of

the parameters inside the atoms of the open relations are defined (see file schemas.pl).

Available types areatom, term, nat, int, list(atom), list(term), list(nat), andlist(int).

The type language can be inferred by looking at file grammar.pl (see non-terminal

type/1). Similarly for the predicate declaration language. You can express your bore-

dom with the questions (or unwillingness or inability to answer them) by answering

“stop_it” (without the quotes). You will find some sample syntheses in the remainder

of the thesis.

74

Appendix B: Sample Syntheses

• len(L,N) iff natural numberN is the length of the listL.

Predicate declaration? len(L:list(term),N:nat)

Schema? [dc,dg] dc

Strategy? [divide_and_conquer_strategy1]

divide_and_conquer _strategy1

Induction parameter? {L} L

Result parameter? {N} N

Decomposition Operator? {decompose(L,HL,TL)<--L=[HL|TL]}

decompose(L,HL,TL)<--L=[HL|TL]

When does len([],A) hold?

A=0.

When does len([A],B) hold?

B=s(0).

When does len([A,B],C) hold?

C=s(s(0)).

When does len([A,B,C],D) hold?

D=s(s(s(0))).

When does len([A,B,C,D],E) hold?

stop_it.

Result of the Program Closing Method:

Clauses for compose_len:

compose_len(A,B,s(B)) <--

Clauses for solve_len:

solve_len([],0) <--

Please evaluate the Program Closing Method results: need for recur-

sive synthesis? [yes/no] no

A possible program is:

75

len(A,B) <-- solve_len(A,B)

len(A,C) <-- decompose_len(A,D,E),len(E,F),compose_len(D,F,C)

decompose_len(G,H,I) <-- G=[H|I]

solve_len([],0) <--

compose_len(J,K,s(K)) <--

Do you want another logic program? {yes} yes

Decomposition Operator? {decompose(L,HL1,HL2,TL)<--L=[HL1,HL2|TL]}

decompose(L,HL1,HL2,TL)<--L=[HL1,HL2|TL]

Using shortcut(s) instead of querying...

When does len([A,B,C,D],E) hold?

E=s(s(s(s(0)))).

When does len([A,B,C,D,E],F) hold?

stop_it.

Result of the Program Closing Method:

Clauses for compose_len:

compose_len(A,B,C,s(s(C))) <--

Clauses for solve_len:

solve_len([A],s(0)) <--

solve_len([],0) <--

Please evaluate the Program Closing Method results: need for recur-

sive synthesis? [yes/no] no

A possible program is:

len(A,B) <-- solve_len(A,B)

len(A,C) <-- decompose_len(A,D,E,F),len(F,G),compose_len(D,E,G,C)

decompose_len(H,I,J,K) <-- H=[I,J|K]

solve_len([],0) <--

solve_len([L],s(0)) <--

compose_len(M,N,P,s(s(P))) <--

Do you want another logic program? {yes} no

No (more) programs.

• count(A,B,C) iff natural numberC is the number of elements that unify with the

termA in list B.

76

Predicate declaration? count(A:term,B:list(term),C:nat)

Schema? [dc,dg] dc

Strategy? [divide_and_conquer_strategy1]

divide_and_conquer _strategy1

Induction parameter? {B} B

Result parameter? {C} C

Passive parameter(s)? {[A]} [A]

Decomposition Operator? {decompose(B,HB,TB)<--B=[HB|TB]}

decompose(B,HB,TB)<--B=[HB|TB]

When does count(A,[],B) hold?

B=0.

When does count(A,[B],C) hold?

C=0,A\==B;C=s(0),A=B.

When does count(A,[B,A],C) hold?

C=s(0),A\==B;C=s(s(0)),A=B.

When does count(A,[B,A,A],C) hold?

C=s(s(0)),A\==B;C=s(s(s(0))),A=B.

When does count(A,[B,A,A,A],C) hold?

stop_it.

Result of the Program Closing Method:

Clauses for compose_count:

compose_count(A,B,s(B),A) <--

compose_count(C,D,D,E) <-- E\==C

Clauses for solve_count:

solve_count(A,[],0) <--

Please evaluate the Program Closing Method results: need for recur-

sive synthesis? [yes/no] no

A possible program is:

count(A,B,C) <-- solve_count(A,B,C)

count(A,D,E) <-- decompose_count(D,F,G),

count(A,G,H),compose_count(F,H,E,A)

decompose_count(I,J,K) <-- I=[J|K]

solve_count(L,[],0) <--

77

compose_count(M,N,N,P) <-- P\==M

compose_count(Q,R,s(R),Q) <--

Do you want another logic program? {yes} no.

No (more) programs.

• addlast(A,B,C) iff list C is list B with the termA added in the end.

Predicate declaration? addlast(A:term,B:list(term),C:list(term))

Schema? [dc,dg] dc

Strategy? [divide_and_conquer_strategy1]

divide_and_conquer _strategy1

Induction parameter? {B} B

Result parameter? {C} C

Passive parameter(s)? {[A]} [A]

Decomposition Operator? {decompose(B,HB,TB)<--B=[HB|TB]}

decompose(B,HB,TB)<--B=[HB|TB]

When does addlast(A,[],B) hold?

B=[A].

When does addlast(A,[B],C) hold?

C=[B,A].

When does addlast(A,[B,C],D) hold?

D=[B,C,A].

When does addlast(A,[B,C,D],E) hold?

E=[B,C,D,A].

When does addlast(A,[B,C,D,E],F) hold?

stop_it.

Result of the Program Closing Method:

Clauses for compose_addlast:

compose_addlast(A,[B|C],[A,B|C],D) <--

Clauses for solve_addlast:

solve_addlast(A,[B],[B|A]) <--

solve_addlast(C,[],[C]) <--

Please evaluate the Program Closing Method results: need for recur-

sive synthesis? [yes/no] no

78

A possible program is:

addlast(A,B,C) <-- solve_addlast(A,B,C)

addlast(A,D,E) <-- decompose_addlast(D,F,G),

addlast(A,G,H),compose_addlast(F,H,E,A)

decompose_addlast(I,J,K) <-- I=[J|K]

solve_addlast(L,[],[L]) <--

solve_addlast(M,[N],[N|M]) <--

compose_addlast(P,[Q|R],[P,Q|R],S) <--

Do you want another logic program? {yes} no.

No (more) programs.

Do you want another synthesis with a different strategy? {yes} yes

There is no other strategy for schema dc!

• multiply(A,B,C) iff natural numberC is the product of natural numbersA andB.

Predicate declaration? multiply(A:nat,B:nat,C:nat)

Schema? [dc,dg] dc

Strategy? [divide_and_conquer_strategy1]

divide_and_conquer _strategy1

Induction parameter? {A} A

Result parameter? {B} B

Passive parameter(s)? {[C]} [C]

Decomposition Operator? {decompose(A,HA,TA)<--A=s(TA),HA=A}

decompose(A,HA,TA)<--A=s(TA),HA=A

When does multiply(0,A,B) hold?

A=0.

When does multiply(s(0),A,B) hold?

A=B+0.

When does multiply(s(s(0)),A,B) hold?

A=B+(B+0).

When does multiply(s(s(s(0))),A,B) hold?

A=B+(B+(B+0)).

When does multiply(s(s(s(s(0)))),A,B) hold?

stop_it.

Result of the Program Closing Method:

Clauses for compose_multiply:

79

compose_multiply(s(A),B,C+B,C) <--

Clauses for solve_multiply:

solve_multiply(0,0,A) <--

Please evaluate the Program Closing Method results: need for recur-

sive synthesis? [yes/no] no

A possible program is:

multiply(A,B,C) <-- solve_multiply(A,B,C)

multiply(A,D,E) <-- decompose_multiply(A,F,G),

multiply(G,H,E),compose_multiply(F,H,D,E)

decompose_multiply(I,J,K) <-- I=s(K),J=I

solve_multiply(0,0,L) <--

compose_multiply(s(M),N,P+N,P)<--

Do you want another logic program? {yes} no.

No (more) programs.

• compress(L,R) iff list R is the compressed form of listL.

e.g.compress([a,a,b,c,c,c,d],[a,s(s(0)),b,s(0),c,s(s(s(0))),d,s(0)])

Predicate declaration? compress(L:list(atom),R:list(atom))

Schema? [dc,dg] dc

Strategy? [divide_and_conquer_strategy1]

divide_and_conquer_strategy1

Induction parameter? {L} L

Result parameter? {R} R

Decomposition Operator? {decompose(L,HL,TL)<--L=[HL|TL]}

decompose(L,HL,TL)<--L=[HL|TL]

When does compress([],A) hold?

A=[].

When does compress([A],B) hold?

B=[A,s(0)].

When does compress([A,B],C) hold?

C=[A,s(s(0))],eq(A,B);C=[A,s(0),B,s(0)],diff(A,B).

When does compress([A,B,C],D) hold, assuming eq(B,C)?

D=[A,s(s(s(0)))],eq(A,B);D=[A,s(0),B,s(s(0))],diff(A,B).

When does compress([A,B,C],D) hold, assuming diff(B,C)?

D=[A,s(s(0)),C,s(0)],eq(A,B);D=[A,s(0),B,s(0),C,s(0)],diff(A,B).

80

When does compress([A,B,C,D],E) hold, assuming eq(B,C),eq(C,D)?

stop_it.

Result of the Program Closing Method:

Clauses for compose_compress:

compose_compress(A,[B,s(C)|D],[A,s(0),B,s(C)|D]) <-- diff(A,B)

compose_compress(E,[F,s(G)|H],[E,s(s(G))|H]) <-- eq(E,F)

Clauses for solve_compress:

solve_compress([A],[A,s(0)]) <--

solve_compress([],[]) <--

Please evaluate the Program Closing Method results: need for recur-

sive synthesis? [yes/no] no

A possible program is:

compress(A,B) <-- solve_compress(A,B)

compress(A,C) <-- decompose_compress(A,D,E),

compress(E,F),compose_compress(D,F,C)

decompose_compress(G,H,I) <-- G=[H|I]

solve_compress([],[]) <--

solve_compress([J],[J,s(0)]) <--

compose_compress(K,[L,s(M)|N],[K,s(s(M))|N]) <-- eq(K,L)

compose_compress(P,[R,s(Q)|S],[P,s(0),R,s(Q)|S]) <-- diff(P,R)

• s(L,S) iff list S is (ascendingly) sorted version of listL.

Predicate declaration? s(L:list(int),S:list(int))

Strategy? [divide_and_conquer_strategy1]

divide_and_conquer _strategy1

Induction parameter? {L} L

Result parameter? {S} S

Decomposition Operator? {decompose(L,HL,TL)<--L=[HL|TL]}

decompose(L,HL,TL)<--L=[HL|TL]

When does s([],A) hold?

A=[].

When does s([A],B) hold?

81

B=[A].

When does s([A,B],C) hold?

C=[A,B],le(A,B);C=[B,A],gt(A,B).

When does s([A,B,C],D) hold, assuming le(B,C)?

D=[A,B,C],le(A,B);D=[B,A,C],gt(A,B),le(A,C);D=[B,C,A],gt(A,B),gt(A,C).

When does s([A,B,C,D],E) hold, assuming le(B,C),le(C,D)?

stop_it.

Result of the Program Closing Method:

Clauses for compose_s:

compose_s(A,[B|C],[A,B|C]) <-- le(A,B)

Clauses for solve_s:

solve_s(A,A) <--

solve_s([B,C,D],[C,D,B]) <-- gt(B,C),gt(B,D),le(C,D)

solve_s([E,F],[F,E]) <-- gt(E,F)

Please evaluate the Program Closing Method results: need for recur-

sive synthesis? [yes/no] yes

Need for recursive synthesis detected!

Calling DIALOGS-II with the predicate declaration

 compose_s(HL:int,TS:list(int),S:list(int))

Induction parameter? {[TS]} [TS]

Result parameter? {S} S

Passive parameter(s)? {[HL]} [HL]

Decomposition Operator? {decompose(TS,HTS,TTS)<--TS=[HTS|TTS]}

decompose(TS,HTS,TTS)<--TS=[HTS|TTS]

Current program:

s(A,B) <-- solve_s(A,B)

s(A,C) <-- decompose_s(A,D,E),s(E,F),compose_s(D,F,C)

decompose_s(G,H,I) <-- G=[H|I]

solve_s([],[]) <--

compose_s(J,K,L) <-- solve_compose_s(J,K,L)

compose_s(J,M,N) <-- decompose_compose_s(M,P,Q),

compose_s(J,Q,R),compose_compose_s(P,R,N,J)

decompose_compose_s(S,T,U) <-- S=[T|U]

When does s([A,B,C],D) hold, assuming le(B,C),le(A,C)?

82

stop_it.

Result of the Program Closing Method:

compose_compose_s clauses:

(none)

solve_compose_s clauses:

solve_compose_s(A,[B],[B,A]) <-- gt(A,B)

solve_compose_s(C,[D],[C,D]) <-- le(C,D)

solve_compose_s(E,[],[E]) <--

Please evaluate the Program Closing Method results: need for recur-

sive synthesis? [yes/no] no

A possible program is:

s(A,B) <-- solve_s(A,B)

s(A,C) <-- decompose_s(A,D,E),s(E,F),compose_s(D,F,C)

decompose_s(G,H,I) <-- G=[H|I]

solve_s([],[]) <--

compose_s(J,K,L) <-- solve_compose_s(J,K,L)

compose_s(J,M,N) <-- decompose_compose_s(M,P,Q),

compose_s(J,Q,R),compose_compose_s(P,R,N,J)

decompose_compose_s(S,T,U) <-- S=[T|U]

solve_compose_s(V,[],[V]) <--

solve_compose_s(W,[X],[W,X]) <-- le(W,X)

solve_compose_s(Y,[Z],[Z,Y]) <-- gt(Y,Z)

Do you want another logic program? {yes} no

• reverse(A,B,C) iff list B is the concatenation of reverse of listA and the listC it-

self.

Predicate declaration? reverse(A:list(term),R:list(term),L:list(term))

Schema? [dc,dg] dg

Strategy? [descend_gen_strategy1]

descend_gen_strategy1

Induction parameter? {A} A

Result parameter? {R} R

Passive parameter(s)? {[L]} []

Accumulation parameter(s)? {[L]} [L]

83

Decomposition Operator? {decompose(A,HA,TA)<--A=[HA|TA]}

decompose(A,HA,TA)<--A=[HA|TA]

When does reverse([],A,B) hold?

A=B.

When does reverse([A],B,C) hold?

B=[A|C].

When does reverse([A,B],[B|C],D) hold?

[B|C]=[B,A|D].

When does reverse([A,B,C],[C,B|D],E) hold?

[C,B|D]=[C,B,A|E].

When does reverse([A,B,C,D],[D,C,B|E],F) hold?

[D,C,B|E]=[D,C,B,A|F].

When does reverse([A,B,C,D,E],[E,D,C,B|F],G) hold?

stop_it.

Entering the Program Closing Method with the following evidence

solveAccu_reverse evidence:

solveAccu_reverse([],A,A) <--

solveAccu_reverse([B],[B|C],C) <--

solveAccu_reverse([D,E],[E,D|F],F) <--

solveAccu_reverse([G,H,I],[I,H,G|J],J) <--

solveAccu_reverse([K,L,M,N],[N,M,L,K|P],P) <--

extendAccu_reverse evidence:

extendAccu_reverse(A,B,[A|B]) <--

extendAccu_reverse(C,D,[C|D]) <--

extendAccu_reverse(E,F,[E|F]) <--

extendAccu_reverse(G,H,[G|H]) <--

Result of the Program Closing Method:

Clauses for extendAccu_reverse:

extendAccu_reverse(A,B,[A|B]) <--

Clauses for solveAccu_reverse:

solveAccu_reverse([],A,A) <--

84

Please evaluate the Program Closing Method results: need for recur-

sive synthesis? [yes/no] no

A possible program is:

reverse(A,B,C) <-- solveAccu_reverse(A,B,C)

reverse(A,D,E) <-- decompose_reverse(A,F,G),

reverse(G,D,H),extendAccu_reverse(F,E,H)

decompose_reverse(I,J,K) <-- I=[J|K]

solveAccu_reverse([],L,L)<--

extendAccu_reverse(M,N,[M|N])<--

Do you want another logic program? {yes}

no

