
On Correct Program SchemasPierre Flener,1 Kung-Kiu Lau2 and Mario Ornaghi31 Department of Computer ScienceBilkent University, 06533 Bilkent, Ankara, Turkeypf@cs.bilkent.edu.tr2 Department of Computer ScienceUniversity of Manchester, Manchester M13 9PL, United Kingdomkung-kiu@cs.man.ac.uk3 Dipartimento di Scienze dell'InformazioneUniversita' degli studi di Milano, Via Comelico 39/41, Milano, Italyornaghi@dsi.unimi.itAbstract. We present our work on the representation and correctnessof program schemas, in the context of logic program synthesis. Whereasmost researchers represent schemas purely syntactically as higher-orderexpressions, we shall express a schema as an open �rst-order theory thataxiomatises a problem domain, called a speci�cation framework, con-taining an open program that represents the template of the schema. Wewill show that using our approach we can de�ne a meaningful notionof correctness for schemas, viz. that correct program schemas can beexpressed as parametric speci�cation frameworks containing templatesthat are steadfast, i.e. programs that are always correct provided theiropen relations are computed correctly.1 IntroductionA program schema is an abstraction of a class of actual programs, in the sensethat it represents their data-ow and control-ow, but does not contain (all) theiractual computations or (all) their actual data structures. Program schemas havebeen shown to be useful in a variety of applications, such as proving proper-ties of programs, teaching programming to novices, guiding both manual and(semi-)automatic synthesis of programs, debugging programs, transforming pro-grams, and so on, both within and without logic programming. An overview ofschemas and their applications can be found in [6].In this paper, we present our work on two aspects of schemas: representationand correctness, in the context of logic program synthesis. In logic programming,most researchers represent their schemas as higher-order expressions, sometimesaugmented by extra-logical annotations and features, so that actual (�rst-order)programs are obtained by applying higher-order substitutions to the schema. Weshall take a di�erent approach and show that a schema S can also be expressedas an open �rst-order theory F containing an open (�rst-order) program T , viz. aprogram in which some of the relations are left unde�ned. One advantage of thisapproach is that it simpli�es the semantics of schemas and of their manipulations.

We shall endow a schema S with a formal (model-theoretic) semantics byde�ning F as a speci�cation framework, i.e. an axiomatisation of the (possiblyopen) problem domain, and call T the template of S. This allows us to de�nea meaningful notion of correctness for schemas. Indeed, we show that correctprogram schemas can be expressed as parametric speci�cation frameworks con-taining templates that are steadfast open programs, i.e. programs that are alwayscorrect provided their open relations, i.e. their parameters, are computed cor-rectly. Steadfastness is a priori correctness, and therefore correct schemas are apriori correctly reusable.We shall also briey indicate how to use correct schemas in practice. Usingany kind of schemas requires suitable strategies, and we shall touch on someideas for such strategies for correct schemas.2 Program Schemas as Open FrameworksOur approach to schemas (and program synthesis) is set in the context of a(fully) �rst-order axiomatisation F of the problem domain in question, whichwe call a speci�cation framework F . Speci�cations are given in F , i.e. writtenin the language of F . This approach enables us to de�ne program correctnesswrt speci�cations not only for closed programs but also for open programs, i.e.programs with parameters (open relations), in both closed and open frameworks.In this section, we briey de�ne speci�cation frameworks, speci�cations, openprograms.2.1 Speci�cation FrameworksA speci�cation framework is a full �rst-order logical theory (with identity) withan intended model:De�nition2.1. (Speci�cation Frameworks)A speci�cation framework F(�) with parameters � consists of:� A (many-sorted) signature � of sort, function and relation symbols (togetherwith their declarations).We distinguish between symbols of � that are closed (i.e. de�ned symbols)and those that are open (i.e. parameters). The latter are indicated by �.� A set of �rst-order axioms for the (declared) closed and open function andrelation symbols of �.Axioms for the closed symbols may contain �rst-order induction schemas.Axioms for the open symbols, or parameters, are called p-axioms.F(�) is open if the set � of parameters is not empty; it is closed otherwise.A closed frameworkF axiomatises one problem domain, as an intended model(unique up to isomorphism). In our approach, intended models are reachableisoinitial models: 2

De�nition2.2. (Reachable Isoinitial Models)A reachable isoinitial model i of F is a model such that i is reachable (i.e. theelements of its domain can be represented by ground terms) and, for any relationr de�ned in F , ground instances r(t) or :r(t) are true in i i� they are true inall models of F .Example 2.1. (Closed Frameworks)A typical closed framework is (�rst-order) Peano arithmetic NAT (we will omitthe most external 8 quanti�ers):Speci�cation Framework NAT ;sorts: Nat;functions: 0 :! Nat;s : Nat ! Nat ;+; � : (Nat ;Nat)! Nat;axioms: c-axs(0; s);x+ 0 = x;x+ s(y) = s(x+ y);x � 0 = 0;x � s(y) = x+ x � y;c-axs(0; s) contains Clark's Equality Theory (see [20]) for the constructors0 and s, and the related (�rst-order) induction schema H(0) ^ (8i : H(i) !H(s(i)) ! 8x : H(x), where H stands for any formula of the language, i.e. theschema represents an in�nite set of �rst-order axioms.An isoinitial model of NAT is the term model generated by the constructors,equipped with the usual sum (+) and product (�).The induction schema is useful for reasoning about properties of + and � thatcannot be derived from the other axioms, e.g. associativity and commutativity.This illustrates the fact that in a framework we may have more than just anabstract data type de�nition, as we will see again later.In general, a closed framework F is constructed incrementally from exist-ing closed frameworks, and the new abstract data type axiomatised by F iscompletely de�ned thus. For example, a new sort T (possibly) depending onother pre-de�ned sorts is constructed from constructors declared as functions.The freeness axioms for the pre-de�ned sorts are imported and new axioms areadded to de�ne the (new) functions and relations on T .The syntax of a framework F is thus similar to that used in algebraic ab-stract data types (e.g. [13, 29, 24]). However, whilst an algebraic abstract datatype is an initial model ([12, 15]) of its speci�cation, the intended model of Fis an isoinitial model. Of course, a framework may have no intended (i.e. reach-able isoinitial) model. We will only ever use frameworks with such models, i.e.adequate frameworks:De�nition2.3. (Adequate Closed Frameworks)A closed framework F is adequate if it has a reachable isoinitial model.3

Now a framework F may also contain other forms of formulas, such as:� induction schemas (as we saw in Example 2.1);� theorems, i.e. proven properties of the problem domain (we will not encounterthese in this paper);� speci�cations, i.e. de�nitions of new symbols in terms of � symbols;� (and even (steadfast)) programs.However, such formulas are only admissible in F if their inclusion preserves F 'sadequacy (we will return to this in Section 2.2).An open framework F(�) has a non-empty set � of parameters, that canbe instantiated by closed frameworks as follows:De�nition2.4. (Framework Instantiation)Let F(�) be an open framework with signature �, and G be a closed frameworkwith signature �. If � is the intersection of � and �, and G proves the p-axiomsof F , then the G-instance of F , denoted by F [G], is the union of F and G.Instantiation may be de�ned in a more general way, involving renamings.Since renamings preserve adequacy and steadfastness, we can use this simplerde�nition without loss of generality.Now we can de�ne adequate open frameworks:De�nition2.5. (Adequate Open Frameworks)An open framework F(�) is adequate if, for every adequate closed frameworkG, the instance F(�)[G] is an adequate closed framework.Adequacy means that parameter instantiation works properly, so we will alsorefer to adequate open frameworks as parametric frameworks.Example 2.2. (Open Frameworks)The following open framework axiomatises the (kernel of the) theory of lists withparametric element sort Elem and parametric total ordering relation � (we uselower and upper case for elements and lists respectively):Speci�cation Framework LIST (Elem;�);import: NAT ;sorts: Nat ;Elem;List;functions: nil :! List;� : (Elem;List)! List ;nocc : (Elem;List)! Nat ;relations: elemi : (List ;Nat;Elem);� : (Elem ;Elem);4

axioms: c-axs(nil ; �);elemi(L; i; a)$ 9h; T; j : L = h � T^(i = 0 ^ a = h _ i = s(j) ^ elemi(T; j; a));nocc(x; nil) = 0;a = b! nocc(a; b � L) = nocc(a; L) + 1;:a = b! nocc(a; b �L) = nocc(a; L);p-axioms: x � y ^ y � x$ x = y;x � y ^ y � z ! x � z;x � y _ y � x:where c-axs(nil ; �) contains Clark's Equality Theory (see [20]) for the list con-structors � and nil , and the �rst-order induction schemaH(nil)^(8a; J : H(J)!H(a � J))! 8L : H(L); the function nocc(a; L) gives the number of occurrencesof a in L, and elemi(L; i; a) means a occurs at position i in L. The p-axioms arethe parameter axioms for �. In this case, they state that � must be a (non-strict)total ordering.The parameters Elem and � can be instantiated (after a possible renaming)by a closed framework proving the p-axioms. For example, suppose INT is aclosed framework axiomatising the set Int of integers with total ordering <.Then LIST (Int ; <)[INT] becomes a closed framework with an isoinitial modelwhere Int is the set of integers, Nat contains the natural numbers, and List�nite lists of integers. Note that LIST (Int ; <)[INT] contains the renaming ofElem by Int and � by <. Note also that de�ned symbols can be renamed, whenconvenient. For example, we could rename List by ListInt .Whilst an adequate closed framework has one intended (isoinitial) model, anadequate open framework has a class of intended models.2.2 Speci�cationsA framework is the context where a speci�cation must be written, where itreceives its proper meaning, and where we can reason about it and derive correctprograms from it.More formally, a speci�cation S� in a framework is an axiom that de�nes anew relation � in terms of the symbols � of the framework. Thus S� is a formulacontaining symbols from � and the new relation symbols �:De�nition2.6. (Speci�cations)In a speci�cation framework F(�), a speci�cation S� is a set of sentences thatde�ne new function or relation symbols � in terms of the symbols � of F . If S�contains symbols of �, then it is called a p-speci�cation.S� can be interpreted as an expansion operator that associates with theisoinitial model i of F one or more classes of (� + �)-interpretations, that arethe expansions of i de�ned by S� . 5

De�nition2.7. (Expansion)Let j be a �-interpretation, and i be an expansion of j to � + �. We say that iis an expansion of j determined by a speci�cation S (of �) i� i j= S.We say that S� is strict if it de�nes just one expansion; it is non-strict if itde�nes more than one expansion. A more detailed discussion and classi�cationof speci�cations can be found in [17].For uniformity, in this paper, we shall use only conditional speci�cations, thatis speci�cations of the form8x : X; 8y : Y : Q(x)! (r(x; y)$ R(x; y))where Q and R are formulas in the language of F , and x:X, y:Y are (possiblyempty) lists of sorted variables, with sorts in F . Q is called the input condition,and R the output condition of the speci�cation.When Q is true, we drop it and speak of an i� speci�cation. I� speci�cationsare strict, while in general a conditional speci�cation is not.In our approach, we maintain a clear distinction between frameworks andspeci�cations. The latter introduce new symbols and assume their proper mean-ing only in the context of the framework. To distinguish the speci�ed symbolsfrom the signature of the framework, we will call them s-symbols. We also dis-tinguish clearly between speci�cations and axioms.Example 2.3. (Speci�cations)In the open framework LIST (Elem;�), we can specify the following functionsand relations:s-functions: l : List ! Nat ;j : (List ;List)! List ;s-relations: mem : (Elem;List);len : (List;Nat);append : (List;List;List);perm : (List;List);ord : (List);sort : (List;List);specs: mem(e; L)$ 9i : elemi(L; i; e);len(L; n)$ 8i : i < n$ 9a : elemi(L; i; a);n = l(L)$ len(L; n);append (A;B;L)$ (8i; a : i < l(A)!(elemi(A; i; a)$ elemi(L; i; a)))^(8j; b : elemi(B; j; b)$elemi(L; j + l(A); b));perm(A;B)$ 8e : nocc(e; A) = nocc(e; B);C = AjB $ append (A;B;C);p-specs: ord (L)$ 8i : elemi(L; i; e1) ^ elemi(L; s(i); e2)! e1 � e2;sort(L; S)$ perm(L; S) ^ ord(S)6

As we will see in the next section, program predicates must be s-symbols.However, the speci�cation of a program predicate may be non-strict and, in thiscase there may be many correct implementations, one for each expansion.An s-symbol � can be used also to expand the signature of the framework, inorder to get a more expressive speci�cation language. In this case, the speci�ca-tion S� is added to the axioms of the framework and � is added to its signature.This operation will be called framework expansion.We must use adequate framework expansions, i.e. expansions that preservethe adequacy of the framework. For example, the expansions of LIST (Elem;�)by l , j, mem, append , perm, ord and sort in Example 2.3 can be shown to beadequate. In the following we will consider F thus expanded.2.3 Closed and Open ProgramsOpen programs arise in both closed and open frameworks.An open program may contain open relations, or parameters. The parametersof a program P are relations to be computed by other programs. They are notde�ned by P .A relation in P is de�ned (by P) if and only if it occurs in the head of atleast one clause of P . It is open if it is not de�ned (by P). An open relation inP is also called a parameter of P .A program is closed if it does not contain open relations. We consider closedprograms a special case of open ones.Open programs are always given in the context of an (open or closed) frame-work F(�). In F(�), we will distinguish program sorts, i.e. sorts that can beused by programs. A closed program sort must have constructors (see axiomsc-axs(: : :)), and an open program sort may only be instantiated by programsorts. In programs, constant and function symbols may only be constructors. Aprogram relation must be an s-symbol, i.e. it must have a speci�cation.Example 2.4. (Open Programs)A possible open program for sort(L; S) in LIST (Elem;�) is the following:sort(L; S) L = nil; S = nilsort(L; S) L = h:T; part(T; h; TL1; TL2);sort(TL1; TS1); sort(TL2; TS2); append (TS1; h:TS2; S)part(L; p; S;B) L = nil; S = nil; B = nilpart(L; p; S;B) L = h:T; h � p; part(T; p; TS; TB);S = h:TS ^B = TBpart(L; p; S;B) L = h:T;:h � p; part(T; p; TS; TB);S = TS ^B = h:TBThe s-symbols sort and append are speci�ed in Example 2.3. The conditionalspeci�cation of part can be found in Example 4.7.7

2.4 Program SchemasFor representing schemas [1, 2, 3, 4, 5, 6, 10, 14, 16, 21, 22, 23, 25, 26, 27,28], there are essentially two approaches, depending on the intended schemamanipulations.First, most researchers represent their schemas as higher-order expressions,sometimes augmented by extra-logical annotations and features, so that actualprograms are obtained by applying higher-order substitutions to the schema.Such schemas could also be seen as �rst-order schemas, in the mathematicalsense, namely designating an in�nite set of programs that have the form of theschema. The reason why some declare them as higher-order is that they haveapplications in mind, such as schema-guided program transformation [7, 28, 11],where some form of higher-order matching between actual programs and schemasis convenient to establish applicability of the starting schema of a schematictransformation.Second, Manna [21] advocates �rst-order schemas, where actual programsare obtained via an interpretation of the (relations and functions of the) schema.This is related to the approach we advocate here, namely that a schema S canalso be represented as a (�rst-order) framework F containing an open programT , so that actual programs can be obtained by adding programs for some (butnot necessarily all) of T 's open relations. So there is no need to invent a new (orhigher-order) schema language, at least in a �rst approximation (but see [6]).Formally we de�ne a program schema as follows:De�nition2.8. (Program Schemas)A (program) schema for a relation r is an open framework S(�) containing aprogram Pr for r.Pr is called the template of S(�).The p-axioms and the p-speci�cations are called the constraints of S(�). More-over, relation symbols of� used only in speci�cations and (possibly) in p-axiomsare called s-parameters.A schema S covers a program P if (S and) its template can be instantiated toP . We distinguish s-parameters from other parameters because in an instantia-tion by a closed framework G they can be replaced by formulas of the language ofG.1 This does not hold for other parameters, since they must be instantiated bysymbols of G, in order to get a closed instance of the framework with a reachableisoinitial model.Most de�nitions of schemas, with the laudable exception of the one by Smith[25, 26], reduce this concept to what we here call the template. Such de�nitionsare thus merely syntactic, providing only a pattern of place-holders, with noconcern about the semantics of the template, the semantics of the programs itcovers, or the interactions between these place-holders. So a template by itselfhas no guiding power for teaching, programming, or synthesis, and the additional1 Of course, after the replacement, the p-axioms must be satis�ed.8

knowledge (corresponding to our constraints) somehow has to be hardwired intothe system or person using the template. Despite the similarity, our de�nitionis an enhancement of even Smith's de�nition, because we consider relationalschemas (rather than \just" functional ones), open schemas (rather than justclosed ones), and set up everything in the explicit, user-de�nable backgroundtheory of a framework (rather than in an implicit, prede�ned theory). The notionof constraint even follows naturally from, or �ts naturally into, our view ofcorrect schemas as (adequate) frameworks containing steadfast programs (seelater), rather than as entities di�erent from programs.Example 2.5. (Program Schemas)The schema in Figure 1 is our way of de�ning the divide-and-conquer schema.Note that the schema contains only p-axioms, and that Ir; Or; : : : are s-parame-ters, i.e. they can be replaced by formulas in framework instantiations.Schema DC(X;Y;H;�; Ir; Or; Idec; Odec);sorts: X;Y;H;relations: Ir; Idec : (X);Or : (X;Y);Odec : (X;H;X;X);p-axioms: Idec(x) ^Odec(x; hx; tx1; tx2)! Ir(tx1) ^ tx1 � x^Ir(tx2) ^ tx2 � x;Idec(x)! 9h; x1; x2 : Odec(x; h; x1; x2); (c1)(c2)p-specs: Ir(x; y)! (r(x; y)$ Or(x; y))Ir(x)! (primitive(x)$:Idec(x))Idec(x)! (decompose(x; hx; tx1; tx2)$Odec(x; hx; tx1; tx2))Ir(x) ^:Idec(x)! (solve(x; y)$ Or(x; y))Odec(x; hx; tx1; tx2) ^Or(tx1; ty1) ^Or(tx2; ty2)!(compose(hx; ty1; ty2; y)$ Or(x; y)) (Sr)(Sprim)(Sdec)(Ssolve)(Scomp)template: r(x; y) primitive(x); solve(x; y)r(x; y) :primitive(x); decompose(x; hx; tx1; tx2);r(tx1; ty1); r(tx2; ty2); compose(hx; ty1; ty2; y) (Tr)Fig. 1. A divide-and-conquer schema.3 Correct SchemasA model-theoretic de�nition of correctness of open programs in a framework,called steadfastness, is given in [19]. Here, we give a less abstract, but more9

conventional de�nition. In this paper, for simplicity, we only give de�nitionsand results that work for de�nite programs. Nevertheless they extend to normalprograms, under suitable termination assumptions.For closed programs in closed frameworks, we have the classical notion of(total) correctness:De�nition3.9. (Total Correctness)In a closed framework F with isoinitial model i, a closed program Pr for relationr is totally correct wrt its speci�cation Sr8x : X; 8y : Y : Ir(x)! (r(x; y)$ Or(x; y)) (Sr)i� for all t : X and u : Y such that i j= Ir(t) we have:i j= Or(t; u) i� Pr ` r(t; u) (1)If Pr satis�es the if-part of (1), it is partially correct (wrt Sr). If it satis�es theonly-if part, then it is total.Total correctness as de�ned here is unsatisfactory for logic programs, sinceit cannot deal with di�erent cases of termination. In particular, we consider thefollowing two cases:(i) Pr is totally correct wrt to Sr, and terminates with either success or �nitefailure, for every ground goal r(t; u) such that i j= Ir(t).In this case, Pr correctly decides r, and we say that Pr is correct wrtTC (r; Sr).(ii) Pr is partially correct wrt Sr , and, for every ground t : X such that i j= Ir(t),the computation with open goal r(t; y) terminates with at least one answery = u.In this case, Pr correctly computes a selector of r (i.e. a function or relationthat, for every input x such that Ir(x), selects at least one output y suchthat Or(x; y)), and we say that Pr is correct wrt PC (r; Sr).TC (r; Sr) and PC (r; Sr) are called termination requirements.It is easy to see that total correctness is too weak for case (i), since a to-tally correct Pr could fail to terminate for a false r(t; u), and too strong forcase (ii), since for computing a selector, we do not need success for every truer(t; u)). Therefore, a speci�cation of a program relation r will be of the form(Sr ; S1; : : : ; Sn; Tr (T1; : : : ; Tn), i.e. it will include a termination requirement.Moreover, in the de�nition of steadfastness, we will consider correctness wrt(Si; Ti) and (Sr ; Tr), instead of total correctness.Termination and termination requirements are an important issue. For lackof space, however, we will not further deal with them here.The de�nition of correctness wrt (Sr ; Tr) is still unsatisfactory. First, it de-�nes the correctness of Pr in terms of the programs for the relations other thanr, rather than in terms of their speci�cations. Second, all the programs for theserelations need to be included in Pr (this follows from Pr being closed), even10

though it might be desirable to discuss the correctness of Pr without having tofully solve it (i.e. we may want to have an open Pr). So, the abstraction achievedthrough the introduction (and speci�cation) of the new relations is wasted.This leads us to the following notion of steadfastness of an open program ina closed framework.De�nition3.10. (Steadfastness in a Closed Framework)In a closed framework F , let Pr be an open program for r, with parameters p1;: : : ; pn, speci�cations Sr ; S1; : : : ; Sn, and termination requirements Tr ; T1; : : : ;Tn.Pr is steadfast in F if, for any closed programsP1; : : : ; Pn that compute p1; : : : ; pnsuch that Pi is correct wrt (Si; Ti), the (closed) program Pr [P1 [: : : [Pn iscorrect wrt (Sr ; Tr).Now we can de�ne steadfastness in an open framework:De�nition3.11. (Steadfastness in an Open Framework)In an open framework F(�), let Pr be an open program for r, with parametersp1; : : : ; pn, speci�cations Sr ; S1; : : : ; Sn, and termination requirements Tr ; T1;: : : ; Tn.Pr is steadfast in F(�) if it is steadfast in every instance F [G] for a closedframework G.This is similar to Deville's notion of `correctness in a set of speci�cations' [5,p.76], except that his speci�cations and programs are not set within frameworks.Moreover, we also (but not in this paper, hence the simpli�ed de�nition above)consider other cases of steadfastness, namely where several (but not necessarilyall) de�ned relations of a program are known by their speci�cations, the otherde�ned relations being known by their clauses only.Now we can formally de�ne correctness for program schemas:De�nition3.12. (Correct Program Schemas)A (program) schema for a relation r, i.e. an (adequate) open framework S(�)containing a template Pr for r, is correct i� Pr is steadfast in S(�).Example 3.6. (Correct Program Schemas)We will now show that the schema S in Example 2.5 is correct because (S isan adequate framework and) its template Tr:r(x; y) primitive(x); solve(x; y)r(x; y) :primitive(x); decompose(x; hx; tx1; tx2);r(tx1; ty1); r(tx2; ty2); compose(hx; ty1; ty2; y) (Tr)is steadfast, if we add to it the following termination requirement:t-reqs: PC (r; Sr)(TC (primitive; Sprimitive);PC (solve; Ssolve);PC (decompose ; Sdecompose);PC (compose ; Scompose)11

In fact we can derive the whole schema (including these termination require-ments) from our attempt to prove that Tr is steadfast. Thus this example alsoserves to illustrate how we might derive correct schemas.In the absence of constraints, an open program such as Tr has no �xedmeaning, since it covers every program, which is obviously nonsensical. Indeed,it would su�ce to instantiate primitive by true, and solve by the given program!However, we can give this template an informal intended semantics, as follows.For an arbitrary relation r over formal parameters x and y, the program is todetermine the value(s) of y corresponding to a given value of x. Two cases arise:either x has a value (when primitive(x) holds) for which y can be easily directlycomputed (through solve), or x has a value (when :primitive(x) holds) for whichy cannot be so easily directly computed; the divide-and-conquer principle is thenapplied by:1. dividing (through decompose) x into a term hx and two terms tx1 and tx2that are both of the same sort as x but smaller than x according to somewell-founded order,2. conquering (through r) to determine values of ty1 and ty2 corresponding totx1 and tx2, respectively,3. combining (through compose) terms hx, ty1, ty2 to build y.Just as the semantics of open programs is de�ned parametrically, we can dothe same for this template, and whilst so doing, we can enforce the informalsemantics and supply the corresponding axioms of the open relations (i.e. theconstraints of the schema). We can do so by introducing an open frameworkS(Ir ; Or; : : :) with a signature containing the sorts of the template and the openrelation symbols Ir ; Or; : : : We can abduce the constraints of the schema byproving at an abstract level that Tr is steadfast in S, wrt the speci�cations ofr and the unknown axioms of the open relations the template introduces, andenforcing the informal semantics of the template during this proof. The proofitself must of course fail due to the lack of knowledge about r and the intro-duced open relations, but the reasons of this failure can be used to abduce thenecessary relationships between r and these open relations. These relationshipsare of course the constraints on the open relations of the template!Program Tr is steadfast in S if it is steadfast in every instance of S. Solet F be a generic instance S[G], where G is a closed framework. Suppose thespeci�cation of r in F is:8x : X; 8y : Y : Ir(x)! (r(x; y)$ Or(x; y)) (Sr)We have to �nd (at least) the p-speci�cations (in F) Sprim, Ssolve , Sdec, Scompof primitive, solve, decompose , compose, respectively, such that Tr is a steadfastprogram for r in F . For each Si, let the input and output conditions be Ii andOi respectively.Suppose also that we only require that instances of the template Tr be par-tially correct and terminating (i.e. PC (r; Sr) holds for each instance). Let t bea ground term such that Ir(t), and consider the open goal r(t; Y). We have12

to prove that Tr terminates with some answer Y = u. We have the followingpossibilities:1. The next goal is primitive(t); solve(t; Y), and primitive(t) succeeds. Weare blocked, but we can unblock the situation by abducing that PC (solve;Ssolve) holds and that: Ir(t) ^Oprim(t)! Isolve(t) (2)2. The next goal is primitive(t); : : : or :primitive(t); : : :, and the call toprimitive(t) does not terminate. We have to exclude this case, so we assumeTC (primitive; Sprimitive) and:Ir(t)! Iprim(t) (3)3. The next goal is :primitive(t); : : : and primitive(t) �nitely fails. Thenwe get the goal decompose(t;HX; TX1; TX2); r(TX1; TY1); r(TX2; TY2);compose(HX;TY1; TY2; Y). Again, we are blocked, but we can unblock thesituation by assuming:Idec(t) ^Odec(t;HX; TX1; TX2)! Ir(TX1) ^ TX1 � t^Ir(TX2) ^ TX2 � t (4)where � is a well-founded relation.2 By structural induction, we can see that,if PC (decompose ; Sdecompose), PC (compose ; Scompose), andIr(t) ^ :Oprim(t)! Idec(t) (5)Idec(t) ^Odec(t;HX; TX1; TX2) ^Or(TX1; TY1) ^Or(TX2; TY2)! Icomp(HX;TY1; TY2; Y) (6)then the computation terminates with an answer for Y . Indeed, by the in-duction hypothesis, we can assume that, for TX1 � t and TX2 � t, programTr computes TY1 and TY2 such that Or(TX1; TY1) ^Or(TX2; TY2) holds.Thus, we have abduced:PC (r; Sr)(TC (primitive; Sprimitive);PC (solve; Ssolve);PC (decompose ; Sdecompose);PC (compose; Scompose) (7)PC (solve; Ssolve), PC (decompose ; Sdecompose), and PC (compose ; Scompose) ad-mit correct programs only if their speci�cations Ssolve , Sdec, and Scomp are suchthat Idec(t) ! 9HX;TX1; TX2 : Odec(t;HX; TX1; TX2)Icomp(HX;TY1; TY2)! 9Y : Ocomp(HX;TY1; TY2; Y)Isolve(t) ! 9Y : Osolve(t; Y) (8)2 In the isoinitial model and, hence, in the Herbrand base of the closed version T 0r ofTr . 13

Now we have to prove that Tr is partially correct. For this, we assume:3r(x; y) $:Ir(x) _Or(x; y)primitive(x) $:Iprim(x) _Oprim(x)solve(x; y) $:Isolve(x) _Osolve(x; y)decompose(x; hx; tx1; tx2)$:Idec(x) _Odec(x; hx; tx1; tx2)compose(hx; ty1; ty2; y) $:Icomp(hx; ty1; ty2; y)_Ocomp(hx; ty1; ty2; y) (9)We have to prove that F[(9) ` Tr. Let us try to prove the �rst clause. Weabduce::Ir(x) _Or(x; y) (:Iprim(x) _Oprim(x)) ^ (:Isolve(x) _Osolve(x; y))This is logically equivalent toOr(x; y) Ir(x) ^ (:Iprim(x) _Oprim(x)) ^ (:Isolve(x) _Osolve(x; y))Since any instance F must prove the p-axioms of S and since we have alreadyabduced (2) and (3), we can simplify this to:Or(x; y) Ir(x) ^Oprim(x) ^Osolve(x; y) (10)By an analogous reasoning, from the attempt of proving the second clause, weobtain the simpli�ed p-axiom:Or(x; y) Ir(x) ^ :Oprim(x) ^Odec(x; hx; tx1; tx2)^Or(tx1; ty1) ^Or(tx2; ty2) ^Ocomp(hx; ty1; ty2; y) (11)As before, the simpli�cation of the input conditions is due to the p-axioms al-ready abduced.By the above proof, we have abduced a schema containing a suitable signa-ture, our template, the termination requirements (7), and the p-axioms (2) : : :(11).This schema is correct, but it contains redundancies, due to constraints thatmake some parameters depend on others. We can try to simplify it as follows:1. When we use the schema, we know the actual speci�cation, which speci�esin F a program P 0r such that PC (r; Sr) holds, so we can instantiate Ir, Or,X, and Y.2. Then we instantiate � by a well-founded relation on X.3. Now the two constraints (10) and (11) contain four unknown output condi-tions. If we �x some of them, we can hope to deduce the other ones, and tosimplify some constraints. In a divide-and-conquer strategy, it is reasonableto assume that we �rst choose the decomposition, i.e. Idec and Odec. Wenow have to infer Iprim and Oprim such that they satisfy the constraints (3)3 Here we make use of the fact that if F[f8x : X;8y : Y : r(x; y)$:Ir(x)_Or(x; y)g `Tr , then Tr is partially correct wrt Sr . See [18].14

and (5). A possible reduction is based on the observation that (5) is logi-cally equivalent to Ir(x)! (Oprim(x) :Idec(x)). We replace by$. Byidentifying Iprim and Ir, we satisfy (3) and can thus reduce Sprim to:Ir(x)! (primitive(x)$:Idec(X))hence setting Oprim to :Idec.4. Now, by substitution and a simple logical manipulation, we transform (10)and (11) into:Ir(x) ^ :Idec(x)! (Or(x; y) Osolve(x; y))Ir(x) ^ Idec(x) ^Odec(x; hx; tx1; tx2) ^Or(tx1; ty1) ^Or(tx2; ty2)!(Or(x; y) Ocomp(hx; ty1; ty2; y))where the unknown predicates Ocomp and Osolve are de�ned, on the right-hand side of !, by instead of $. We can assume stronger4 constraints,by replacing by $. We get a conditional de�nition of Osolve and Ocomp.Moreover, Ssolve and Scomp can be reduced to:Ir(x) ^ :Idec(x)! (solve(x; y)$ Or(x; y))Odec(x; hx; tx1; tx2) ^Or(tx1; ty1) ^Or(tx2; ty2)! (compose(hx; ty1; ty2; y)$ Or(x; y))Using the reduced speci�cations, we see that the constraints (2), (6), andthe second and third constraints of (8) become proved.Therefore we obtain the schema DC as de�ned in Example 2.5.The above abduction process proves the following theorem:Theorem 3.1 (Correctness of the divide-and-conquer schema)The schemaDC in Example 2.5, with the addition of the termination requirement(7), is correct, i.e. it contains a steadfast template.This theorem is related to the one given by Smith [25] for a divide-and-conquer schema in functional programming. The innovations here are that weuse speci�cation frameworks and that we can thus also consider open programs.Moreover, we could also prove total correctness (and not just partial correctnessas we have done here), because we are in a relational setting. Finally, we elim-inated Smith's Strong Problem Reduction Principle by endeavouring to achievethese objectives.Finally, we can specialise a schema to a data type. For example, we canincorporate the data type of lists with generic elements, by incorporating in Sthe framework LIST (X;�), or part of it. All the properties of S are inherited,and we can add further properties. For example, we can already know at theschema level that the relation de�ned by A � B $ l(A) < l(B) is a well-founded relation in every instance of the schema, and therefore that it is one ofthe candidates to be used when instantiating the template.4 This reduces the search space, but, in general, it could cut some solutions. We donot discuss this issue here. 15

4 Using Correct Schemas in PracticeOur characterisation of correct program schemas allows us to to synthesise stead-fast open programs. This is a signi�cant step forwards in the �eld of synthesis,because the synthesised programs are then not only correct, but also a prioricorrectly reusable. This is achieved by means of steadfast templates togetherwith their constraints. However, since we have identi�ed correct templates withsteadfast programs, there seems to be some circularity in our argument: howcan we guide the synthesis of steadfast programs by steadfast programs? Theanswer is that some open programs are \more open" than others, and that such\more open" programs thus have more \guiding power," especially consideringthe speci�cations for their open relations. In [9], we discuss the synthesis ofsteadfast programs guided by correct schemas. To conclude this paper, in thissection we briey outline the main ideas.Much of the program synthesis process can be pre-computed at the level of\completely open" schemas. The key to pre-computation is such a schema, es-pecially its constraints. These speci�cations can be seen as an \overdeterminedsystem of equations (in a number of unknowns)", which may be unsolvable as itstands (for instance, this is the case for the divide-and-conquer schema in Ex-ample 2.5). An arbitrary instantiation (through program extension), accordingto the informal semantics of the template, of one (or several) of its open rela-tions may then provide a \jump-start", as the set of equations may then becomesolvable.This leads us to the notion of synthesis strategy (cf. Smith's work [25]), as apre-computed (�nite) sequence of synthesis steps, for a given schema. A strategyhas two phases, stating (i) which parameter(s) to arbitrarily instantiate �rst (byre-use), and (ii) which speci�cations to \set up" next, based on a pre-computedpropagation of these instantiation(s). Once correct programs have been syn-thesised from these new speci�cations (using the synthesiser all over again, ofcourse), they can be composed into a correct program for the original speci�edrelation, according to the template. There can be several strategies for a givenschema (e.g., Smith [25] gives three strategies for a divide-and-conquer schema),depending on which parameter(s) are instantiated �rst (e.g., decompose �rst, orcompose �rst, or both at the same time).Synthesis is thus a recursive problem reduction process followed by a recur-sive solution composition process, where the problems are speci�cations and thesolutions are programs. Problem reduction stops when a \su�ciently simple"problem is reached, i.e. a speci�cation that \reduces to" another speci�cationfor which a program is known and can thus be re-used. This is thus the \basecase" of synthesis, and requires a formalisation of the process of re-use (see [9]for details).Let us illustrate these ideas on the divide-and-conquer schema. In [8], wedesign the following strategy for it:1. Select an induction parameter among x and y (such that it is of an16

inductively de�ned sort). Suppose, without loss of generality, that x is se-lected.2. Select (or construct) a well-foundedorder over the sort of the inductionparameter. Suppose that � is selected (from a \knowledge base").3. Select (or construct) a decomposition operator decompose. Supposethat the following speci�cation is selected (from a \knowledge base"):8x; t1; t2 : X; 8h : H :Idec(x)! (decompose(x ; h; t1 ; t2)$ Dec(x ; h; t1 ; t2)): (S0dec)4. Set up the speci�cation of the discriminating operator primitive.This amounts to �rst deriving a formula G such thatF j= 8x; tx1; tx2 : X; 8hx : H : G(x)^Dec(x ; hx ; tx1 ; tx2)$ Ir (tx1) ^ Ir (tx2) ^ tx1 � x ^ tx2 � x ;and then setting up the following speci�cation:8x : X : primitive(x)$:(Idec(x) ^G(x)): (S0prim)5. Set up the speci�cation of the solving operator solve. All place-holdersof Ssolve are known now, so we can set up a speci�cation S0solve by instanti-ating inside Ssolve .6. Set up the speci�cation of the composition operator compose. Sim-ilarly, all place-holders of Scomp are known now, so we can set up a speci�-cation S0comp by instantiating inside Scomp.Four speci�cations (S0dec , S0prim , S0solve , and S0comp) have been set up now, so fourauxiliary syntheses can be started from them, using the same overall synthesiseragain, but not necessarily the (same) strategy for the (same) divide-and-conquerschema. The programs Pdec, Pprim, Psolve, and Pcomp resulting from these aux-iliary syntheses are then added to the open program Pr of the schema, whichextension of Pr is guaranteed, by Theorem 3.1, to be steadfast.Example 4.7. (A Sample Synthesis)Suppose in LIST (Elem;�) we want a steadfast sorting program with termina-tion requirement PC (sort; Ssort).First, we select the speci�cation of a decomposition operator part, partition-ing a list L into its �rst element h, the list A of its remaining elements that aresmaller (according to �) than h, and the list B of its remaining elements thatare not smaller (according to �) than h::L = nil ! (part(L; h;A;B)$L = h:T ^ perm(AjB; T) ^A < h ^B = h) (Spart)where the following axioms:L < e$ 8x : mem(x; L)! x � eL = e$ 8x : mem(x; L)! :x � e17

are added to LIST (Elem;�).In [9], we synthesise the following extension of the divide-and-conquer tem-plate by using the strategy outlined above:sort(L; S) primitive(L); solve(L; S)sort(L; S) :primitive(L); part(L; h;A;B);sort(A;C); sort(B;D); compose(h;C ;D ; S)primitive(L) L = nilsolve(L; S) S = nilpart(L; h;A;B) L = h:T; part(T; h;A;B)part(L; p;A;B) L = nil; A = nil; B = nilpart(L; p;A;B) L = h:T; h � p; part(T; p; TA; TB); A = h:TA;B = TBpart(L; p;A;B) L = h:T;:h � p; part(T; p; TA; TB); A = TA;B = h:TBcompose(e;C ;D ; S) append(C ; e:D ; S)This is the classical Quicksort program. After a series of unfolding steps, thisprogram can easily be transformed into the program of Example 2.4. Note thatthis is an open program, as there are no clauses yet for append , nor for �.5 ConclusionWe have shown that program schemas can be expressed as open (�rst-order)speci�cation frameworks containing steadfast open programs, and we have out-lined how correct and a priori correctly reusable (divide-and-conquer) programscan be synthesised, in a schema-guided way, from formal speci�cations expressedin the �rst-order language of a framework. These aspects of schema-guided syn-thesis are our new contribution.Our work is very strongly inuenced by Smith's pioneering work [25] in func-tional programming in the early 1980s. This is, in our opinion, inevitable, as thisapproach seems to be the only structured approach to synthesis. Our work ishowever not limited to simply transposing Smith's achievements to the logic pro-gramming paradigm: indeed, we have also enhanced the theoretical foundationsby adding frameworks, enlarged the scope of synthesis by allowing the synthesisof a larger class of non-deterministic programs, and simpli�ed (the formulationand proof of) the theorem on the correctness of the divide-and-conquer schema(Theorem 3.1).Future work includes redoing the constraint abduction process for a moregeneral (divide-and-conquer) template, namely where nonPrimitive(x) is notnecessarily :primitive(x), and developing the corresponding strategies, in orderto allow the synthesis of a larger class of non-deterministic programs.Other strategies for the divide-and-conquer schema need to be elaborated,and other design methodologies need to be captured in program schemas andstrategies.Another important objective is the development of a proof system for de-riving antecedents (as needed at Step 4 of the given strategy) and for obtainingsimpli�cations of output conditions (the speci�cations S0solve and S0comp are often18

amenable to considerable simpli�cations). Eventually, a proof-of-concept imple-mentation of the outlined synthesiser (and the adjunct proof system) is planned.AcknowledgementsWe wish to thank Doug Smith for his pioneering work that inspired us, JohnGallagher for pointing out a technical error in our presentation at the workshop,and Yves Deville for his insightful comments which will help us in our futurework. This work was partially supported by the European Union HCM Projecton Logic Program Synthesis and Transformation, contract no. 93/414.References1. D. Barker-Plummer. Cliche Programming in Prolog. In M. Bruynooghe, editor,Proc. META 90, pages 246-256, 1992.2. E. Chasseur and Y. Deville. Logic program schemas, semi-uni�cation and con-straints. This volume.3. N. Dershowitz. The Evolution of Programs. Birkh�auser, 1983.4. Y. Deville and J. Burnay. Generalization and program schemata: A step towardscomputer-aided construction of logic programs. In E.L. Lusk and R.A. Overbeek,editors, Proc. NACLP'89 , pages 409{425. MIT Press, 1989.5. Y. Deville. Logic Programming: Systematic Program Development. Addison-Wesley, 1990.6. P. Flener. Logic Program Synthesis from Incomplete Information. Kluwer, 1995.7. P. Flener and Y. Deville. Logic program transformation through generalizationschemata. In M. Proietti, editor, Proc. LOPSTR'95 , pages 171{173. LNCS 1048,Springer-Verlag, 1996.8. P. Flener and K.-K. Lau. Program Schemas as Steadfast Programs and their Us-age in Deductive Synthesis. Tech Rep BU-CEIS-9705, Bilkent University, Ankara,Turkey, 1997.9. P. Flener, K.-K. Lau, and M. Ornaghi. Correct-schema-guided Synthesis of Stead-fast Programs. In M. Lowry and Y. Ledru, editors, Proc. 1997 IEEE Conferenceon Automated Software Engineering. IEEE Press, 1997.10. T.S. Gegg-Harrison. Representing logic program schemata in �-Prolog. InL. Sterling, editor, Proc. ICLP'95 , pages 467{481. MIT Press, 1995.11. T.S. Gegg-Harrison. Extensible Logic Program Schemata. In J. Gallagher, editor,Proc. LOPSTR'96, LNCS 1207, pages 256-274, Springer-Verlag, 1997.12. J.A. Goguen, J.W. Thatcher, and E. Wagner. An initial algebra approach to spec-i�cation, correctness and implementation. In R. Yeh, editor, Current Trends inProgramming Methodology, IV , pages 80{149. Prentice-Hall, 1978.13. J.A. Goguen and J. Meseguer. Unifying functional, object-oriented and relationalprogramming with logical semantics. In B. Shriver and P. Wegner, editors, Re-search Directions in Object-Oriented Programming, pages 417{477. MIT Press,1987.14. A. Hamfelt and J. Fischer-Nilsson. Inductive metalogic programming. In S. Wro-bel, editor, Proc. ILP'94 , pages 85{96. GMD-Studien Nr. 237, Sankt Augustin,Germany, 1994. 19

15. W. Hodges. Logical features of Horn clauses. In D.M. Gabbay, C.J. Hogger, andJ.A. Robinson, editors, Handbook of Logic in Arti�cial Intelligence and Logic Pro-gramming, Volume 1: Logical Foundations, pages 449-503, Oxford University Press,1993.16. A.-L. Johansson. Interactive program derivation using program schemata and in-crementally generated strategies. In Y. Deville, editor, Proc. LOPSTR'93 , pages100{112. Springer-Verlag, 1994.17. K.-K. Lau and M. Ornaghi. Forms of logic speci�cations: A preliminary study.In J. Gallagher, editor, Proc. LOPSTR'96, pages 295{312, LNCS 1207, Springer-Verlag, 1997.18. K.-K. Lau, M. Ornaghi, and S.-�A. T�arnlund. The halting problem for deductivesynthesis of logic programs. In P. van Hentenryck, editor, Proc. ICLP'94 , pages665{683. MIT Press, 1994.19. K.-K. Lau, M. Ornaghi, and S.-�A. T�arnlund. Steadfast logic programs. J. LogicProgramming, submitted.20. J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd edition,1987.21. Z. Manna. Mathematical Theory of Computation. McGraw-Hill, 1974.22. E. Marakakis and J.P. Gallagher. Schema-based top-down design of logic pro-grams using abstract data types. In L. Fribourg and F. Turini, editors, Proc. LOP-STR/META'94 , pages 138{153, LNCS 883, Springer-Verlag, 1994.23. J. Richardson and N. Fuchs. Development of correct transformational schematafor Prolog programs. This volume.24. D. Sannella and A. Tarlecki. Essential concepts of algebraic speci�cation and pro-gram development. Formal Aspects of Computer Science, forthcoming.25. D.R. Smith. Top-down synthesis of divide-and-conquer algorithms. Arti�cial Intel-ligence 27(1):43{96, 1985.26. D.R. Smith. KIDS: A semiautomatic program development system. IEEE Trans.Software Engineering 16(9):1024{1043, 1990.27. L.S. Sterling and M. Kirschenbaum. Applying techniques to skeletons. In J.-M. Jacquet, editor, Constructing Logic Programs, pages 127{140. John Wiley, 1993.28. W.W. Vasconcelos and N.E. Fuchs. An opportunistic approach for logic pro-gram analysis and optimisation using enhanced schema-based transformations.In M. Proietti, editor, Proc. LOPSTR'95 , pages 174{188. LNCS 1048, Springer-Verlag, 1996.29. M. Wirsing. Algebraic speci�cation. In J. Van Leeuwen, editor, Handbook of The-oretical Computer Science, pages 675{788. Elsevier, 1990.
This article was processed using the LATEX macro package with LLNCS style20

