
Ahievements and Prospetsof Program SynthesisPierre FlenerInformation Tehnology, Department of Computing SieneUppsala University, Box 337, S { 751 05 Uppsala, Swedenhttp://www.sd.uu.se/�pierref/ pierref�sd.uu.seAbstrat. Program synthesis researh aims at developing a programthat develops orret programs from spei�ations, with as muh or aslittle interation as the spei�er wants. I overview the main ahievementsin deploying logi for program synthesis. I also outline the prospets ofsuh researh, arguing that, while the tehnology sales up from toyprograms to real-life software and to ommerially viable tools, ompu-tational logi will ontinue to be a driving fore behind this progress.1 IntrodutionIn his seminal book Logi for Problem Solving [53℄, Bob Kowalski introduedthe elebrated equation:Algorithm = Logi+ Control (A = L+ C)expressing that for an algorithm, the statement of what it does | the logiomponent | an be separated from the manner how it is done | the on-trol omponent. Algorithms and programs in onventional languages feature amerging of these omponents, whereas pure logi programs only express the logiomponent, leaving the ontrol omponent to the exeution mehanism. In a-tual logi programming languages, suh as prolog, some ontrol diretives anbe provided as annotations by the programmer. The logi omponent states onlythe problem-spei� part of an algorithm and determines only its orretness,while the ontrol omponent only expresses a problem-independent exeutionstrategy and determines only the eÆieny of the algorithm.Kowalski listed several advantages of this enapsulation, whih is akin to theabstration ahieved when separating the algorithm and data-struture ompo-nents of programs. These advantages inlude the following:{ The logi and ontrol omponents of algorithms an be suessively re�ned,and improved, independently of eah other.{ A default, and thus often sub-optimal, ontrol an be provided for less experi-ened programmers, who an thus fous their e�orts on the logi omponent.



{ The logi omponent of an algorithm an be mehanially generated from,and veri�ed against, a formal spei�ation, using dedution, without onsid-ering the ontrol omponent. Similarly, the logi omponent an be mehani-ally transformed into another one, using dedution, without onsidering theontrol omponent. One thus obtains what is known as program synthesis,program veri�ation, and program transformation, respetively.The objetive of this hapter | whose title is by the way subsumed by the one ofKowalski's book | is to overview the main ahievements in deploying logi forprogram synthesis, and to outline its future prospets. As synthesis nowadaysstarts saling up from toy programs to real-life software and to ommeriallyviable tools, it an be argued that omputational logi will ontinue to be adriving fore behind these developments.Sope of this Chapter. In ontrast to Kowalski's intention, I here do not fouson the synthesis of logi programs only, but rather take a wider approah andtakle the synthesis of any kinds of programs. Indeed, the target language doesnot really matter, but what does matter is the use of omputational logi inthe synthesis proess. Similarly, I shall not restrit myself to his advoated useof dedutive inferene for synthesis, but will also disuss the role of indutive,abdutive, and analogial inferene in synthesis.Also, although there is a large overlap in onepts, notations, and tehniquesbetween program synthesis and program transformation, veri�ation, and anal-ysis (whih is the study of the semantis and properties of programs, suh astheir termination), I here disuss onepts and tehniques relevant to programsynthesis only | assuming it an be learly delineated from those other areas| and refer the reader to the proli� literature on these related researh �elds.Having thus both widened and narrowed the sope of this hapter omparedto Kowalski's original agenda, the literature to be overviewed is very voluminousand thus annot possibly be disussed in suh a single, short hapter. I havethus made a maybe subjetive seletion of the landmark researh in programsynthesis, with partiular attention to seminal work and to approahes that saleup for eventual deployment in atual software development. For overage of moreapproahes, I thus refer the interested reader to the numerous overviews, surveys,and paper olletions periodially published before this one, suh as those | inhronologial order | by Barr & Feigenbaum [3℄, Biermann et al. [14, 15, 12, 13℄,Partsh et al. [73, 72℄, Smith [79℄, Balzer [2℄, IEEE TSE [70℄, Goldberg [41℄, Rih& Waters [74, 75℄, Feather [30℄, Lowry et al. [60, 61℄, Steier & Anderson [87℄, JSC[16℄, Deville & Lau [27℄, and Flener [34, 37℄.Organisation of this Chapter. The rest of this hapter is organised as fol-lows. In Setion 2, I desribe my viewpoint on what program synthesis atuallyis, and what it is not, espeially in relation to other areas, suh as ompilationand transformation. Classi�ation riteria are also given. The tehnial ore ofthis hapter are Setions 3 to 5, where I overview past ahievements of logi-



based program synthesis.1 I devote one setion eah to the three main streamsof researh, namely transformational (Setion 3), onstrutive (Setion 4), andmixed-inferene (Setion 5) synthesis, exhibiting one or two representative sys-tems for eah of them, in terms of their underlying mahineries, their atual syn-thesis proesses, and interesting exerpts of sample syntheses. From this skethof the state-of-the-art, I an then outline, in Setion 6, the future prospets ofprogram synthesis, whether logi-based or not, espeially in terms of the hal-lenges it faes towards saling up and eventual transfer of the tehnology toommerial software development. Finally, in Setion 7, I onlude.2 What Is Program Synthesis?I now desribe my viewpoint on what program synthesis atually is, and whatit is not. In Setion 2.1, I state the objetive and rationale of program synthesis,and ontrast it with program transformation. Next, in Setion 2.2, I proposea lassi�ation sheme for synthesisers. Finally, in Setion 2.3, I show that thegoalposts of synthesis have been moving very muh over the years, and thatsynthesis is in retrospet nothing else but ompilation.2.1 The Goal of Program SynthesisThe grand objetive of program synthesis | also known as automati program-ming | researh is to develop a program that develops orret programs fromspei�ations, with as muh or as little interation as the spei�er wants. Nothingin this formulation is meant to imply that the fous is on programming-in-the-small. Synthesising real-life software only requires a salable synthesis proess.Just like manual programming, synthesis is thus about translating a statementfrom one language into another language, namely from the spei�ation lan-guage into the programming language, thereby swithing from a statement ofwhat the program does and how it should be used to a statement of how theprogram does it, hene ideally not only establishing orretness (the programoutputs satisfy the post-ondition of the spei�ation, provided the inputs meetits pre-ondition) but also ahieving a reasonable level of eÆieny (outputs areomputed within a reasonable amount of time and spae).The rationale for this objetive is the notorious diÆulty for most program-mers of e�etively developing orret and eÆient programs, even when theseprograms are small. The bene�ts of a synthesiser would be higher-quality pro-grams and the disappearane of the program validation and maintenane steps,and instead total fous on spei�ation elaboration, validation, and maintenane,beause replay of program development would beome less ostly. Synthesiswould be espeially useful in problem domains where there is a huge gap between1 Citations are not neessarily to the �rst paper on a spei� approah, but to om-prehensive papers that may have been published muh later. In the latter ase, Iindiate the year of the original paper in the running text.



the end-user formulation of a problem and an eÆient program for solving it,suh as for onstraint satisfation problems, for instane.The hope for synthesisers is as old as omputing siene itself, but it is oftendismissed as a dream. Indeed, we are way o� a fully automati, general-purpose,end-user-oriented synthesiser [75℄, and pursuing one may well be illusory. Mostof the early synthesis projets aimed at starting from informal spei�ations. Forinstane, the safe projet [2℄ initially went to great e�orts to do so, but eventu-ally swithed to de�ning gist, a very-high-level formal language for onveyingformal desriptions of spei�ations. Nowadays, as a simpli�ation, virtually allsynthesisers start from inputs in suh formal languages. Another typial simpli�-ation through division of work is to fous on the synthesis of the logi omponentof programs, leaving the design of their data-struture and ontrol omponentsto others. In this hapter, I fous on approahes to logi-based synthesis thatembody both of these usual simpli�ations.A few words need to be said about the relationship between synthesis andtransformation. Whereas program synthesis is here de�ned as the translation of astatement from a possibly informal spei�ation desription language into a pro-gram in a neessarily formal programming language, with fous on orretness,program transformation is here de�ned as the equivalene-preserving modi�a-tion of a program into another program of the same language, with fous onahieving greater eÆieny, in time or spae or both. This makes transformationdi�erent from synthesis in purpose, but omplementary with it. In pratie, theyshare many onepts and tehniques. Optimising transformation an be ahievedby hanging any of the logi, ontrol, or data-struture omponents of programs.This raises many interesting issues:{ One an argue that synthesis and transformation should not be a sequene oftwo separate but omplementary tasks, beause the orretness and eÆienyof algorithms are inevitably intertwined, even if separated in logi and ontrolomponents. But this division of work is appealing and has been useful.{ If only the text of a program enters transformation, then the rationale of itssynthesis steps is lost to the transformation and may have to be redisovered,in a ostly way, in order to perform e�etive transformation. I am not awareof any transformation approahes that take programming rationale as input.{ In Kowalski's words [53℄: \Changing the logi omponent is a useful short-term strategy, sine the representation of the problem is generally easierto hange than the problem-solver. Changing the ontrol omponent, on theother hand, is a better long-term solution, sine improving the problem-solverimproves its performane for many di�erent problems." A good example ofthe e�et of suitably hanging ontrol is the swith from logi programmingto onstraint logi programming, thereby giving programs with a generate-and-test logi omponent an often spetaular speedup. Suh paradigm shiftsmay well require a rede�nition of what synthesis and transformation are.No matter whih way the purposes of synthesis and transformation are de�ned,there is an unlear boundary between them, made even more onfusing by otheronsiderations, examined in Setion 2.3.



2.2 Classi�ation CriteriaA huge variety of synthesis mehanisms exist, so I here propose a multi-dimensionallassi�ation sheme for them. The riteria fall into three major ategories,grouping the attributes of the synthesis inputs, mehanisms, and outputs.Synthesis Inputs. The input to synthesis is a spei�ation of the informalrequirements. Sometimes, a domain theory stating the laws of the appliationdomain must also be provided. These inputs have the following attributes:{ Formality. An input to synthesis an be written in either an informal lan-guage (whose syntax or semantis is not prede�ned), or a formal language(whose syntax and semantis are prede�ned). The often enountered notionof semi-formal language is stritly speaking meaningless: ontrolled naturallanguages are formal, and UML and the likes are informal even though theirgraphial parts may have a formal syntax and semantis.{ Language. When using a formal input language, a spei�ation an beeither axioms, or input/output examples. Sometimes, the atual language isdisguised by a suitable graphial user interfae, or it is sugared.{ Corretness wrt the Requirements. Informally, a statement S is orretwrt another statement T i� S is onsistent with T (everything that followsfrom S also follows from T ) as well as omplete wrt T (everything thatfollows from T also follows from S). Input to synthesis is usually assumed tobe onsistent with the requirements. On the other hand, the input is eitherassumed to be omplete or delared to be inomplete wrt the requirements. Inthe former ase, the synthesiser need only produe a program that is orretwrt the input. In the latter ase, the synthesiser must try to extrapolate theatual omplete requirements from the given input. In either ase, atualvalidation against the informal requirements is done by the programmer,by hanging the inputs to synthesis until the synthesised program has thedesired behaviour. As opposed to the external onsisteny and ompletenessonsidered here, internal onsisteny and ompleteness are not lassi�ationattributes, but rather quality riteria that may be mehanially hekedbefore synthesis begins: a statement S is internally onsistent i� S has atleast one model, and internally omplete i� every symbol in S is eitherprimitive to the language used or de�ned within S.Synthesis Mehanisms. The mehanisms of program synthesis an also belassi�ed along a few dimensions:{ Level of Automation. Having by de�nition exluded manual program-ming, synthesis is either semi-automati or fully automati.{ Initiative. In semi-automati synthesis, the initiative in the interation anbe on either side, making the mehanism synthesiser-guided or user-guided.{ Kinds of Inferene. There are many kinds of inferene and they an all beused, and ombined, towards synthesis. I here distinguish between purely-dedutive synthesis, whih performs only dedutive inferene and is either



transformational (see Setion 3) or onstrutive (see Setion 4), and mixed-inferene synthesis, whih features any appropriate mix of dedutive, indu-tive, abdutive, and analogial inferene (see Setion 5).{ Kinds of Knowledge. There is a great need for inorporating knowledgeinto program synthesisers. There are essentially four kinds of useful syn-thesis knowledge, namely knowledge about the mehanis of algorithm de-sign, knowledge about the laws and re�nement of data strutures, knowledgeabout the laws of the appliation domain (this was alled the domain theoryabove), and meta-knowledge, that is knowledge about how and when to usethe other kinds of knowledge.{ Determinism. A non-deterministi synthesiser an generate a family ofprograms from a spei�ation; otherwise, it is a deterministi synthesiser.{ Soundness. Synthesis should be a sound proess, in the sense that it pro-dues an output that is guaranteed to satisfy some pre-determined notion oforretness wrt the input.Synthesis Outputs. The output of synthesis is a program, and usually onlythe logi omponent of its algorithm. The lassi�ation attribute is:{ Language. Tehnially, the synthesised program an be in any language,beause any ode an be generated from the hosen internal representation.In pratie, the pure parts of the so-alled delarative languages are usuallyhosen as internal and external representation of programs, beause they arethe highest-level languages ompiled today and thus suÆient to make thepoint. Common target languages thus are Horn lauses, reursion equations,�-expressions, et.These lassi�ation attributes are not independent: hoies made for one ofthem a�et the available hoies for the others.2.3 The Moving Goalposts of Program SynthesisThe �rst assemblers and ompilers were seen as automati programming sys-tems, as they relieved the programmers from many of the burdens of binaryprogramming. Ever sine, program synthesis researh has been trying to be onestep ahead of the state-of-the-art in programming languages, but, in retrospet,it is nothing else but the quest for new programming paradigms. To paraphraseTesler's sentene, whih was originally on Arti�ial Intelligene: Program syn-thesis deals with whatever has not been ompiled yet. Of ourse, as our notionof program evolves, our understanding of ompilation has to evolve as well: it isnot beause today's ompilers are largely deterministi and automati that to-morrow's ompilers, that is today's synthesisers, are not allowed to have searhspaes or to be semi-automati.The main problem with formal inputs to program synthesis is that there isno way to onstrut them so that we have a formal proof that they apture ourinformal requirements. In fat, the phrase `formal spei�ation' is a ontraditionin terms, as real spei�ations an only be informal [57℄. An informal orretness



proof is needed somewhere, as the purpose of software engineering is after allto obtain programs that implement our informal requirements. Writing suhformal inputs just shifts the obligation of performing an informal proof from theprogram-vs-informal-requirements veri�ation to the formal-inputs-vs-informal-requirements veri�ation, but it does not eliminate that obligation.In my opinion, programs and suh formal inputs to synthesis are intrinsiallythe same thing. As synthesis researh aims at raising the level of language inwhih we an interat with the omputer, ompilation and synthesis are intrin-sially the same proess. In other words, real programming and synthesis areonly being done when going from informal requirements to a formal desription,whih is then submitted to a ompiler. In this sense, fousing synthesis on start-ing from formal statements is not really a simpli�ation, as laimed above, butrather a rede�nition of the task, making it idential to ompilation.I am not saying that formal methods are useless. Of ourse it is importantto be able to hek whether a formal desription is internally onsistent andomplete, and to generate prototypes from exeutable desriptions, beause allthis allows early error detetion. But one annot say that suh formal desriptionsare spei�ations, and one still knows nothing about whether they are externallyonsistent and omplete, namely wrt the informal requirements. Formal inputsto program synthesis are already programs, though not in a onventional sense.But onventions hange in time, and the so-alled \formal spei�ations" oftoday will be pereived as programs tomorrow.In order to stik to the ontemporary terminology and make this hapter in-dependent of agreement or disagreement on this sub-setion, I shall neverthelessspeak of formal spei�ations (without the quotes) in the following.3 Ahievements of Transformational SynthesisIn transformational synthesis, meaning-preserving transformation rules are ap-plied to the spei�ation, until a program is obtained. Usually, this is done withina so-alled wide-spetrum language| suh as b, gist, vdm, z| ontaining bothnon-exeutable spei�ation onstruts and exeutable programming onstruts.I shall use the word `desription' to designate the software representations in suha language, be they formal spei�ations, programs, or hybrids in-between thesetwo extremes.Given a logi spei�ation of the following form, where there is no prejudieabout whih parameters are inputs and whih ones are outputs, at run-time:8P : pre(P )! ( p(P )$ post(P ) )where pre is the pre-ondition (an assertion on all the parameters P , assumedto hold when exeution of a program for p starts), post is the post-ondition (anassertion on the parameters P , to be established after exeution of a programfor p), and p is the spei�ed prediate symbol, transformational synthesis iter-ates over a single step, namely the appliation of a transformation rule to someexpression within the urrent desription, until a program is obtained.



Transformation rules, or transforms, are often represented as rewrite ruleswith pattern variables: IP ) OP [ if C ℄expressing that under the optional appliability ondition C, an expression math-ing input pattern IP under some substitution � may be replaed by the instaneOP� of the output pattern OP .Transforms are either re�nements, reduing the abstration level of the ur-rent desription by replaing a spei�ation onstrut by a program onstrut,or optimisations, performing a simpli�ation (redution in expression size) or aredution in runtime or spae, both at the same abstration level. Re�nementsan at on statements or datatype de�nitions, reduing non-determinism.A sample re�nement is the following unonditional transform of a high-levelnon-reursive array summation into a reursive expression:S =Pui=l A[i℄) �(A; l; u; S) l > u; S = 0 % �(A; l; u; S) i� S is the sum of A[l℄::A[u℄�(A; l; u; S) : l > u;+(l; 1; l0); �(A; l0; u; T );+(A[l℄; T; S)Sample optimisations are the following onditional transform for divisions:x=x) 1 if x 6= 0and the following aumulator introdution, whih amounts to replaing reur-sion in the non-minimal ase of a divide (d) and onquer () de�nition of predi-ate p by tail-reursion | with the minimal (m) ase being solved (s) withoutreursion | as this an be ompiled into more eÆient ode, like iteration:p(X;Y ) m(X); s(X;Y )p(X;Y ) :m(X); d(X;H; T ); p(T; V ); (H;V; Y )) p(X;Y ) p(X;Y; I)p(X;Y;A) m(X); s(X; J); (A; J; Y )p(X;Y;A) :m(X); d(X;H; T ); (A;H;A0); p(T; Y;A0)if assoiative() ^ identity(; left ; I)The latter transform is appliable to the output of the re�nement above, beause+=3 is assoiative and has a left-identity element, namely 0. This illustrates howtransforms an be hained. Of ourse, the re�nement above ould immediatelyhave reeted suh a haining.Other ommon transforms are unfolding (replaing a symbol by its de�ni-tion), folding (the inverse of unfolding), de�nition (introdution of a new symbolvia its de�nition), instantiation (appliation of a substitution), abstration (in-trodution of a where lause, in funtional programming), or reet the laws ofthe appliation domain.Several ontrol issues arise in the rewrite yle, beause the synthesis searhspae is usually intratable due to the sheer number of transforms. First, who



heks the appliability ondition? Usually, this is onsidered a synthesiser re-sponsibility, and thus beomes a task for an automati theorem proving om-ponent thereof. Seond, whih transform should be applied next, and to whihexpression? Usually, full automation is abandoned in favour of user-guided in-terative appliation of transforms, with the synthesiser automatially ensuringthat appliability onditions are met, as well as orretly applying the hosentransform to the hosen expression, thus taking over all lerial work. Other ap-proahes are based on rule ordering, heuristis, agendas, planning, replay, et.Third, when to stop transforming? Indeed, many transforms an also be ap-plied during program transformation (as de�ned in Setion 2.1), hene blurringthe transition and distintion between synthesis and transformation. Usually,one onsiders that synthesis per se has �nished when the urrent desriptionis entirely within the exeutable part of the wide-spetrum language, so thatsynthesis is here de�ned as the translation from the full wide-spetrum languageinto its exeutable subset.When transforms are too �ne-grained, they lead to very tedious and lengthysyntheses. The idea is thus to de�ne marosopi transforms that are higher-level in the sense that they are loser to atual programming deisions and thatthey are ompositions of suh atomi transforms. Examples are �nite di�er-ening (replaing expensive omputations in a loop by inremental ones), loopfusion (merging of nested or sequentially-omposed loops into one loop), partialevaluation (simplifying expressions for �xed arguments), generalisation (solvinga more general, easier problem), dynami programming, memoing (ahing re-sults of omputations to avoid useless reomputations), jittering (preparing theappliation of other transforms).To doument a synthesis and ease its understanding, the applied sequeneof transforms is usually reorded, ideally with the rationale of their usage. Thisalso allows replay, though it remains unlear when this is suitable and when not.I now disuss an entire produt-line of representative transformational syn-thesisers, hosen beause of the objetive of saling the tehnology to real-lifesoftware development tasks. Indeed, kids and its suessors (see Setion 3.1)have been suessfully deployed in many real-life appliations. In Setion 3.2, Ioutline the e�orts of the other researh entres in transformational synthesis.3.1 SpeWare, DesignWare, and PlanWareAt Kestrel Institute (Palo Alto, California, USA, www.kestrel.edu), Smith andhis team have been designing, for over 15 years now, a series of synthesisers, allwith the same philosophy, whih is spei� to them (see below). Their KestrelInterative Development System (kids) [81℄ extends its predeessor ypress [80℄and automatially synthesises orret programs within the wide-spetrum lan-guage refine, while leaving their transformation to a user-guided rewrite yle.I here desribe the systems of their produt-line | SpeWare (for Spei�a-tion Ware) [86℄, DesignWare [84℄, and PlanWare [18℄ | as well as how theyrelate to eah other. They amount to more than just reasting, as desribed in[83℄, the synthesis and transformation alulus of kids in ategory theory.



The overall Kestrel philosophy is as follows. Consider, for instane, pro-grams that solve onstraint satisfation problems (CSPs) by exploring the entireandidate-solution spae, though with pruning of useless subspaes. They have aommon struture, alled global searh, of whih the dataow, ontrol-ow, andinterations between parts an be formally aptured in a program shema. Sim-ilarly, other program shemas an be designed for apturing the methodologiesleading to loal searh programs, divide-and-onquer programs, et. Suh pro-gram shemas an then be used in synthesis to signi�antly redue the andidate-program spae. Some proof obligations arise in suh shema-guided synthesis, butthey are feasible by state-of-the-art automated theorem provers. The synthesisedprograms are not very eÆient, though, sine they are just problem-spei� in-stanes of program shemas that had been designed for entire problem families,but without being able to take into aount the spei�ities of their individualproblems. The synthesised programs an thus be transformed into equivalentbut more eÆient ones by applying high-level transforms, in a user-guided way.However, this transformation yle also beame the bottlenek of kids, beausethe user really has to be an expert in applying these transforms in a suitableorder and to the appropriate sub-expressions. Moreover, the proof obligationsof synthesis are only automatable if the entire appliation domain knowledge isformally aptured, whih is an often daunting task. Smith used kids to ratherquikly re�ne new, breakthrough algorithms for various CSPs [82℄.The inputs to synthesis are a formal axiomati higher-order algebrai spe-i�ation, assumed to be onsistent and omplete wrt the requirements, and adomain theory. The synthesis mehanism is purely dedutive, interative or au-tomati (depending on the system), non-deterministi, and sound. Algorithmdesign, data struture, and appliation domain knowledge are exploited. Theoutput is a program in any supported language (e.g., CommonLisp, ++).The Transformation System. A ategory-theory approah to transformationis taken. Viewing spei�ations as �nite presentations of theories, whih are thelosures of the spei�ation axioms under the rules of inferene, a spei�ationmorphism S ! S0 is a provability-preserving signature morphism between spe-i�ations S and S0, that is a map between their sort and operator symbols, suhthat axioms translate into theorems.2For instane, onsider the spei�ation of �nite ontainers in Figure 1. It isparameterised on the sort E of the ontainer elements. Containers are eitherempty, or singletons, or onstruted by an in�x binary join operator.Also onsider the following spei�ation of binary operators:spe BinOp issort Top bop : T; T �! Tend2 For typographi reasons, the `!' symbol is thus overloaded, being used for bothmorphisms and logial impliation. The distintion should always be lear fromontext. Under its morphism meaning, this symbol will be typeset here in otherdiretions of the wind rose, to failitate the representation of graphs of morphisms.



spe Container issorts E;Contop empty : �! Contop singleton : E �! Contop join : Cont; Cont �! Cont: : : other operator delarations : : :ops fempty; singleton; joing onstrut Contaxiom 8X : Cont : X join empty = Xaxiom 8X : Cont : empty join X = X: : : axioms for the other operators : : :endFig. 1. A spei�ation of �nite ontainersspe ProtoSeq issorts E; Seqop empty : �! Seqop singleton : E �! Seqop join : Seq; Seq �! Seq: : : other operator delarations : : :ops fempty; singleton; joing onstrut Seqaxiom 8X : Seq : X join empty = Xaxiom 8X : Seq : empty join X = Xaxiom 8X;Y; Z : T : (X join Y ) join Z = X join (Y join Z): : : axioms for the other operators : : :end Fig. 2. A spei�ation of �nite sequenesThe following spei�ation of assoiative operators reets the spei�ation mor-phism BinOp! Assoiative, whih is fT 7! T; bop 7! bopg:spe Assoiative isimport BinOpaxiom 8X;Y; Z : T : (X bop Y ) bop Z = X bop (Y bop Z)endSpei�ations and spei�ation morphisms form a ategory, alled SPEC , inwhih push-outs an be omputed. Informally, a diagram is a direted graphwith spei�ations as verties and spei�ation morphisms as ars.For instane, the push-out of Assoiative  BinOp ! Container undermorphisms fT 7! T; bop 7! bopg and fT 7! E; bop 7! joing is isomor-phi to the spei�ation of prototype �nite sequenes in Figure 2. Indeed, se-quenes are ontainers whose join operation is assoiative. By another mor-phism, sequene-spei� operators an be added to ProtoSeq, giving rise to aspei�ation Sequene of �nite sequenes. By another push-out Commutative BinOp ! ProtoSeq, we an get a spei�ation ProtoBag of prototype �nitebags, to whih bag-spei� operators an be added, giving rise to a spei�ation



BinOp ! Container# #Assoiative! ProtoSeq  BinOp# #BinOp ! ProtoBag  Commutative# #Idempotent! ProtoSet
Container#ProtoSeq. #Sequene ProtoBag. #Bag ProtoSet.SetFig. 3. A hain of ommuting diagrams (left) and a taxonomy of ontainers (right)Bag of �nite bags. Indeed, bags are sequenes whose join operation is om-mutative, beause element order is irrelevant. Finally, by yet another push-outIdempotent BinOp ! ProtoBag, we an obtain a spei�ation ProtoSet ofprototype �nite sets, to whih set-spei� operators an be added, giving rise toa spei�ation Set of �nite sets. Indeed, sets are bags whose join operation isidempotent, beause multipliity of elements is irrelevant. This proess an beaptured in the hain of three ommuting diagrams of the left of Figure 3. Ifwe graphially add the onsidered additional morphisms to the entral vertialhain, we obtain the taxonomy of ontainers in the right of Figure 3.A diagram morphism D ) D0 is a set of spei�ation morphisms betweenthe spei�ations of diagrams D and D0 suh that ertain squares ommute.It serves to preserve and extend the struture of spei�ations, as opposed toattening them out via o-limits. For instane, a not shown diagram morphismBAG ) BAGasSEQ an be reated to apture the re�nement of bags intosequenes, where BAG and BAGasSEQ are diagrams involving spei�ationsBag and Sequene, respetively. Diagrams and diagram morphisms also form aategory, in whih o-limits an be omputed, using the o-limits in SPEC . Theword `spei�ation' here denotes either a spei�ation or a spei�ation diagram,and `re�nement' refers to a diagram morphism, unless otherwise noted.In general now, spei�ations | as theory representations | an apture do-main models (e.g., transportation), abstrat datatypes (e.g., BAG), software re-quirements (e.g., rew sheduling), algorithm theories (e.g., divide-and-onquer),et. Tool support and a large library of reusable spei�ations are provided forstruturing and omposing new spei�ations. Also, spei�ation morphisms anddiagram morphisms an apture spei�ation struturing (e.g., via imports),spei�ation re�nement (e.g., sheduling to transportation-sheduling), algo-rithm design (e.g., global-searh to sheduling), datatype re�nement (e.g., BAG )BAGasSEQ), expression optimisation (e.g., �nite di�erening), et. Again, toolsupport is provided for reating new re�nements, and a large library of usefulre�nements exists.Finally, inter-logi morphisms are provided for translating from the spei-�ation logi into the logi of a programming language | thereby performingode generation | or of a theorem-prover or any other supporting tool.



A ) Spe0+ +B ) Spe1 ( C+ +E ) Spe2 ( D+ +: : : : : : : : :+ +Spen ( Z#CodeFig. 4. The synthesis proessThe Synthesis Proess. The re�nement of a spei�ation Spe0 is an iterativeproess of alulating push-outs in ommuting squares, yielding new spei�a-tions Spei, until the proess is deemed �nished and an inter-logi morphism isused to generate a program Code from the �nal spei�ation Spen. This pro-ess is depited in Figure 4. Here, A ) B, C ) D, et, are re�nements storedin a library. With push-outs being alulated automatially, the reative stepsare the seletion of a re�nement and the onstrution of a lassi�ation arrow[83, 84℄ between the soure diagram (A, C, et) of a library re�nement and theurrent spei�ation. The leverage an be quite dramati, with push-outs oftengenerating many new lines, whih might have been quite umbersome, if notdiÆult, to write by hand.As the size and omplexity of spei�ation and re�nement libraries inrease,support must be given for this approah to sale up. First, spei�ation librariesare organised in taxonomies, suh as Figure 3 above, so as to allow the in-remental onstrution of lassi�ation arrows [84℄. For instane, to apply theBAG ) BAGasSEQ re�nement to the urrent spei�ation S, one an �rst las-sify S as a Container, then as a ProtoSeq, next as a ProtoBag, then as a Bag,and �nally as a BAG , rather than lassifying S as a BAG in one go. The deeperone goes into a taxonomy, the more spei�ation information an be exploitedand the more eÆient the resulting ode. Seond, as patterns of useful lassi�a-tion and re�nement sequenes emerge, parameterised maros, alled tatis, anbe de�ned to provide higher-level, if not more automati, operations to the user.For instane, the divide-and-onquer algorithm theory admits two lassi�ationtatis, depending on whether the deomposition or the omposition operator ismanually seleted from a library, and thus reused, in a lassi�ation step, leavingthe other operator to be inferred.SpeWare [86℄ is an abstrat mahine exporting high-level synthesis andtransformation primitives that hide their low-level implementation in termsof ategory theory operations. Using it, one an more quikly write new syn-thesisers. First, a new version of kids was implemented, alled DesignWare[84℄, extending SpeWare with domain-independent taxonomies of software de-sign theories plus support for re�ning spei�ations using the latter. Then, on



top of DesignWare, the PlanWare [18℄ domain-spei� synthesiser of high-performane shedulers was developed. Both its synthesis and transformationproesses are fully automati, and it even automatially generates the formalspei�ation and appliation domain knowledge | whih are typially thou-sands of lines | from the information provided by the spei�er, who uses a veryintuitive domain-spei� spreadsheet-like interfae, without being aware of theunderlying ategory theory. PlanWare extends DesignWare with libraries ofdesign theories and re�nements about sheduling, together with a speialised ta-ti for ontrolling the appliation of this design knowledge. Other domain-spei�synthesisers are in preparation, and will also be built on top of DesignWare.A Sample Synthesis. A synthesis of a funtion sorting that sorts bags intosequenes may start from the following spei�ation:spe Sorting isimport BagSeqOverLinOrdop sorted : Bag; Seq �! Booleandef sorted(X;Y ) = ord(Y ) ^ seqToBag(Y ) = Xop sorting : Bag �! Seqaxiom sorted(X; sorting(X))endwhere sorted is used to express the post-ondition on sorting. Universal quan-ti�ation onsistent with the signature delarations is assumed for unquanti�edvariables. Suppose the spei�er wants to apply a divide-and-onquer algorithmdesign, as embodied in the re�nement DivConq ) DivConqSheme, where thesoure spei�ation is in Figure 5. Here, a funtion F from domain D into rangeR is spei�ed, with post-ondition O. Three mutually exlusive prediates pi(for i = 0::2) are de�ned over D, representing onditions for the existene ofdeompositions, omputed under post-onditions ODi (for i = 0::2), with OD2enforing that its deompositions are smaller than the given term, under well-founded relation �. Soundness axioms require that the deompositions an beomposed, under post-onditions OCi (for i = 0::2), to ahieve the overall post-ondition O. The target spei�ation of the re�nement is in Figure 6. wherea shemati de�nition of the spei�ed funtion F is introdued, together withomposition operators Ci whose post-onditions are OCi.Now, to apply the DivConq ) DivConqSheme re�nement, a lassi�ationarrow Sorting ) DivConq has to be manually onstruted, so that the orre-sponding push-out an be automatially alulated. The �rst part of the nees-sary diagram morphism is straightforward, namely fD 7! Bag; R 7! Seq; F 7!sorting; O 7! sorted; � 7! subBag; : : :g. The remaining part gives riseto dual alternatives, whih an be aptured in tatis, as disussed above: ei-ther a set of simple standard deomposition operators is reused from a libraryand the orresponding omplex omposition operators are inferred, or a set ofsimple standard omposition operators is reused and the orresponding om-plex deomposition operators are inferred. Following the �rst approah, the bagonstrutor set femptyBag; singletonBag; bagUniong ould be reused as the ba-



spe DivConq issorts D;R;E; Unitop F : D �! Rop O : D;R �! Booleanop � : D;D �! Booleanaxiom wellFounded(�)op p0; p1; p2 : D �! Booleanop OD0 : D;Unit �! Booleanop OD1 : D;E �! Booleanop OD2 : D;D;D �! Booleanop OC0 : R;Unit �! Booleanop OC1 : R;E �! Booleanop OC2 : R;R;R �! Booleanaxiom p0(X)! OD0(X; hi)axiom p1(X)! 9M : E : OD1(X;M)axiom p2(X)! 9X1; X2 : D : OD2(X;X1; X2) ^X1 � X ^X2 � Xaxiom OD0(X; hi) ^ OC0(Y; hi)! O(X; Y )axiom OD1(X;M) ^OC1(Y;M)! O(X; Y )axiom OD2(X;X1; X2) ^O(X1; Y1) ^O(X2; Y2) ^OC2(Y; Y1; Y2)! O(X; Y )axiom p0(X) xor p1(X) xor p2(X)endFig. 5. Spei�ation of problems that have divide-and-onquer programssis for deomposition, giving rise to f: : : ; p0 7! emptyBag?; OD0 7! �X : X =emptyBag; p1 7! singletonBag?; OD1 7! �X;M : X = singletonBag(M); p2 7!nonSingletonBag?; OD2 7! �X;X1; X2 : X = bagUnion(X1; X2); : : :g. By de-dutive inferene, the remaining part of the morphism an be obtained, yieldingtranslations to empty sequene onstrution, singleton sequene onstrution,and sequene merging for OC0, OC1, and OC2, respetively, ultimately leadingthus to a merge-sort algorithm. Under the seond approah, the sequene on-strutor set femptySeq; singletonSeq; seqConatg ould be reused as the basisfor omposition, ultimately leading to a quik-sort algorithm.Either way, after alulating the push-out, synthesis ould ontinue by usingthe BAG ) BAGasSEQ datatype re�nement, followed by simpli�ation re�ne-ments, et, progressively bringing the spei�ation loser to a programming level,until a ode-generating inter-logi morphism for translating the de�nition of Finto a funtional program an be applied.3.2 Other ShoolsTransformational synthesis is by far the dominant approah to program synthe-sis, and many dozens of projets have been devoted to it, so I an here onlymention the seminal and dominant ones.At the University of Edinburgh (UK), Burstall & Darlington [22, 25℄ pro-posed a small, �xed set of domain-independent, low-granularity, and rather



spe DivConqSheme isimport DivConqop C0 : �! Raxiom OC0(C0; hi)op C1 : E �! Raxiom OC1(C1(M);M)op C2 : R;R �! Raxiom OC2(C2(X1; X2); X1; X2)de�nition of F isaxiom p0(X)! OD0(X; hi) ^ F (X) = C0axiom p1(X)! 9M : E : OD1(X;M) ^ F (X) = C1(M)axiom p2(X)! 9X1; X2 : D : OD2(X;X1; X2) ^ F (X) = C2(F (X1); F (X2))endtheorem O(X; F (X))end Fig. 6. Spei�ation of divide-and-onquer programsoptimisation-oriented transforms (namely folding, unfolding, de�nition, instan-tiation, and abstration) for the synthesis and transformation of reursion equa-tions. Laws of the appliation domain an also be used. They presented a strategyand a semi-automated system for transforming reursive equations, say into tail-reursive ones, with the user making the reative deisions. For synthesis, theobjetive of applying suh transforms often is to onstrut, through unfoldingand other rewriting, a desription where reursion may be introdued throughfolding. The atomi transforms are proven to onstitute a orret set for explor-ing the andidate program spae.At Stanford University (California, USA), at the same time, but indepen-dently, Manna & Waldinger [63℄ disovered the same atomi rules and automati-ally synthesised lisp programs with their DEDutive ALgorithm Ur-Synthesiser(dedalus). The system has over 100 rules, and also generates orretness andtermination proofs. See Setion 4.1 for a detailed disussion of a redesign ofdedalus as a onstrutive synthesiser.In the UK, muh of the early e�orts on the synthesis of logi programs wereonduted, based on the foundational fold/unfold work mentioned above. Un-der a �rst approah, Clark et al. [23℄ exeute the spei�ation with symbolivalues that over all possible forms of the type of the hosen indution param-eter. For instane, if that parameter is a list, then the empty and non-emptylists are onsidered. A similar approah was taken by Hogger [49℄, though withslight di�erenes. Indution on some parameter was only introdued as the needarises. A highly strutured top-down strategy for applying folding and unfolding,guided by a reursion shema provided by the spei�er, as well as the notion ofspei�ation framework for synthesis, were proposed by Lau et al. [55, 56℄. Thisapproah is amenable to mehanisation. Spei�ation frameworks enabled a �rst-order logi reonstrution of kids-like shema-guided synthesis [36, 35, 38℄.



Several researhers tried to make synthesis a deterministi proess, akin toompilation. For instane, impliation formulas with arbitrary bodies may benormalised into normal lauses by the Lloyd-Topor translation [59℄. However,this does not always yield useful logi programs, due to the de�ienies of SLDNFresolution, suh as oundering. Also, the obtained programs are sometimes hope-lessly ineÆient. Overoming these aws is the objetive of program transfor-mation. Another approah was taken by Sato & Tamaki's �rst-order ompiler[77℄, whose synthesis of partially orret de�nite programs is fully automati anddeterministi, but may fail, for lak of logial power.At TU Munih and TU Darmstadt (Germany), Bibel leads synthesis projetssine 1974. Their lops (LOgial Program Synthesis) system [8{10℄, although pre-sented as being a onstrutive synthesiser, was atually transformational. Syn-thesis onsisted of a four-phased appliation of heuristis that ontrol speialtransformations. A novel feature is the breaking of inputs into parts so as todisover in what way they ontribute to the onstrution of the outputs; in thisway, loops an be disovered without the need for reursively-expressed bak-ground axioms, whih would be essentially idential to the synthesised programs.The urrent maps projet [11℄ takes a multi-level approah to synthesis, and isessentially a re-implementation of kids within NuPrl, but without optimisingtransformations yet.At Stanford University (California, USA), the psi projet led by Green [45℄inluded the transformational engine peos [4℄, whih is based on a large, �xedatalog of domain-spei� transforms. Cooperation with an eÆieny expert,alled libra [52℄, ensured eÆient synthesis of eÆient programs. A suessorsystem, alled hi [46℄, was partly developed at Kestrel Institute.At the University of Southern California (USA), the 15-year-projet safe/ti(Spei�ation Aquisition From Experts, and Transformational Implementation)headed by Balzer [2℄ provided a �xed atalog of domain-spei� transforms forre�ning spei�ations within the wide-spetrum language gist, via a knowledge-based approah. Automation issues were takled by the glitter sub-system [31℄.At TU Munih (Germany), the long-term ip (Computer-aided Intuition-guided Programming) projet of Bauer and o-workers [6, 72℄ led, sine 1975,to the wide-spetrum algebrai spei�ation language ip-l and the intera-tive environment ip-s. The main emphasis was on a user-extensible atalog oftransforms, starting from a small set of generative rules.The Vienna Development Method (vdm) by Bj�rner & Jones [17℄ is an ISO-standardised omprehensive software development methodology, proeeding byre�nement from formal spei�ations of abstrat datatypes in the meta-iv wide-spetrum language. Many tools are available, from di�erent soures, but theyare not integrated. See www.sr.nl.a.uk/vdm for more details.From Oxford University (UK) omes z [85℄, a very suessful and soon-to-be-ISO-standardised notation for formal spei�ations, based on set theory. Thereis third-party tool support, though not integrated, on top of the hol theoremprover. Award-winning appliations inlude the IBM CICS projet and a spei�-ation of the IEEE standard for oating-point arithmeti. See www.afm.sbu.a.uk/z.



The b formal method was developed by Abrial [1℄. A �rst-order logi spe-i�ation language with sets is provided to speify and re�ne systems that aremodelled as abstrat mahines. Tool support for re�nement and dishargingmany of its proof obligations exists. See www.afm.sbu.a.uk/b.At the University of California at San Diego (USA), the obj language fam-ily of Goguen and his team [40℄ provides wide-spetrum algebrai languages,based on order-sorted equational logi, possibly enrihed with other logis. Toolsupport for re�nement exists. See www.s.usd.edu/users/goguen/sys/obj.html.At the Universities of Edinburgh (UK) and Warsaw (Poland), Sannella &Tarleki [78℄ propose ExtendedML as a wide-spetrum language for spei�a-tion and formal development of StandardML programs, through re�nement.See www.ds.ed.a.uk/home/dts/eml.4 Ahievements of Construtive SynthesisConstrutive synthesis | also known as proofs-as-programs synthesis, and, abit misleadingly, as dedutive synthesis | is based on the Curry-Howard iso-morphism [50℄, whih says that there is a one-to-one relationship between aonstrutive proof [7, 68℄ of an existene theorem and a program that omputeswitnesses of the existentially quanti�ed variables of the theorem. Indeed, the useof indution in proofs orresponds to the use of reursive or iterative ompositionin programs, while ase analysis orresponds to a onditional omposition, andlemma invoation to a proedure all.Assume given a logi spei�ation of the following form:8X : 9Y : pre(X)! post(X;Y ) (1)where pre is the pre-ondition (an assertion on the input parametersX , assumedto hold when exeution of the program starts), and post is the post-ondition (anassertion on X and the output parameters Y , to be established after exeution ofthe program). Note that this spei�ation form naturally leads to the synthesisof total funtions, but not of relations. A solution to this is to view relations asfuntions into Booleans [20℄. Construtive synthesis proeeds in two steps:1. Construtively prove the satis�ability of the spei�ation.2. Obtain the proedure, embodied in the proof, of realising the spei�ation.For the seond step, there are two approahes:{ The interpretative approah diretly interprets the proof as a program, bymeans of an operational semantis de�ned on proofs.{ The extrative approah mehanially extrats | or: ompiles | a program,in a given target language, from the proof.The two approahes have omplementary advantages and drawbaks: interpre-tation is not as eÆient as the exeution of a ompiled version, but the hoieof a target language might obsure omputational properties of proofs.



The idea of exploiting onstrutive proofs as programs is atually way olderthan its naming as the Curry-Howard isomorphism in 1980: the idea is inherentto intuitionisti logi | see the work of Kleene in the 1940s | and the oldestsynthesisers of this approah are qa3 (Question-Answering system) by Green[44℄, and ProW (PROgram Writer) by Waldinger & Lee [90℄, both from thelate 1960s. The terminology `proofs-as-programs' seems to have been oined byConstable in the early 1970s, aording to [5℄.The bottlenek is of ourse the state-of-the-art in automated theorem prov-ing (ATP). In essene, the hard problem of synthesis has been translated intothe other hard | if not harder! | problem of ATP. The proof spae for mostonjetures is indeed intratable, and formal spei�ations tend to be quite om-plex onjetures. Solutions are thus being worked out to ontrol the navigationthrough this searh spae, namely synthesisers with reuse, interative provers,tatial provers, et.I here disuss two representative onstrutive synthesisers, hosen due totheir interesting relationship to eah other. Indeed, amphion (see Setion 4.2)an be seen as an outgrowth of dedalus (see Setion 4.1), with the objetiveof saling the tehnology to real-life software development tasks, and this wasthe deisive riterion in my seletion. In Setion 4.3, I outline the e�orts of theother main researh entres in onstrutive synthesis.4.1 dedalusTheDEDutive ALgorithm Ur-Synthesiser (dedalus) system of Manna &Waldinger(at Stanford and SRI, California, USA) was originally developed as a trans-formational synthesiser [63℄ (see Setion 3.2), and then re-designed within theproofs-as-programs paradigm, in a onsiderably more elegant manner [64, 67℄.The inputs to synthesis are a formal axiomati �rst-order logi spei�ation,assumed to be onsistent and omplete wrt the requirements, as well as a domaintheory. The synthesis mehanism is purely dedutive and fully automatable,but an interative interfae with user guidane exists. Only appliation domainknowledge is exploited. Synthesis is non-deterministi and sound. The outputs ofsynthesis are a side-e�et-free appliative program, as well as impliitly a proofof its orretness and termination.The Proof System. Construtive logis are not neessarily required for all of aonstrutive synthesis. Indeed, many derivation steps during synthesis atuallyare only veri�ation steps, and need thus not be onstrutive at all. Classiallogi is thus suÆient, provided it is suÆiently onstrutive when needed.Their dedutive tableau proof system was developed espeially for proofs-as-program synthesis. A dedutive tableau is a two-dimensional struture, whereeah row is a sentene of the form ha;�; oi or h�; g; oi, where a is an assertionand g a goal, both in lassial �rst-order logi, while o is an optional outputterm in lisp. The symbol `�' denotes the absene of an entry in that olumn,and is equivalent to true for assertions, false for goals, and any new variablefor output terms. For simpliity, I assume there is only one output parameter in



spei�ations. For instane,h�;M 2 S ^ (8X : X 2 S !M � X);Miis a sentene apturing a pre-ondition-free spei�ation of the minimum(S)funtion, whih returns the minimum element M of integer-set S.The semantis of a sentene ha; g; oi, in an interpretation I, is the set oflosed terms t that, for some substitution �, are equal to instane o� of theoutput term, if any, and either the instane a� of the assertion, if any, is losedand false or the instane g� of the goal, if any, is losed and true, in I.The semantis of a tableau is the union of the semantis of its sentenes.There is thus an impliit onjuntion between the assertions of a tableau, andan impliit disjuntion between its goals. Note the dual role of assertions andgoals: a formula an be transferred between the assertions and goals olumns bynegating it. Nevertheless, the distintion between assertions and goals providesintuitive and strategi power, and is thus kept.A set of dedution rules is provided to add new sentenes to a tableau, notneessarily in an equivalent way, but at least preserving the set of omputableexpressions (whih are quanti�er-free expressions in terms of the basi funtionsof the theory, plus the funtions for whih programs have already been synthe-sised, inluding the funtion for whih a program is urrently being synthesised,as this enables reursion formation). Hene the program denoted by a tableauremains unhanged through appliation of these rules. Eah user-provided newrule needs to be �rst proven sound aording to this preept.A dedution rule has a set of required sentenes in the old tableau, represent-ing the appliability ondition of the rule, and a set of generated sentenes inthe new tableau, representing the di�erene between the old and new tableaus.For instane, the if-split rule breaks required sentene h�; if a then g; ti intothe generated sentenes ha;�; ti and h�; g; ti. There are dual splitting rules.Conditional output terms are normally introdued by four non-lausal reso-lution rules, reeting ase analysis in informal proofs. For instane, the goal-goalresolution rule is as follows:h�; g1[p℄; si h�; g2[q℄; tih�; g1�[false℄ ^ g2�[true℄; if p� then t� else s�i (GG)where, assuming the required sentenes are standardised apart, � is the most-general uni�er for formulas p and q. See below for an example. Similarly, thereare the dual assertion-assertion (AA), goal-assertion (GA), and assertion-goal(AG) resolution rules.There are also rules for equivalene (replaing a formula by an equivalentone), theory-independent equality (replaing a term by an equal one, using anon-lausal version of paramodulation), skolemisation (eliminating existentialquanti�ers), and well-founded indution (allowing formation of terminating re-ursion in the output term, when the indution hypothesis is atually used).The Synthesis Proess. Synthesis goes as follows, starting from a spei�ationof the form (1), for a funtion f , in a theory T :



1. Form the initial tableau, with the sentene h�; pre(X) ! post(X;Y ); Y ibuilt from the spei�ation, and assertion-only sentenes for the axioms ofT . Add f to the set of funtions of T and those already synthesised in T .2. Apply dedution rules to add new sentenes to the tableau.3. Stop with the �nal tableau when a sentene of the form hfalse;�; ti orh�; true; ti appears, where t is a omputable expression.The extrated program then is the funtion de�nition f(X) = t[X ℄. It is orretwrt spei�ation (1) in the sense that the formula 8X : pre(X)! post(X; f(X))is valid in theory T augmented with the axiom 8X : f(X) = t[X ℄. The programis also guaranteed to terminate.Equivalene-preserving simpli�ation of sentenes is automatially performed,as a terminating rewrite proess, before synthesis starts and after appliation ofany dedution rule. There are theory-independent logial simpli�ations, suh asreplaing formula a^a by a, and theory-spei� simpli�ations, suh as replainginteger expression n+ 0 by n.The resolution rules have a symmetri nature. For instane, applying the AGrule to an assertion a and a goal g ould be replaed by applying the GA ruleto g and a. However, typially, one of the two symmetri appliations will notadvane the proof. The polarity searh ontrol strategy (not explained here) triesto prevent suh unsuitable appliations of the resolution rules, and always doesso without lengthening the proof nor ompromising the ompletion of the proof.Two issues around reursion formation deserve disussion. First, there aremehanisms for onstruting new well-founded relations (wfr) from old ones,for use in appliation of the indution rule. However, this makes the wfr searhspae rather large, and, worse, it is usually diÆult to hoose in advane the mostsuitable wfr, whih only beomes apparent several steps later. To overome this,middle-out reasoning (originally explored in [48, 54℄) is performed, here replaingthe required wfr by a variable, so as to wait until its desired properties beomeapparent. Seond, there is a reurrene searh ontrol strategy that tries to mathgoals and sub-goals so as to form reursion.Spei�ation-based reuse of existing programs within a theory T | suh as,but not exlusively, already synthesised programs | beomes possible throughthe addition of formulas of the form 8X : pre(X)! post(X; f(X)) to the axiomsof T , when starting a new synthesis.Finally, it is worth stating that the dedution rules are powerful enough toalso perform program transformation.A Sample Synthesis. Rather than showing a full synthesis for a toy funtion,where the �nal program is virtually idential to the spei�ation or to some ofthe neessary axioms in the theory, I deided to exhibit an interesting passagefrom a more diÆult synthesis [66℄, highlighting the power of the resolution rules.Consider the spei�ation of a funtion returning the square-root R of anon-negative rational number N , within a positive rational tolerane �:� > 0! R2 � N ^N < (R + �)2



within a theory R for non-negative rationals, inluding addition (+), squaring(x2), inequalities (<, >, �, �), et.Suppose synthesis leads to a tableau with the following sentene, after anif-split in the initial sentene built from the spei�ation, and after appliationof the equivalene rule a < b$ :(b � a):h�; R2 � N ^ : (R+ �)2 � N ;R i (2)Let us apply resolution rule (GG) to this sentene and the following standardised-apart opy of itself: h�; S2 � N ^ :[(S + �)2 � N ℄; S iThe boxed sub-goals unify under most-general substitution fS=R + �g, so thegenerated sentene is:h�;R2 � N ^ :false ^ true ^ :[((R + �) + �)2 � N ℄;if (R + �)2 � N then R+ � else R iwhih is automatially simpli�ed into:h�; R2 � N ^ :[(R + 2�)2 � N ℄; if (R+ �)2 � N then R+ � else R i (3)Whereas (2) expresses that the square-root of N is in the half-open interval[R::R + �[, in whih ase R is a suitable output, sentene (3) expresses thatthe square-root of N is in the wider half-open interval [R::R + 2�[, in whihase onditional term `if (R + �)2 � N then R + � else R' is a suitable output.Noting that R + � is the midpoint of that wider interval, sentene (3) simplysays that if a square-root is known to be in wide interval [R::R + 2�[, then it isthe �rst element of either its right half or its left half. In other words, sentene(3) provides an idea for a binary searh program, whereas sentene (2) does not.This is very interesting, as this disovery an thus be made mehanially, by asimple appliation of a resolution rule.Using dedalus, rather intriate programs were synthesised, suh as uni�a-tion [65℄, as well as interesting new ones [66℄.4.2 amphionamphion [88℄ (ase.ar.nasa.gov/dos/amphion.html) was developed by Lowryand his team at NASA Ames and SRI (California, USA). It is of partiularinterest due to its attention to real-life software engineering onsiderations, andbeause it is atually deployed at NASA JPL.The inputs to synthesis are a formal axiomati �rst-order logi spei�a-tion, assumed to be onsistent and omplete wrt the requirements, as well asa domain theory. The novelty is that spei�ations an be onveyed through a



menu-driven, domain-independent graphial user-interfae. The synthesis meh-anism is purely dedutive, fully automati, non-deterministi (though there isno pratial di�erene between alternate programs), and sound. Only applia-tion domain knowledge is exploited. The output of synthesis is a side-e�et-freeappliative program, whih an be automatially translated into any other ur-rently supported language (e.g., fortran-77).The Proof System. The proof system of amphion is essentially the dedutivetableau system of dedalus (see Setion 4.1). The automated theorem proversnark (SRI's New Automated Reasoning Kit) of Stikel and his olleagues washosen to arry out the proofs. Its initial lak of an indution rule was unprob-lemati, as disussed below.The Synthesis Proess. amphion is domain-independent, but was �rst de-ployed in the domain of interplanetary mission planning and data analysis. Anaxiomati theory, alled naif, was formalised for this domain, omprising ba-si properties of solar-system astronomy as well as formal spei�ations of thereusable routines of a solar-system kinematis library, developed in fortran-77at NASA JPL. Synthesised programs in the resulting amphion/naif are there-fore ompiled into fortran-77. The options in the graphial user-interfae forapturing spei�ations also depend on the provided domain theory.Library routines are often diÆult to reuse, beause of the time needed tomaster their sheer number, if not beause of inadequate spei�ations, and be-ause ompetent library onsultants may be in short supply. Relutant or arelessprogrammers may thus well dupliate funtionality in the library, thereby losingtime and being at the risk of errors. Automated support for orret reuse andomposition of library routines would thus ome in very handy. But this is pre-isely what a dedalus-like system suh as amphion an ahieve, beause reuseis supported, as we have seen in the previous setion. Synthesis need thus notbottom out in the primitives of the target language.Another pratial insight onerns the hoie of the omposition mehanisms| suh as onditions and reursion | used during synthesis. Although onstru-tive synthesis an generate them all, reursion formation is by far the most diÆ-ult omposition. If suÆiently many library routines performing sophistiatedalulations are provided, then synthesis need not really \lift" reursion fromthem but may rather amount to generating an adequate straight-line program| with just sequential and onditional omposition | from the spei�ation.amphion was designed to synthesise only straight-line ode, on the assumptionthat not too sophistiated proofs would be performed in theories with a largenumber of axioms. Synthesis is then not bottleneked by reursion formation.The synthesised programs an be optimised using the transforms of kids (seeSetion 3.1). Heuristi onsiderations need to be dealt with when �netuning thedomain theory. For instane, a suitable reursive-path ordering and a suitableagenda-ordering funtion have to be supplied. Also, heuristis, suh as the set-of-support strategy, may turn out very bene�ial to the prover.MetaAmphion [62℄ is a synthesiser synthesiser (si) assisting domain ex-perts in the reation and maintenane of a new instane of amphion, starting



from a domain theory, and this without requiring any substantial training indedutive inferene. This is done by applying amphion at the meta-level.A Sample Synthesis. Considering the sale of synthesis tasks that an be han-dled by amphion, I an here only point to the two on-line sample syntheses atase.ar.nasa.gov/dos/amphion-naif.html. One of them omputes the solar ini-dene angle at the point on Jupiter pointed to by a amera on the Galileo sonde.A naif expert ould onstrut suh a program within half an hour, but maynot be available to do so. However, after a one-hour tutorial, non-programmerplanetary sientists an speify suh problems within a few minutes, and synthe-sis of a orret program usually takes less than three minutes. The synthesisedprograms are indeed mostly straight-line ode, whih would however have beenquite hard to program for non naif-experts.Other results are the Saturn viewer, developed for use during the time Sat-urn's ring plane rossed the Earth, or an animation visualising Saturn and itsmoon Titan as seen from the Cassini sonde on its y-by, with stars in the bak-ground. The latter helped planetary sientists evaluate whether proposed toursof Cassini ould satisfy their observational requirements.4.3 Other ShoolsA large number of additional onstrutive synthesis projets exist, so I an hereonly skim over the most seminal and important ones.At Cornell University (New York, USA), Constable and his group designedthe prl [5℄ and NuPrl [24℄ interative proof and funtional program devel-opment systems, the latter being based on the intuitionisti seond-order typetheory of Martin-L�of [68℄.At the University of Edinburgh (UK), NuPrl was used for the synthesisof deterministi logi programs by Bundy and his team [19℄. A �rst-order sub-set of the oyster proof development system, whih is a re-implementation ofNuPrl in prolog, was also used for logi program synthesis, with speial fouson the synthesis of programs that ompute relations, and not just total fun-tions. A proof-planner alled lam was adjoined to oyster [21℄, making it atatial prover, using Edinburgh lf [42℄, whih is based on Sott's Logi forComputable Funtions. The overall e�ort also resulted in the whelk proof de-velopment system [91℄, whih performs proofs in the Gentzen sequent alulusand extrats logi programs, the periwinkle synthesiser [54℄, whih systema-tises the use of middle-out reasoning in logi program synthesis, and many othersystems, as the group spawns around the world.At Uppsala University (Sweden), the logi programming alulus of T�arnlund[89℄, based on Prawitz' natural dedution system for intuitionisti logi, providedan elegant uni�ed framework for logi program synthesis, veri�ation, transfor-mation, and exeution. His team showed how to extrat logi programs fromonstrutive proofs performed within this alulus [47℄, and synthesised a uni�-ation algorithm [29℄, among others.The INRIA (Frane) group uses Coquand & Huet's alulus of indutiveonstrutions (oq), and the Chalmers (Sweden) group exploits Martin-L�of's



type theory, both towards the synthesis of funtional programs. Their resultsare ompiled in [71, 51℄, for instane.5 Ahievements of Mixed-Inferene SynthesisConsidering that human programmers rarely resort to only safe reasoning |suh as dedutive inferene | it would be unwise to fous all synthesis researhon only dedution-based mehanisms. Indeed, a growing importane needs to begiven to so-alled unsafe reasoning | suh as indutive, abdutive, or analogialinferene | if we want synthesis to ope with the full range of human softwaredevelopment ativities.I here disuss one representative mixed-inferene synthesiser, namelyMulti-ta (see Setion 5.1), whih performs both dedutive and indutive inferene.In Setion 5.2, I outline the e�orts of the other main researh entres in mixed-inferene synthesis.5.1 Multi-taMulti-ta, the Multi-Tati Analyti Compiler [69℄ of Minton, who was thenat NASA Ames (California, USA), automatially synthesises eÆient problem-spei� solvers for onstraint satisfation problems (CSPs), suh that they per-form on par with solvers hand-written by ompetent programmers. While theability of human experts remains elusive, the results are very enouraging, andpopular general-purpose solvers are almost systematially outperformed.This is so beause there is no universally best solver for all CSPs, and, worse,that there is not even a best solver for all instanes of a given CSP. Today, theprogramming of an eÆient solver for any instane of some CSP is still onsid-ered a blak art. Indeed, a CSP solver essentially onsists of three omponents,namely a searh algorithm (suh as baktraking searh, with or without for-ward heking), onstraint propagation and pruning rules (based on onsistenytehniques, suh as node and ar onsisteny), as well as variable and value or-dering heuristis (suh as most-onstrained-variable-�rst or least-onstraining-value-�rst), with eah of these omponents having a lot of reognised problem-independent inarnations, eah of whih usually has many problem-spei� in-stantiations. The right ombination of omponents for a given instane of aCSP lies thus in a huge solver spae, often at an unintuitive plae, and humanprogrammers rarely have the inlination or patiene to experiment with manyalternatives. On the premise that synthesis time does not matter, say beause thesynthesised program will be run many times for di�erent instanes, Multi-taundertakes a more systemati exploration of this solver spae.The inputs to synthesis are a formal �rst-order sorted logi spei�ation of aCSP, assumed to be onsistent and omplete wrt the requirements, as well as aset of training instanes (or an instane generator) reeting the distribution |in terms of the number of domain variables and the number of onstraints be-tween them | of instanes on whih the resulting solver will normally be run. In



proedure solve(FreeV ars) :beginif FreeV ars = ; then return the solution;V ar bestV ar(FreeV ars;VarOrdRules);FreeV ars FreeV ars� fV arg;PossV als possV als(V ar;PruneRules);while PossV als 6= ; do beginV al bestV al(V ar; PossV als;ValOrdRules);PossV als PossV als� fV alg;if fwdCheking = true or Constraints on V ar are satis�ed by V althen beginassign(V ar; V al);if fwdCheking = true then updatePossV als(FreeV ars;Constraints);if solve(FreeV ars) then return the solution;if fwdCheking = true then restorePossV als(FreeV ars);prune(V ar; PossV als;PruneRules)end;end;unassign(V ar; V al);failend Fig. 7. Shema for baktraking searhthe following, I only mention training instanes, abstrating thus whether theyare given by the user or generated by the given instane generator. The synthesismehanism is mixed-inferene, performing both indutive and dedutive infer-ene, and is fully automati. Algorithm design and data struture knowledge areexploited. Synthesis is non-deterministi and sound. The output of synthesis isa solver in lisp that is �netuned not only for the problem at hand, but also forthe given instane distribution.The Operationalisation System.Multi-ta is a shema-guided synthesiser,with a shema being a syntati program template showing how some searh al-gorithm an be parameterised by the other omponents of a CSP solver. Forinstane, the baktraking shema for baktraking searh is approximately asin Figure 7, with the plae-holders typeset in boldfae. A full disussion of thisshema is beyond the sope of this paper, the important issues being as fol-lows. At eah iteration, a hosen \best" value is assigned to a hosen \best"variable, with baktraking ourring when this is impossible without violatingsome onstraint. Also, the template is generi in the onstraints, the variable andvalue ordering rules, the pruning rules, and a ag ontrolling the use of forwardheking. Many well-known variations of baktraking searh �t this shema.Branh-and-bound and iterative-repair shemas are also available.The ornerstone of synthesis is the problem-spei� instantiation of the rulesof the hosen shema. This is done by operationalisation of generi heuristis intorules, as desribed next. For instane, in problems where a subset of the edges



of a given graph is sought, the most-onstrained-variable-�rst variable-orderingheuristi | stating that the variable with the fewest possible values left shouldbe hosen next | ould be operationalised into at least the following rules:{ Choose the edge with the most adjaent edges.{ Choose the edge with the most adjaent edges whose presene in or absenefrom the sought subset has already been deided.{ Choose the edge with the most adjaent edges whose absene from the soughtsubset has already been deided.Operationalisation is thus non-deterministi. The obtained andidate rules havedi�erent appliation osts in terms of evaluation time and di�erent e�etivenessin terms of how muh the searh is redued, so a trade-o� analysis is needed (seeon�guration searh below).Multi-ta features two methods for operationalisation of generi heuristis,as desribed next.Analyti operationalisation is based only on the problem onstraints andignores the training instanes. Eah heuristi is desribed by a meta-level the-ory that enables the system to reason about the problem onstraints. For in-stane, the meta-theory of the most-onstrained-variable-�rst heuristi desribesirumstanes where some variable is likely to be more onstrained than an-other one. A good example thereof is that the tightness of the generi on-straint 8X : S : P (X) ! Q(X) is diretly related to the ardinality of the setfX : S j P (X)g. From suh algorithm design knowledge, andidate searh ontrolrules an be inferred.Indutive operationalisation is based mainly on the training instanes, thoughalso uses the problem onstraints. Brute-fore simplest-�rst indutive infereneis ahieved through a generate-and-test algorithm. First, all rules expressiblewithin a given grammar | based on the voabulary of the problem onstraints| are generated, starting with the shortest, that is simplest, rules, until a pre-determined upper bound on the number of atoms in the rule is reahed, or untila predetermined time bound is reahed. The number of rules generated growsexponentially with the size bound, but fortunately the most useful rules tend tobe relatively short. The testing step weeds out all the generated rules that donot well approximate the desired e�ets of the generi heuristis. Towards this,positive and negative examples are inferred from the training instanes, and allrules that are more often orret than inorret on these examples are retained.This is a surprisingly e�etive riterion.The analyti method may fail to generate useful short rules, but an inferlonger rules. The indutive method often �nds exellent short rules, but annotinfer longer rules or may aidentally eliminate a good rule due to the statistialnature of its testing proess. The two methods are thus omplementary andshould be used together to inrease the robustness of the system.The Synthesis Proess. One the generi heuristis have been somehow oper-ationalised into andidate rules, a proess alled on�guration searh looks for asuitable seletion of these rules and for suitable ag values, suh that, if plugged



into the shema with the problem-spei� onstraints, they interat nearly op-timally in solving instanes of the given CSP that �t the given distribution.Sine the spae of suh possible on�gurations of rules and ags is exponentialin the number of rules and ags, a beam searh (a form of parallel hill-limbing)is performed over only a small portion of that spae. Given a beam width b, atime bound t, and the training instanes, one starts from the single parent on-�guration that has no rules and where all ags are turned o�. At eah iteration,hild on�gurations are generated from all parent on�gurations, by adding onerule from the andidate rules or by ativating one ag. Several andidate rulesmay be retained for a given plae-holder in the shema, if this is found to beadvantageous; they are then sequened, so that eah rule ats as a tie-breakerfor its predeessors. The b on�gurations that solve the most instanes within tseonds enter the next iteration as parent on�gurations, provided they solve asuperset of their own parents' instanes. This proess ontinues until no parenton�guration an be improved or until the user interrupts it.Operationalisation and on�guration searh are able to disover rules formany well-known heuristis from the literature, for eah searh algorithm.One the rules and ags of the hosen shema are instantiated | in aproblem-spei� and instane-distribution-spei� way thus | through oper-ationalisation and on�guration searh, synthesis proeeds by automatially op-timising the winning on�guration through re�nements (inluding the hoie ofadequate data strutures), formula simpli�ations, partial evaluation, and odesimpli�ations (inluding �nite di�erening).A Sample Synthesis. Consider the Minimum-Maximum-Mathing (MMM)problem: given an integer K and a graph with vertex set V and edge set E,determine whether there is a subset E0 � E with jE0j � K suh that no twoedges in E0 share a vertex and every edge in E �E0 shares a vertex with someedge in E0. This is an NP-omplete problem and an be modelled forMulti-taas follows, representing E0 as a set of m(I; B) atoms, where Boolean B is t whenedge I of E is in E0, and f otherwise:8V;E : set(term) : 8K : int : mmm(hV;Ei;K)$8I : E : m(I; t)! (8W : V : 8J : E : I 6= J ^ e(I;W ) ^ e(J;W )! m(J; f))^ 8I : E : m(I; f)! (9W : V : 9J : E : I 6= J ^ e(I;W ) ^ e(J;W ) ^m(J; t))^ ardinality(fI : E j m(I; t)g) � Kwhere problem instanes are assumed given through a set of e(I;W ) atoms,stating that edge I has vertex W as one of its two endpoints.In the �rst onstraint, there are two sub-expressions mathing the generiexpression 8X : S : P (X) ! Q(X) mentioned for analyti operationalisation,namely the two formulas starting with the universal quanti�ations onW and J ,respetively. From the former, the variable-ordering rule `Choose the edge withthe most endpoints' is inferred, though it is useless, as every edge has exatlytwo endpoints; from the latter, the already mentioned rule `Choose the edge withthe most adjaent edges' is inferred. All variable-ordering rules mentioned abovean also be generated by indutive operationalisation.



In three well-doumented experiments [69℄ with di�erent instane distribu-tions for the MMM problem, the solvers synthesised byMulti-ta outperformedat least one of two written by ompetent human programmers, while totallyoutlassing general-purpose Boolean satis�ability algorithms and CSP solvers,under their default heuristis. Interesting rules were disovered, andMulti-tawon by the largest margin on the toughest instane distribution, on�rming thatmassive automated searh does often better than human intuition.5.2 Other ShoolsThe exlusive use of indutive and abdutive inferene in program synthesis, frominomplete spei�ations, has been studied under two angles, for three deades.First, in programming-by-example (PBE), also and more adequately known asprogramming-by-demonstration (PBD), the spei�er provides sample exeutiontraes of the task to be programmed, and the synthesiser generalises them into aprogram that an re-enat at least these traes. The user thus has to know howto perform the spei�ed task, but there are interesting appliations for this, suhas the synthesis of maro operations for word proessors or operating systems.See [58℄ for a olletion of state-of-the-art papers, espeially geared at enablinghildren and other novies to program. Consult Biermann's surveys [12, 13℄ andedited olletions [14, 15℄ for details on underlying mehanisms.Seond, in what should be known as PBE, the spei�er provides positiveand possibly negative input/output examples of the desired program, and thesynthesiser generalises them into a program that overs at least these positiveexamples, but none of the negative examples. The user need thus not know howto perform the spei�ed task, nor even how to ompletely speify it, and there areuseful appliations for this, say for novie programmers. The Mahine Learningommunity is looking extensively into suh synthesis, espeially its IndutiveLogi Programming (ILP) branh. Some surveys and edited olletions inlude[14, 15, 12, 13, 27, 34℄ or are dediated to [79, 37℄ the underlying mehanisms.Considering the diÆulty of orretly extrapolating the desired behaviourfrom suh delared-to-be-inomplete spei�ations, it is not surprising that purelyindutive and abdutive synthesis has not been shown yet to sale beyond toyproblems. The ensuing unertainty for the spei�er annot be held against in-dutive and abdutive synthesis, beause there also is unertainty in dedutivesynthesis, due to the diÆulty of formalisation of assumed-to-be-omplete spe-i�ations. Appropriate ombinations of indutive, abdutive, and dedutive in-ferene do however give leverage in synthesis from inomplete spei�ations [34℄.Even when starting from omplete spei�ations, the use of examples anda ombination of dedutive and indutive inferene an still be interesting, ifnot neessary, as shown for Multi-ta (see Setion 5.1). Other suessful suhombinations are reported by Ellman et al. [28℄, with appliations to jet enginenozzle and raing yaht design, as well as by Grath & Chien [43℄, towardssheduling ground-based radio antennas for maintaining ommuniation withresearh satellites and deep spae probes.Program synthesis by analogial inferene was takled by Dershowitz [26℄.



6 Prospets of SynthesisProgram synthesis researh is as old as the �rst omputer, and a lot of theoret-ial researh and pratial development have gone into its various inarnations.Today, we stand at the dawn of a new era in programming, with languagesmoving away from the von Neumann model, with powerful tools generating sig-ni�ant amounts of tedious low-level ode from higher-level desriptions, andwith end-users beoming enabled to program by themselves. It is lear thatprogram synthesis, in its traditional Arti�ial Intelligene understanding, anprovide great leaps forward in this arena, in addition to the simpler advaneso�ered by onventional ode generation, suh as through visual programming,spreadsheets, et. The hallenge is thus to sale up from tehniques demonstratedin researh labs on toy problems to the development of real-life software and toenable a tehnology transfer to ommerial software development. I here proposehallenges and diretions for future researh, as far as the inputs (Setion 6.1),mehanisms (Setion 6.2), and outputs (Setion 6.3) of synthesis are onerned.6.1 Synthesis InputsFormalisation Assistane. The aeptane bottlenek for synthesisers will al-ways be the input language, in whih the spei�ation and domain theory haveto be formalised. Most professional programmers and IT students who beamesomehow used to low-level languages are learly relutant to be re-trained inthe more advaned mathematis and logi neessary to interat with synthesis-ers, despite the appeals of working at a higher level. They may well eventuallybe bypassed and made obsolete by a synthesis-indued revolution in ommer-ial software development under web-speed market pressures, but that is yet anunertain outome. At the same time, end-users | from engineers in other dis-iplines to omputer novies | hope to be enabled to program by themselves,and they will also resist the learning urve. Hene a signi�ant hallenge is toassist users in the formalisation of the spei�ation and domain theory.PlanWare and amphion an aquire and formalise them automatiallyfrom information provided by the spei�ers, due to adequate human-omputer-interfae engineering. The urrent trend is thus towards domain-spei� lan-guages that are intuitive to quali�ed users, if not idential to the notations theyalready use anyway, thus masking the underlying mathematis and logi. Turingompleteness often needs to be sari�ed, so that highly | if not fully | au-tomated synthesisers an be developed. Researh in domain analysis is needed,beause the aquisition of a suitable domain theory will always be a bottlenekfor synthesisers. Domains have to be identi�ed where the payo� threshold issuitable, in terms of the size and importane of the overed problem lass, theexistene of a language and interfae in whih it is easy to desribe these prob-lems, and the diÆulty of manually writing orret and eÆient programs forthese problems. This does not mean that the previous trends on general-purposespei�ation languages and semi-automati synthesisers must deline.



6.2 Synthesis MehanismsReuse. Most synthesisers are demonstrated on toy problems with little bearingto real-world problems. A main ause is that the granularity of their buildingbloks is too small. The hallenge is to make synthesis bottom out in reusable,assumed-orret omponents rather than in the primitives of the target language.We have seen that some existing synthesis mehanisms were designed so thatlibraries of formally-spei�ed reusable omponents an be used during synthesis.In kids/DesignWare, reuse is attempted before synthesis for eah spei-�ation, whether it is the initial one or one onstruted during synthesis. Thenumber of reuse queries an be signi�antly redued by applying heuristis de-teting that an ad ho omponent an be trivially built from the spei�ation.This has the further advantage of keeping the index of the omponent-baselean and thus aelerating reuse queries. It should be noted that the de�nitionshemas used in algorithm design re�nements also represent reused ode.In dedalus, reuse is possible, but not espeially atered for through heuris-tis. Fisher & Whittle [33℄ propose a better integration of reuse into dedalus-like onstrutive synthesisers.In amphion, reuse is the leading priniple: as there is no indution rule,the mehanism is fored to reuse omponents that embody iterative or reursivealulations, in its synthesis of straight-line ode.Other than for amphion-like approahes, the payo� of reuse versus brute-fore synthesis is however still unlear. Muh researh needs thus to be done to-wards full-sale synthesis in the style of omponent-based software development,i.e., bottom-up inremental programming. The synthesis of software arhite-tures, for instane, is still a rather unexplored topi.Shemas. I believe that an important hallenge is to make formalised algorithmdesign shemas [36, 80, 81℄, design patterns [39℄, plans [31℄, or lih�es [76℄ on-tinue to play a major role in saling synthesis up. Indeed, they allow the reuseof reognised suessful produt or proess skeletons, whih have been somehow,and not neessarily formally, proved o�-line, one and for all.Furthermore, they provide a nie division of onerns by fousing, at anygiven moment, the user's attention and the available options to just one well-delimited part of the urrent desription, as opposed to, say, having to deidewhih transform to apply to whih expression of the entire urrent desription.This also enables users to understand intermediate desriptions and the synthesisproess at a suitable level of abstration.Inferene. As Multi-ta shows, indutive inferene is sometimes neessary toahieve synthesis of eÆient programs, but virtually all researh | exept PBEand PBD | so far has been on purely-dedutive synthesis. Just like humanprogrammers perform all kinds of inferene, the hallenge is to further exploremixed-inferene synthesis, in order to exploit omplementary forms of reasoning.Similarly, even within dedutive inferene, there is no single mehanism thatan handle all the proof obligations ourring during synthesis, hene another



hallenge is to investigate suitable ombinations of dedutive proof mehanisms,thereby ahieving multi-level synthesis [11℄.Finally, it seems that transformational and onstrutive synthesis are justtwo faets of a same dedutive approah,3 so that their reoniliation should beworth investigating.6.3 Synthesis OutputsTarget Language. In order to failitate the integration of synthesised programswith otherwise developed ode modules, it is important that target languagesother than the lean-semantis logi languages, that is the funtional and re-lational ones, are supported. This is not a major researh hallenge, exept ifeÆieny of the ode is an issue, but rather a development issue, but it is oftennegleted in favour of the more attrative researh hallenges, thereby missingtehnology transfer and feedbak opportunities.EÆieny. For some problem lasses, suh as onstraint satisfation problems(CSPs), the eÆieny of programs is ruial, suh as those solving NP-ompleteCSPs with high onstrainedness. The hallenge is that e�etive ode optimisationmust be somehow integrated with a program synthesiser towards its appliationin real-world irumstanes.For instane, in onstraint programming, a lot of researh has been madeabout how to raft new variable-and-value-ordering heuristis. However, littleis said about the appliation domain of these heuristis, so programmers �ndit hard to deide when to apply a partiular heuristi, espeially that thereis no universally best heuristi for all CSPs, and not even for all instanes of agiven CSP (as we saw in Setion 5.1). Adequate heuristis are thus problem-and-instane-spei�, and must therefore be dynamially hosen at run-time ratherthan at programming time. It has also been noted that suitable implied on-straints and symmetry-breaking onstraints may onsiderably redue the searhspae, but few results are available on how to systematise their inferene. Over-all, e�etive onstraint programming remains a blak art thus. When targetingonstraint programming languages, the hallenge is to infer implied onstraintsand symmetry-breaking onstraints and to synthesise problem-spei� heuristis,if not solvers, that perform well on all problem instanes.7 ConlusionAfter introduing the topi and proposing a lassi�ation sheme for programsynthesis, I have overviewed past and urrent ahievements in synthesis, arossthree main researh diretions, with speial fous on some of the most promisingsystems. I have also laid out a set of diretions for future researh, believing that3 At least the developers of dedalus, lops, and periwinkle reported diÆulties inlassifying their systems.



they will make the tehnology go beyond the already-reahed break-even point,ompared to onventional programming and maintenane.Program synthesis thus promises to revolutionise aepted pratie in soft-ware development. Ultimately, aeptane problems due to the neessity for rig-orous formalisation are bound to disappear, beause programming itself is ob-viously a formalisation proess and synthesis just provides other programminglanguages or di�erent ways of programming. Similarly, the steps of any followedsoftware lifeyle will not really hange, beause validation and veri�ation willnot disappear, but rather beome higher-level ativities, at the level of what wetoday all formal spei�ations.AknowledgementsI wish to thank the anonymous referees for their onstrutive omments on theprevious versions of this paper.Referenes1. J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge UniversityPress, 1996.2. R. Balzer. A 15 year perspetive on automati programming. IEEE TSE11(11):1257{1268, 1985.3. A. Barr and E.A. Feigenbaum. The Handbook of Arti�ial Intelligene, Chapter X:Automati Programming, pp. 297{379. Morgan Kaufmann, 1982.4. D.R. Barstow. A perspetive on automati programming. AI Magazine, Spring1984:5{27. Also in [74℄, pp. 537{559.5. J.L. Bates and R.L. Constable. Proofs as programs. ACM TOPLAS 7(1):113{136,1985.6. F.L. Bauer, B. M�oller, H. Partsh, and P. Pepper. Formal program onstrutionby transformations: Computer-aided, intuition-guided programming. IEEE TSE15(2):165{180, 1989. Details in LNCS 183/292, Springer-Verlag, 1985/87.7. M.J. Beeson. Foundations of Construtive Mathematis. Modern Surveys in Math-ematis, Volume 6. Springer-Verlag, 1985.8. W. Bibel. Syntax-direted, semantis-supported program synthesis. AI 14(3):243{261, 1980.9. W. Bibel. Conurrent software prodution. In [61℄, pp. 243{261. Toward prediativeprogramming. In [61℄, pp. 405{424.10. W. Bibel and K.M. H�ornig. lops: A system based on a strategi approah toprogram synthesis. In [15℄, pp. 69{89.11. W. Bibel et al. A multi-level approah to program synthesis. In N.E. Fuhs (ed),Pro. of LOPSTR'97, pp. 1{28. LNCS 1463. Springer-Verlag, 1998.12. A.W. Biermann. Automati programming: A tutorial on formal methodologies. J.of Symboli Computation 1(2):119{142, 1985.13. A.W. Biermann. Automati programming. In S.C. Shapiro (ed), Enylopedia ofArti�ial Intelligene, pp. 59{83. John Wiley, 1992.14. A.W. Biermann and G. Guiho (eds). Computer Program Synthesis Methodologies.Volume ASI-C95. D. Reidel, 1983.



15. A.W. Biermann, G. Guiho, and Y. Kodrato� (eds). Automati Program Constru-tion Tehniques. Mamillan, 1984.16. A.W. Biermann and W. Bibel (guest eds), Speial Issue on Automati Program-ming. J. of Symboli Computation 15(5{6), 1993.17. C.B. Jones. Systemati Software Development using vdm. Prentie-Hall, 1990.18. L. Blaine, L. Gilham, J. Liu, D.R. Smith, and S. Westfold. PlanWare: Domain-spei� synthesis of high-performane shedulers. In Pro. of ASE'98, pp. 270{279.IEEE Computer Soiety Press, 1998.19. A. Bundy. A broader interpretation of logi in logi programming. In R.A. Kowalskiand K.A. Bowen (eds), Pro. of ICLP'88, pp. 1624{1648. The MIT Press, 1988.20. A. Bundy, A. Smaill, and G. Wiggins. The synthesis of logi programs from in-dutive proofs. In J.W. Lloyd (ed), Pro. of the ESPRIT Symp. on ComputationalLogi, pp. 135{149. Springer-Verlag, 1990.21. A. Bundy, F. van Harmelen, C. Horn, A. Smaill. The oyster/lam system. InM.E. Stikel (ed), Pro. CADE'90, pp. 647{648. LNCS 449. Springer-Verlag, 1990.22. R.M. Burstall and J. Darlington. A transformation system for developing reursiveprograms. J. of the ACM 24(1):44{67, 1977.23. K.L. Clark and S. Sikel. Prediate logi: A alulus for deriving programs. In Pro.of IJCAI'77, pp. 410{411.24. R.L. Constable, S.F. Allen, H.M. Bromley, et al. Implementing Mathematis withthe NuPrl Proof Development System. Prentie-Hall, 1986.25. J. Darlington. An experimental program transformation and synthesis system. AI16(1):1{46, 1981. Also in [74℄, pp. 99{121.26. N. Dershowitz. The Evolution of Programs. Birkh�auser, 1983.27. Y. Deville and K.-K. Lau. Logi program synthesis. J. of Logi Programming 19{20:321{350, 1994.28. T. Ellman, J. Keane, A. Banerjee, and G. Armhold. A transformation system forinterative reformulation of design optimization strategies. Researh in EngineeringDesign 10(1):30{61, 1998.29. L.-H. Eriksson. Synthesis of a uni�ation algorithm in a logi programming alu-lus. J. of Logi Programming 1(1):3{33, 1984.30. M.S. Feather. A survey and lassi�ation of some program transformation ap-proahes and tehniques. In L.G.L.T. Meertens (ed), Program Spei�ation andTransformation, pp. 165{195. Elsevier, 1987.31. S.F. Fikas. Automating the transformational development of software. IEEE TSE11(11):1268{1277, 1985.32. B. Fisher, J. Shumann, and G. Snelting. Dedution-based software omponentretrieval. In W. Bibel and P.H. Shmidt (eds), Automated Dedution: A Basis forAppliations, vol. III, hap. 11. Kluwer, 1998.33. B. Fisher and J. Whittle. An integration of dedutive retrieval into dedutivesynthesis. In Pro. of ASE'99, pp. 52{61. IEEE Computer Soiety, 1999.34. P. Flener. Logi Program Synthesis from Inomplete Information. Kluwer AademiPublishers, 1995.35. P. Flener, K.-K. Lau, and M. Ornaghi. Corret-shema-guided synthesis of stead-fast programs. In Pro. of ASE'97, pp. 153{160. IEEE Computer Soiety, 1997.36. P. Flener, K.-K. Lau, M. Ornaghi, and J.D.C. Rihardson. An abstrat formal-isation of orret shemas for program synthesis. J. of Symboli Computation30(1):93{127, July 2000.37. P. Flener and S. Y�lmaz. Indutive synthesis of reursive logi programs:Ahievements and prospets. J. of Logi Programming 41(2{3):141{195, Novem-ber/Deember 1999.



38. P. Flener, H. Zidoum, and B. Hnih. Shema-guided synthesis of onstraint logiprograms. In Pro. of ASE'98, pp. 168{176. IEEE Computer Soiety, 1998.39. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements ofReusable Objet-Oriented Software. Addison-Wesley, 1994.40. J. Goguen and G. Malolm. Algebrai Semantis of Imperative Programs. The MITPress, 1997.41. A.T. Goldberg. Knowledge-based programming: A survey of program design andonstrution tehniques. IEEE TSE 12(7):752{768, 1986.42. M.J. Gordon, A.J. Milner, and C.P. Wadsworth. Edinburgh lf { A MehanisedLogi of Computation. LNCS 78. Springer-Verlag, 1979.43. J.M. Grath and S.A. Chien. Adaptive problem-solving for large sale shedulingproblems: A ase study. J. of Arti�ial Intelligene Researh 4:365{396, 1996.44. C. Green. Appliation of theorem proving to problem solving. Pro. of IJCAI'69,pp. 219{239. Also in B.L. Webber and N.J. Nilsson (eds), Readings in Arti�ialIntelligene, pp. 202{222. Morgan Kaufmann, 1981.45. C. Green and D.R. Barstow. On program synthesis knowledge. AI 10(3):241{270,1978. Also in [74℄, pp. 455{474.46. C. Green and S. Westfold. Knowledge-based programming self applied. MahineIntelligene 10, 1982. Also in [74℄, pp. 259{284.47. �A. Hansson. A Formal Development of Programs. Ph.D. Thesis, Univ. of Stokholm(Sweden), 1980.48. J. Hesketh, A. Bundy, and A. Smaill. Using middle-out reasoning to ontrol thesynthesis of tail-reursive programs. In D. Kapur (ed), Pro. of CADE'92. LNCS606. Springer-Verlag, 1992.49. C.J. Hogger. Derivation of logi programs. J. of the ACM 28(2):372{392, 1981.50. W.A. Howard. The formulae-as-types notion of onstrution. In J.P. Seldin andJ.R. Hindley (eds), To H.B. Curry: Essays on Combinatory Logi, Lambda Calulusand Formalism, pp. 479{490. Aademi Press, 1980.51. G. Huet and G.D. Plotkin (eds). Logial Frameworks. Cambridge Univ. Press, 1991.52. E. Kant. On the eÆient synthesis of eÆient programs. AI 20(3):253{305, 1983.Also in [74℄, pp. 157{183.53. R. Kowalski. Logi for Problem Solving. North-Holland, 1979.54. I. Kraan, D. Basin, and A. Bundy. Middle-out reasoning for synthesis and indu-tion. J. of Automated Reasoning 16(1{2):113{145, 1996.55. K.-K. Lau and S.D. Prestwih. Synthesis of a family of reursive sorting proedures.In V. Saraswat and K. Ueda (eds), Pro. ILPS'91, pp. 641{658. MIT Press, 1991.56. K.-K. Lau and M. Ornaghi. On spei�ation frameworks and dedutive synthesisof logi programs. In L. Fribourg and F. Turini (eds), Pro. of LOPSTR'94 andMETA'94, pp. 104{121. LNCS 883. Springer-Verlag, 1994.57. B. Le Charlier and P. Flener. Spei�ations are neessarily informal, or: Some moremyths of formal methods. J. of Systems and Software 40(3):275{296, 1998.58. H. Liebermann (guest ed), Speial Setion on Programming by Example. Comm.of the ACM 43(3):72{114, 2000.59. J.W. Lloyd. Foundations of Logi Programming. Springer-Verlag, 1987.60. M.R. Lowry and R. Duran. Knowledge-based software engineering. In A. Barr,P.R. Cohen, and E.A. Feigenbaum (eds), The Handbook of Arti�ial Intelligene.Volume IV, pp. 241{322. Addison-Wesley, 1989.61. M.R. Lowry and R.D. MCartney (eds). Automating Software Design. The MITPress, 1991.62. M.R. Lowry, J. Van Baalen. MetaAmphion: Synthesis of eÆient domain-spei�program synthesis systems. Automated Software Engineering 4:199{241, 1997.



63. Z. Manna and R.J. Waldinger. Synthesis: Dreams ! Programs. IEEE TSE5(4):294{328, 1979.64. Z. Manna and R.J. Waldinger. A dedutive approah to program synthesis. ACMTOPLAS 2(1):90{121, 1980. Also in [15℄, pp. 33{68. Also in [74℄, pp. 3{34.65. Z. Manna and R.J. Waldinger. Dedutive synthesis of the uni�ation algorithm.Siene of Computer Programming 1:5{48, 1981. Also in [14℄, pp. 251{307.66. Z. Manna and R.J. Waldinger. The origin of a binary-searh paradigm. Siene ofComputer Programming 9:37{83, 1987.67. Z. Manna and R.J. Waldinger. Fundamentals of dedutive program synthesis. IEEETSE 18(8):674{704, 1992.68. P. Martin-L�of. Construtive mathematis and omputer programming. In Pro.of the 1979 Int'l Congress for Logi, Methodology, and Philosophy of Siene, pp.153{175. North-Holland, 1982.69. S. Minton. Automatially on�guring onstraint satisfation programs: A asestudy. Constraints 1(1{2):7{43, 1996.70. J. Mostow (guest ed), Speial Issue on AI and Software Engineering. IEEE TSE11(11), 1985.71. B. Nordstr�om, K. Petersson, and J.M. Smith. Programming in Martin-L�of's TypeTheory: An Introdution. Clarendon Press, 1990.72. H.A. Partsh. Spei�ation and Transformation of Programs. Springer-Verlag,1990.73. H.A. Partsh and R. Steinbr�uggen. Program transformation systems. ComputingSurveys 15(3):199{236, 1983.74. C. Rih and R.C. Waters (eds). Readings in Arti�ial Intelligene and SoftwareEngineering. Morgan Kaufmann, 1986.75. C. Rih and R.C. Waters. Automati programming: Myths and prospets. IEEEComputer 21(8):40{51, 1988.76. C. Rih and R.C. Waters. The Programmer's Apprentie: A researh overview.IEEE Computer 21(11):10{25, 1988.77. T. Sato and H. Tamaki. First-order ompiler: A deterministi logi program syn-thesis algorithm. J. of Symboli Computation 8(6):605{627, 1989.78. D. Sannella and A. Tarleki. Essential onepts of algebrai spei�ation and pro-gram development. Formal Aspets of Computing 9:229{269, 1997.79. D.R. Smith. The synthesis of lisp programs from examples: A survey. In [15℄, pp.307{324.80. D.R. Smith. Top-down synthesis of divide-and-onquer algorithms. AI 27(1):43{96,1985.81. D.R. Smith. kids: A semiautomati program development system. IEEE TSE16(9):1024{1043, 1990.82. D.R. Smith. Towards the synthesis of onstraint propagation algorithms. In Y.Deville (ed), Pro. of LOPSTR'93, pp. 1{9, Springer-Verlag, 1994.83. D.R. Smith. Construting spei�ation morphisms. J. of Symboli Computation15(5{6):571{606, 1993.84. D.R. Smith. Toward a lassi�ation approah to design. Pro. of AMAST'96, pp.62{84. LNCS 1101. Springer-Verlag, 1996.85. J.M. Spivey. The z Notation: A referene manual. Prentie-Hall, 1992.86. Y.V. Srinivas and R. J�ullig. SpeWare: Formal support for omposing software.In B. M�oller (ed), Pro. of MPC'95, pp. 399{422. LNCS 947. Springer-Verlag, 1995.87. D.M. Steier and A.P. Anderson. Algorithm Synthesis: A Comparative Study.Springer-Verlag, 1989.



88. M. Stikel, R. Waldinger, M. Lowry, T. Pressburger, and I. Underwood. Dedutiveomposition of astronomial software from subroutine libraries. In A. Bundy (ed),Pro. of CADE'94, pp. 341{355. LNCS 814. Springer-Verlag, 1994.89. S.-�A. T�arnlund. An axiomati data base theory. In H. Gallaire and J. Minker (eds),Logi and Databases, pp. 259{289. Plenum Press, 1978.90. R.J. Waldinger and R.C.T. Lee. ProW: A step toward automati program writing.Pro. of IJCAI'69, pp. 241{252.91. G. Wiggins. Synthesis and transformation of logi programs in the whelk proofdevelopment system. In K. Apt (ed), Pro. of the JICSLP'92, pp. 351{365. TheMIT Press, 1992.


