
1

SYNAPSE,
A System for Logic Program Synthesis

from Incomplete Specifications
Pierre Flener1 and Yves Deville

Unité d’Informatique, Université Catholique de Louvain
Place Ste Barbe 2, B – 1348 Louvain-la-Neuve, Belgium

{pf,yde}@info.ucl.ac.be,☎ + 32 / 10 / 47-{2415,2067}, FAX + 32 / 10 / 45.03.45

The SYNAPSE system is part of FOLON, an integrated logic programming en-
vironment (described elsewhere in this volume). It aims at automated logic pro-
gram synthesis from incomplete specifications. After introducing the idea of
incomplete specifications, the SYNAPSE approach to synthesis is described, and
the SYNAPSE system is illustrated in terms of a sample execution.2

1 Incomplete Specifications

A logic program development methodology has been proposed by the second author [3]. It
aims at programming-in-the-small, and is (mainly) meant for “algorithmic” problems. It
starts from a complete, yet informal, specification of the target problem. A crucial step is the
design of the logic of the program, based solely on the declarative semantics of logic, and
with exclusive concern about correctness issues. Procedural semantics and efficiency are
taken care of in a later optimization and implementation step.

The methodology gives rise to many computer-assistance, if not automation, opportuni-
ties. The FOLON environment [9] aims at this, and is described elsewhere in this volume.
But, as specifications are non-formal, the crucial step cannot be automated. This research
thus investigates an alternative approach to logic program development, namely (fully) au-
tomated logic program synthesis. This requires formal specifications, and our choice went
towards exploring synthesis from incomplete specifications. The resulting system, called
SYNAPSE, is being integrated into the FOLON environment.

Let R be the relation one has in mind when elaborating a specification of a procedure for
predicater. We callR the intended relation, in contrast to the relation actually specified,
called thespecified relation. This distinction is important in general, but crucial with incom-
plete specifications, where one deliberately admits a gap between the two. We assumeR is
known, even if we don’t have a formal definition of it. In our approach [5], incomplete spec-
ifications are expressed with examples and properties. More precisely, aspecification by ex-
amples and properties of a relation r consists of:

• a set of examples of r (ground atoms); and

• a set of properties of r (non-recursive Horn clauses).

The specified relation, that is the set of logical consequences of the given examples and prop-
erties, is assumed to be a subset of the intended relationR.

Examples have been around for quite a while as an incomplete specification formalism.
Their attractiveness lies in their naturalness and conciseness, but their weaknesses are ambi-

1. Supported by the Government of Luxembourg, Ministry of Cultural Affairs and Scientific Research,
Grant BFR 92/017.

2. SYNAPSE stands for “SYNthesis of logic Algorithms from PropertieS and Examples”.

2

guity and a limited expressive power. The introduction of properties aims at overcoming
these drawbacks, while preserving these strengths. Let’s illustrate this on a sample problem.

Example 1-1: Let the firstPlateau(L,P,S) relation hold iff list P is the first maximal
sequence of identical elements (plateau) of non-empty listL, and listS is the corresponding
suffix of L. A sample specification by examples and properties is:

firstPlateau([a],[a],[]) (E1)
firstPlateau([b,b],[b,b],[]) (E2)
firstPlateau([c,d],[c],[d]) (E3)
firstPlateau([e,f,g],[e],[f,g]) (E4)
firstPlateau([h,i,i],[h],[i,i]) (E5)
firstPlateau([j,j,k],[j,j],[k]) (E6)
firstPlateau([m,m,m],[m,m,m],[]) (E7)

firstPlateau([X],[X],[]). (P1)
firstPlateau([X,Y],[X,Y],[]) ← X=Y (P2)
firstPlateau([X,Y|T],[X],[Y|T]) ← X≠Y (P3)

A sample (normalized) logic program is:

firstPlateau(L,P,S) ← L=[HL],
P=L,S=[]

firstPlateau(L,P,S) ← L=[HL1,HL2|TL],
HL1≠HL2,
P=[HL1],S=[HL2|TL]

firstPlateau(L,P,S) ← L=[HL1,HL2|TL],
HL1=HL2,
firstPlateau([HL2|TL],TP,TS),
P=[HL1|TP],S=TS

Properties P1 to P3 generalize the examples of {E1}, { E2}, and {E3, E4, E5}, respectively. It
is easily apparent how this specification improves upon its examples-only counterpart: prop-
erties allow the specifier to make explicit what s/he perfectly knows, but can’t express by
examples alone. EspeciallyP3 embodies such additional knowledge that has otherwise to be
guessed by the synthesizer, which is dangerous (risk of wrong guesses) and time-consuming
(enumeration of all possible guesses). The very presence of properties is thus expected to in-
crease reliability and efficiency of synthesis compared to an examples-only approach.

The use of the SYNAPSE system is interesting because it generates, from specifications
that are extremely easy to write, a correct logic program in a (nearly) automatic way.

2 The SYNAPSE Approach to Synthesis

Programs can be classified according to their design strategies (such as divide-and-conquer,
generate-and-test, global search,…). It is therefore interesting to guide a design process by a
program schema (template program with fixed control flow) that captures the essence of such
a strategy. In this research, we do so, and focus on the divide-and-conquer strategy.

Loosely speaking, adivide-and-conquer program for a binary predicate r over parameters
X and Y works as follows. Let X be the induction parameter. If X is minimal, then Y is found
by directly solving the problem. Otherwise, if X is non-minimal, decompose X into a vector
HX of heads of X and a vectorTX of tails of X, the latter being of the same type as X, as well
as smaller than X according to some well-founded relation. The tailsTX recursively yield
tailsTY of Y. The headsHX are processed into a vectorHY of heads of Y. Finally, Y is com-

3

posed from its headsHY and tailsTY. Recursion is sometimes useless, namely whenY can
already be directly computed fromHX andTX. Moreover, one has to discriminate between
the various non-minimal cases according to the values ofHX, TX and Y.

Logic program schemata can be expressed as second-order logic programs. For instance,
many logic programs designed by a divide-and-conquer strategy fit the following schema:

R(X,Y) ← Minimal(X),
Solve(X,Y)

R(X,Y) ← NonMinimal(X),
Decompose(X,HX,TX),
Discriminate1(HX,TX,Y),
SolveNonMin(HX,TX,Y)

R(X,Y) ← NonMinimal(X),
Decompose(X,HX,TX),
Discriminate2(HX,TX,Y),
R(TX,TY),
Process(HX,HY),
Compose(HY,TY,Y)

whereR(TX,TY) denotes a conjunction of atomsR(TXi,TYi). There can be any number
of clauses of the second and third kind.

The SYNAPSE Synthesis Steps

A unique, generalized version (for relations of any arity) of this schema underlies our syn-
thesis mechanism, which can then be expressed as the following fixed sequence of steps:

• Step 1 – Syntactic creation of a first approximation (Instantiation ofR);

• Step 2 – Synthesis of Minimal and NonMinimal;

• Step 3 – Synthesis of Decompose;

• Step 4 – Synthesis of the conjunction of recursive atoms;

• Step 5 – Synthesis of Solve andSolveNonMin;

• Step 6 – Synthesis of Process and Compose;

• Step 7 – Synthesis of the Discriminatek.

Another requirement for the synthesis mechanism is a non-incremental presentation of the
specification, that is the specifier has to provide all examples and properties prior to synthe-
sis. We also strive for a synthesis mechanism that performs both inductive and deductive rea-
soning. This ensures that both examples and properties take a constructive role during
synthesis. In other words, examples are not to be used as test-data for a purely deductive syn-
thesis from the properties, and properties are not to be used as integrity constraints for a pure-
ly inductive synthesis from examples.

3 A Sample Synthesis with the SYNAPSE System

A synthesis mechanism following the above requirements has been identified [6] [7], and is
currently being implemented as the SYNAPSE system. A first prototype exists. We illustrate
its performance on thefirstPlateau problem. Unless otherwise noted, the user has nothing to
do once s/he has introduced the specification. Moreover, s/he doesn’t even see the interme-
diate versions.

4

Step 1 – Syntactic creation of a first approximation (Instantiation ofR)

Step 1 instantiatesR with the predicate used in the specification, and generates the fact
“ r(X,Y)←” as a first approximation that is satisfied by all examples. In our case, we obtain:

firstPlateau(L,P,S) ← {E1-E7}

The set annotation explains which examples are covered by a clause.

Step 2 – Synthesis ofMinimal and NonMinimal

Step 2 selects an induction parameter, and selects a minimal and a non-minimal form for this
parameter from a type database. The examples are thus partitioned into two classes, accord-
ing to the form they actually satisfy. Prior to synthesis, the user may hint at a preference for
an induction parameter. In our case, supposingL is selected as induction parameter, the ini-
tial clause is replaced by the following two clauses:

firstPlateau(L,P,S) ← L=[_] {E1}

firstPlateau(L,P,S) ← L=[_,_|_] {E2-E7}

Indeed, in the examples, parameterL is either a singleton list, or a list of at least 2 elements.

Step 3 – Synthesis ofDecompose

Step 3 also uses the type database to decompose, in the non-minimal clause, the induction
parameter into a vector of heads and a vector of tails, the latter being each smaller than the
induction parameter according to some well-founded relation. Sample decomposition strat-
egies for lists are head-tail decomposition, splitting in halves, partitioning, and so on. Prior
to synthesis, the user may hint at a preference for a decomposition strategy. In our case, as-
suming a head-tail decomposition is used, the non-minimal clause becomes:

firstPlateau(L,P,S) ← L=[_,_|_],
L=[HL|TL] {E2-E7}

Step 4 – Synthesis of the conjunction of recursive atoms

Step 4 introduces, in the non-minimal clause, a recursive atom for the tailTL of the induction
parameter. This yields tailsTP andTS of the other parameters. A look-ahead check is per-
formed, for each example covered by the non-minimal clause, to see whether the values of
TP andTS, deduced by using the specification as an oracle, are actually “used” in the con-
struction ofP andS. For instance, in exampleE2, TL is [b]. By propertyP1, the computed
TP andTS are [b] and [], respectively, which are “used” in the construction ofP andS, re-
spectively. But, in exampleE3, TL is [d], and the computedTP is [d], which is not “used” in
the construction ofP. Recursion is thus not always useful, so the non-minimal clause is split
into a non-recursive one and a recursive one:

firstPlateau(L,P,S) ← L=[_,_|_],
L=[HL|TL] {E3-E5}

firstPlateau(L,P,S) ← L=[_,_|_],
L=[HL|TL],
firstPlateau(TL,TP,TS) {E2,E6,E7}

Step 5 – Synthesis ofSolve and SolveNonMin

Step 5 completes the minimal case and the non-recursive non-minimal clause by synthesiz-
ing a formula that constructs the other parameters from the induction parameter. This is a
variant of Step 6. For our sample problem, this is straightforward, and the 2 clauses now are:

5

firstPlateau(L,P,S) ← L=[_],
P=L,S=[] {E1}

firstPlateau(L,P,S) ← L=[_,_|_],
L=[HL|TL],
P=[HL],S=TL,TL=[_|_] {E3-E5}

Step 6 – Synthesis ofProcess and Compose

Step 6 synthesizes, for the recursive clause, a formula that (i) processes the headHL into the
headsHP andHS, and (ii) composesP andS fromHP, TP andHS, TS, respectively. This can
be done simultaneously by looking for a formula that computesP from HL, TP, andS from
HL, TS. The used method, called theMSG Method, computes the most-specific generaliza-
tion (msg) of the <HL,TP,P,TS,S> tuples extracted from the recursive clause. For our sample
problem, the involved values and msg are given in the following table:

The msg is rewritten as a conjunction of atoms, and inserted into the recursive clause:

firstPlateau(L,P,S) ← L=[_,_|_],
L=[HL|TL],
firstPlateau(TL,TP,TS),
P=[HL|TP],S=TS,TP=[HL|_] {E2,E6,E7}

In case the MSG Method is not powerful enough, say when processing and composing needs
a full-fledged recursive program by itself, then the system calls itself recursively with an in-
ferred specification by examples and properties of the sub-problem.

Step 7 – Synthesis of theDiscriminatek

Step 7 completes the non-minimal clauses by synthesizing formulas explaining when each
of these clauses is applicable. These formulas are discriminants, but need not be mutually ex-
clusive, as logic programs may be non-deterministic. The used method, called theProofs-as-
Programs Method, adds literals to the current logic program such that the properties are log-
ical consequences thereof. This is done by trying to prove that each property is a logical con-
sequence of the current program: if yes, nothing is done; otherwise, appropriate literals are
extracted from an explanation of the failure. For our sample problem, this goes as follows:

• propertyP1 is (unconditionally) provable from the minimal clause;

• propertyP2 is provable from the recursive, non-minimal clause under the condition:

L=[A,B|T],A=B

• propertyP3 is provable from the non-recursive, non-minimal clause, provided:

L=[A,B|T],A≠B
These conditions are rewritten, and inserted as discriminants into the appropriate clauses:

HL TP P TS S

E2 b [b] [b,b] [] []

E6 j [j] [j,j] [k] [k]

E7 m [m,m] [m,m,m] [] []

msg [A] [A|T] [A,A|T] U U

6

firstPlateau(L,P,S) ← L=[_,_|_],
L=[HL|TL],
TL=[H|T],HL≠H,
P=[HL],S=TL,TL=[_|_] {E3-E5}

firstPlateau(L,P,S) ← L=[_,_|_L],
L=[HL|TL],
TL=[H|T],HL=H,
firstPlateau(TL,TP,TS),
P=[HL|TP],S=TS,TP=[HL|_] {E2,E6,E7}

The synthesis is now terminated. The obtained program is equivalent to the one given above.
Alternative, but still correct, programs may be obtained by re-considering the decisions of
Steps 2 and 3.

4 Evaluation

The SYNAPSE system synthesizes logic programs from examples and properties, in a non-
incremental and schema-guided way. It is part of the FOLON environment. It is modular in
that the methods used to synthesize instantiations of predicate variables from the schema are
highly interchangeable, and that new methods can easily be integrated. The database of type-
specific instantiations ofMinimal, NonMinimal, andDecompose can be extended at will.
This, together with the concept of properties and the possibility of nested syntheses, is our
solution to the predicate invention problem. Our experience with the system has shown the
viability of specifications by examples and properties. Synthesis is quite efficient and reli-
able. The synthesized programs are independent of example or property ordering. A meth-
odology of choosing “good” examples and properties is being formulated.

This work is part of the currently emerging field ofinductive logic programming, which
aims at upgrading the techniques of the classical empirical machine learning paradigm into
a logic programming framework [11] [12]. The main differences are that we only consider
recursive programs, whose intended relations are furthermore known. This motivates the
non-incremental, schema-guided approach. The idea of using properties (not to be confused
with background knowledge) is not unique [2] [4], but we are not aware of any approaches
that use properties constructively. The use of schemata is well-established in program design
[1] [8] [10] [13] [14] [15] [16] [17].

The divide-and-conquer schema is hard-wired into SYNAPSE: as the developed methods
are very general, the support and selection of user-provided schemata is envisaged.

Acknowledgments
We gratefully acknowledge many insightful discussions with Baudouin Le Charlier and the
other members of the FOLON Research Project (University of Namur, Belgium).

References
[1] J. Burnay and Y. Deville. Generalization and program schemata: A step towards com-

puter-aided construction of logic programs. InProceedings of NACLP’89, pages 409–
425. MIT Press.

[2] L. De Raedt and M. Bruynooghe. Belief updating from integrity constraints and que-
ries.Artificial Intelligence, 53:291–307, 1992.

7

[3] Y. Deville. Logic Programming: Systematic Program Development. International Se-
ries in Logic Programming, Addison Wesley, 1990.

[4] W. Drabent, S. Nadjm-Tehrani, and J. Maluszynski. Algorithmic debugging with as-
sertions. In H. Abramson and MH. Rogers (editors),Proceedings of META’88, pages
501–521. MIT Press.

[5] P. Flener. Towards programming by examples and properties. TR CS-1991-09, Duke
University, Durham (NC, USA), 1991.

[6] P. Flener and Y. Deville. Towards stepwise, schema-guided synthesis of logic pro-
grams. In T. Clement and KK. Lau (editors), Proceedings of LOPSTR’91, pages 46–
64. Springer Verlag, 1992.

[7] P. Flener and Y. Deville. Synthesis of composition and discrimination operators for di-
vide-and-conquer logic programs. In JM. Jacquet (editor), Proceedings of the ICLP’91
Workshop on Logic Program Construction. John Wiley, 1992. (In print.)

[8] TS. Gegg-Harrison.Basic Prolog schemata. TR CS-1989-20, Duke University,
Durham (NC, USA), 1989.

[9] J. Henrard and B. Le Charlier. FOLON: An environment for declarative construction
of logic programs. In M. Bruynooghe and Wirsing (editors), Proceedings of PLILP’92,
pages 217–231. LNCS 631, Springer Verlag.

[10] A. Lakhotia. Incorporating “programming techniques” into Prolog programs. InPro-
ceedings of NACLP’89, pages 426–440. MIT Press.

[11] S. Muggleton. Inductive logic programming.New Generation Computing, 8(4):295–
317, 1991.

[12] EY. Shapiro.Algorithmic Program Debugging. PhD-Thesis, Yale University, 1982.
Published under the same title by MIT Press, 1983.

[13] DR. Smith. Top-down synthesis of divide-and-conquer algorithms.Artificial Intelli-
gence, 27:43–96, 1985.

[14] DR. Smith. The structure and design of global search algorithms. TR KES.U.87.12,
Kestrel Institute, Palo Alto (CA, USA), 1988.

[15] LS. Sterling and M. Kirschenbaum. Applying techniques to skeletons. In JM. Jacquet
(editor), Proceedings of the ICLP’91 Workshop on Logic Program Construction. John
Wiley, 1992. (In print.)

[16] P. Summers. A methodology for LISP program construction from examples.Journal
of the ACM, 24(1):161–175, January 1977.

[17] NL. Tinkham.Induction of Schemata for Program Synthesis. PhD-Thesis, Duke Uni-
versity, 1990.

