
Generalised Logic ProgramTransformation SchemasHalime B�uy�uky�ld�z and Pierre FlenerDepartment of Computer Engineering and Information ScienceFaculty of Engineering, Bilkent University, 06533, Bilkent, Ankara, TurkeyEmail correspondence to: pf@cs.bilkent.edu.trAbstract. Schema-based logic program transformation has proven tobe an e�ective technique for the optimisation of programs. This paperresults from the research that began by investigating the suggestions in[11] to construct a more general database of transformation schemas foroptimising logic programs at the declarative level. The proposed trans-formation schemas fully automate accumulator introduction (also knownas descending computational generalisation), tupling generalisation (aspecial case of structural generalisation), and duality laws (which areextensions to relational programming of the �rst duality law of the foldoperators in functional programming). The schemas are proven correct.A prototype schema-based transformation system is evaluated.1 IntroductionSchema-based program construction and synthesis were studied in logic pro-gramming [9, 10, 16, 14, 23] and in functional programming [20, 21]. Usingschemas for logic program transformation was �rst studied in [13] and then ex-tended in [25, 18]. Schema-based logic program transformation was also studiedin [11, 15]. This paper results from the research that began by investigating thesuggestions in [11] and extending the ideas in [1] to construct a database of moregeneral transformation schemas for optimising logic programs at the declarativelevel. For full details of this research, the reader is invited to consult [5].Throughout this paper, the word program (resp. procedure) is used to meantyped de�nite program (resp. procedure). An open program is a program wheresome of the relations appearing in the clause bodies are not appearing in anyheads of clauses, and these relations are called unde�ned (or open) relations. Ifall the relations appearing in the program are de�ned, then the program is aclosed program. The format of a speci�cation Sr of a relation r is:8X : X : 8Y : Y: Ir(X)) [r(X;Y),Or(X;Y)]where Ir(X) denotes the input condition that must be ful�lled before the exe-cution of the procedure, and Or(X;Y) denotes the output condition that will beful�lled after the execution.We now give the de�nitions of the notions that will be used throughout thepaper. All the de�nitions are given for programs in closed frameworks [12]. A

framework can be de�ned simply as a full �rst-order theory (with identity) withintended model. A closed framework has no parameters and open symbols. Thus,it completely de�nes an abstract data type (ADT).Correctness and Equivalence Criteria. We �rst give correctness and equiv-alence criteria for programs.De�nition1 (Correctness of a Closed Program).Let P be a closed program for a relation r in a closed framework F . We saythat P is (totally) correct wrt its speci�cation Sr i�, for any ground term t ofX such that Ir(t) holds, we have P ` r(t; u) i� F j= Or(t; u), for every groundterm u of Y. If we replace `i�' by `implies' in the condition above, then P is saidto be partially correct wrt Sr , and if we replace `i�' by `if', then P is said to becomplete wrt Sr.This kind of correctness is not entirely satisfactory, for two reasons. First,it de�nes the correctness of P in terms of the procedures for the relations inits clause bodies, rather than in terms of their speci�cations. Second, P mustbe a closed program, even though it might be desirable to discuss the correct-ness of P without having to fully implement it. So, the abstraction achievedthrough the introduction (and speci�cation) of the relations in its clause bodiesis wasted. This leads us to the notion of steadfastness (also known as parametriccorrectness) [12, 9].De�nition2 (Steadfastness of an Open Program).In a closed framework F , let:{ P be an open program for a relation r{ q1; : : : ; qm be all the unde�ned relation names appearing in P{ S1; : : : ; Sm be the speci�cations of q1; : : : ; qm.We say that P is steadfast wrt its speci�cation Sr in fS1; : : : ; Smg i� the (closed)program P [PS is correct wrt Sr , where PS is any closed program such that:{ PS is correct wrt each speci�cation Sj (1 � j � m){ PS contains no occurrences of the relations de�ned in P .For program equivalence, now, we do not require the two programs to havethe same models, because this would not make much sense in some programtransformation settings, where the transformed program features relations thatare not in the initially given program. That is why our program equivalence cri-terion establishes equivalence wrt the speci�cation of a common relation (usuallythe root of their call-hierarchies).De�nition3 (Equivalence of Two Open Programs).In a closed framework F , let P and Q be two open programs for a relationr. Let S1; : : : ; Sm be the speci�cations of p1,: : : , pm, which are all the unde-�ned relation names appearing in P , and let S01; : : : ; S0t be the speci�cations of

q1,: : : , qt, which are all the unde�ned relation names appearing in Q. We saythat hP; fS1; : : : ; Smgi is equivalent to hQ; fS01; : : : ; S0tgi wrt the speci�cation Sr(or simply that P is equivalent to Q wrt Sr) when P is steadfast wrt Sr infS1; : : : ; Smg and Q is steadfast wrt Sr in fS01; : : : ; S0tg. Since the `is equivalentto' relation is symmetric, we also say that P and Q are equivalent wrt Sr .In program transformation settings, there sometimes are conditions that haveto be satis�ed by some parts of the initial and/or transformed program in orderto have a transformed program that is equivalent to the initially given programwrt the speci�cation of the top-level relation. Hence the following de�nition.De�nition4 (Conditional Equivalence of Two Open Programs).In a closed framework F , let P and Q be two open programs for a relation r.We say that P is equivalent to Q wrt the speci�cation Sr under conditions C i�P is equivalent to Q wrt Sr whenever C holds.Program Schemas and Schema Patterns. The notion of program schemawas also used in [9, 10, 11, 13, 16, 14, 15, 6, 25], but here we have an additionalcomponent, which makes our de�nition [12] of program schemas di�erent.De�nition5 (Program Schemas).In a closed framework F , a program schema for a relation r is a pair hT;Ci,where T is an open program for r, called the template, and C is a set of speci-�cations of the open relations of T , in terms of each other and in terms of theinput/output conditions of the closed relations of T . The speci�cations in C,called the steadfastness constraints, are such that, in F , T is steadfast wrt itsspeci�cation Sr in C.Sometimes, a series of schemas are quite similar, in the sense that they onlydi�er in the number of arguments of some relation, or in the number of calls tosome relation, etc. For this purpose, rather than having a proliferation of similarschemas, we introduce the notion of schema pattern (compare with [6]).De�nition6 (Schema Patterns).A schema pattern is a program schema where term, conjunct, and disjunct el-lipses are allowed in the template and in the steadfastness constraints.For instance, TX1; : : : ; TXt is a term ellipsis, and Vti=1 r(TXi; TYi) is a con-junct ellipsis. Our schemas are more general than those in [11] in the sense thatwe now allow such ellipses.Schema-based Program Transformation. In schema-based transformation,transformation techniques are pre-compiled at the schema-level.De�nition7 (Transformation Schemas).A transformation schema is a 5-tuple hS1; S2; A;O12; O21i, where S1 and S2 areprogram schemas (or schema patterns), A is a set of applicability conditions,

which ensure the equivalence of the templates of S1 and S2 wrt the speci�cationof the top-level relation, and O12 (resp. O21) is a set of optimisability conditions,which ensure further optimisability of the output program schema (or schemapattern) S2 (resp. S1).If a transformation schema embodies some generalisation technique, then itis called a generalisation schema. The problem generalisation techniques thatare used in this paper are explained in detail in [9]. Using these techniques forsynthesising and/or transforming a program in a schema-based fashion was �rstproposed in [9, 10], and then extended in [11]. The generalisation methods thatwe pre-compile in our transformation schemas are tupling generalisation, whichis a special case of structural generalisation where the structure of some pa-rameter is generalised, and descending generalisation, which is a special case ofcomputational generalisation where the general state of computation is gener-alised in terms of what remains to be done. If a transformation schema embodiesa duality law, then it is called a duality schema.In the remainder of this paper, we �rst give two divide-and-conquer schemapatterns in Section 2. We then explain in detail how automation of programtransformation is achieved by tupling and descending generalisation, in Sec-tions 3 and 4. In Section 5, we explain the duality schemas. In Section 6, wediscuss, by using the results of performance tests, the e�ects of the optimisabil-ity conditions in the transformation schemas. Before we conclude, the prototypetransformation system, which was developed to test the practicality of the ideasexplained in this paper, is presented in Section 7.2 Divide-and-Conquer ProgramsThe schema patterns in this section abstract sub-families of divide-and-conquer(DC) programs. They are here restricted to binary relations with X as the induc-tion parameter and Y as the result parameter, to reect the schema patterns thatcan be handled by the prototype transformation system explained in Section 7.Another restriction in the schema patterns is that when X is non-minimal, thenX is decomposed into h = 1 head HX and t > 0 tails TX1; : : : ; TXt, so thatY is composed from 1 head HY (which is the result of processing HX) and ttails TY1; : : : ; TYt (which are the results of recursively calling the relation withTX1; : : : ; TXt, respectively) by p-�x composition (i.e., Y is composed by puttingits head HY between its tails TYp�1 and TYp).These schema patterns are called DCLR and DCRL (the reason for thesenames will be explained soon). Template DCLR (resp. DCRL) below is the tem-plate of the DCLR (resp. DCRL) schema pattern. In these patterns, minimal,solve, etc., denote place-holders for relation symbols. During the particulari-sation of a schema pattern to a schema, all these place-holders are renamed,because otherwise all divide-and-conquer programs would have the same rela-tion symbols. Indeed, since a template is an open program, the idea is to obtain

concrete programs from the template by adding programs for the open relations,such that these programs satisfy the steadfastness constraints. The steadfastnessconstraints corresponding to these DC templates (i.e., the speci�cations of theiropen relations) are the same, since these templates have the same open relations.Such constraints are shown in [12] in this volume.r(X;Y) minimal(X);solve(X;Y)r(X;Y) nonMinimal(X);decompose(X;HX;TX1; : : : ; TXt);r(TX1 ; TY1); : : : ; r(TXt; TYt);init(I0);compose(I0; TY1; I1); : : : ; compose(Ip�2; TYp�1; Ip�1);process(HX;HY); compose(Ip�1;HY; Ip);compose(Ip; TYp; Ip+1); : : : ; compose(It; TYt; It+1);Y = It+1 Template DCLRr(X;Y) minimal(X);solve(X;Y)r(X;Y) nonMinimal(X);decompose(X;HX;TX1; : : : ; TXt);r(TX1 ; TY1); : : : ; r(TXt; TYt);init(It+1);compose(TYt; It+1; It); : : : ; compose(TYp; Ip+1; Ip);process(HX;HY); compose(HY;Ip; Ip�1);compose(TYp�1; Ip�1; Ip�2); : : : ; compose(TY1; I1; I0);Y = I0 Template DCRLWe can now explain the underlying idea why we have two di�erent schemapatterns for DC, and why we call them DCLR and DCRL. If we denote thefunctional version of the compose relation with �, then the composition of Y intemplate DCLR by left-to-right (LR) composition ordering can be written as:Y = ((((((e � TY1)� : : :)� TYp�1)�HY)� TYp)� : : :) � TYt (1)

where e is the (unique) term for which init holds. Similarly, the composition ofY in DCRL by right-to-left (RL) composition ordering can be written as:Y = TY1 � (: : :� (TYp�1 � (HY � (TYp � (: : :� (TYt � e)))))) (2)Throughout the paper, we use the infix flat problem, whose DC programs aregiven in the example below.Example 1. The speci�cation of infix flat is:infix flat(B;F) i� list F is the in�x representation of binary tree Bwhere in�x representation means the list representation of the in�x traversal ofthe tree. Program 1 (resp. Program 2) below is the program for the infix flat=2problem that is a (partially evaluated) instance of the DCLR (resp. DCRL)schema pattern, for t = p = 2. Note the line-by-line correspondence between theprogram computations and the templates.infix flat(B;F) infix flat(B;F) B = void; B = void;F = [] F = []infix flat(B;F) infix flat(B;F) B = bt(; ;); B = bt(; ;);B = bt(L; E;R); B = bt(L; E;R);infix flat(L;FL); infix flat(R;FR); infix flat(L;FL); infix flat(R;FR);I0 = []; I3 = [];append(I0; FL; I1); append(FR; I3; I2);HF = [E]; append(I1;HF;I2); HF = [E]; append(HF; I2; I1);append(I2; FR; I3); append(FL; I1; I0);F = I3 F = I0Program 1 Program 23 Program Transformation by Tupling GeneralisationIf a program for a relation r, which has the speci�cation Sr of Section 1, isgiven as an instance of DCLR (or DCRL), then the speci�cation of the tupling-generalised problem of r, namely Sr tupling, is:8Xs : list of X : 8Y : Y: (8X : X : X 2 Xs) Ir(X)))(r tupling(Xs; Y), (Xs = []^ Y = e) _ (Xs = [X1; X2; : : : ; Xn]^ n̂i=1Or(Xi; Yi) ^ I1 = Y1 ^ n̂i=2Oc(Ii�1; Yi; Ii) ^ Y = In))where Oc is the output condition of compose, and e is the (unique) term forwhich init holds.The tupling generalisation schemas (one for each DC schema pattern) are:

TG1 : h DCLR, TG, At1 , Ot112, Ot121 i whereAt1 : - compose is associative- compose has e as the left and right identity element- 8X : X : Ir(X) ^minimal(X)) Or(X;e)- 8X : X : Ir(X)) [:minimal(X), nonMinimal(X)]Ot112 : partial evaluation of the conjunctionprocess(HX;HY); compose(HY;TY; Y)results in the introduction of a non-recursively de�ned relationOt121 : partial evaluation of the conjunctionprocess(HX;HY); compose(Ip�1;HY; Ip)results in the introduction of a non-recursively de�ned relationTG2 : h DCRL, TG, At2 , Ot212, Ot221 i whereAt2 : - compose is associative- compose has e as the left and right identity element- 8X : X : Ir(X) ^minimal(X)) Or(X;e)- 8X : X : Ir(X)) [:minimal(X), nonMinimal(X)]Ot212 : partial evaluation of the conjunctionprocess(HX;HY); compose(HY;TY; Y)results in the introduction of a non-recursively de�ned relationOt221 : partial evaluation of the conjunctionprocess(HX;HY); compose(HY;Ip; Ip�1)results in the introduction of a non-recursively de�ned relationwhere the template of the common schema pattern TG is given on the next page.Note that, in the TG template, all the open relations of DCLR (or DCRL)appear, but no new relations. This crucial observation enables the once-and-for-all veri�cation of the conditional equivalence of the two templates in the TGitransformation schemas wrt Sr under Ati , which veri�cation is thus indepen-dent of the actual speci�cations of the open relations (i.e., the steadfastnessconstraints) [4].The applicability conditions of TG1 (resp. TG2) ensure the equivalence of theDCLR (resp. DCRL) and TG programs for a given problem. The optimisabil-ity conditions ensure that the output programs of these generalisation schemascan be made more e�cient than the input programs. Indeed, the optimisabilityconditions, together with some of the applicability conditions, check whether thecompose calls in the TG template can be eliminated. For instance, the conjunc-tion solve(X;HY); compose(HY; TY; Y) in the second clause of r tupling can besimpli�ed to Y = A, if relation r maps the minimal form of X into e, and if e isalso the right identity element of compose. This is already checked by the secondand third applicability conditions of TG1 and TG2. Also, in the third and fourthclauses of r tupling, the conjunction process(HX;HY); compose(HY; TY; Y)can be partially evaluated, resulting in the disappearance of that call to compose,and thus in a merging of the compose loop into the r loop in the DCLR (orDCRL) template, if the optimisability condition Ot112 (or Ot212) holds.Let us illustrate tupling generalisation by applying the TGi generalisationschemas on the infix flat problem.

r(X;Y) infix flat(B;F) r tupling([X]; Y) infix flat t([B];F)r tupling(Xs;Y) infix flat t(Bs;F) Xs = []; Bs = [];init(Y) F = []r tupling(Xs;Y) infix flat t(Bs;F) Xs = [XjTXs]; Bs = [BjTBs];minimal(X); B = void;r tupling(TXs; TY); infix flat t(TBs; TF);solve(X;HY); HF = [];compose(HY;TY; Y); append(HF;TF;F)r tupling(Xs;Y) infix flat t(Bs;F) Xs = [XjTXs]; Bs = [BjTBs];nonMinimal(X); B = bt(; ;);decompose(X;HX;TX1; : : : ; TXt); B = bt(L;E; R);minimal(TX1); : : : ;minimal(TXt); L = void;R = void;r tupling(TXs; TY); infix flat t(TBs; TF);process(HX;HY); HF = [E];compose(HY;TY; Y) append(HF;TF;F)r tupling(Xs;Y) infix flat t(Bs;F) Xs = [XjTXs]; Bs = [BjTBs];nonMinimal(X); B = bt(; ;);decompose(X;HX;TX1; : : : ; TXt); B = bt(L;E; R);minimal(TX1); : : : ;minimal(TXp�1); L = void;(nonMinimal(TXp); : : : ;nonMinimal(TXt)); R = bt(; ;);r tupling([TXp; : : : ; TXtjTXs]; TY); infix flat t([RjTBs]; TF);process(HX;HY); HF = [E];compose(HY;TY; Y) append(HF;TF;F)r tupling(Xs;Y) infix flat t(Bs;F) Xs = [XjTXs]; Bs = [BjTBs];nonMinimal(X); B = bt(; ;);decompose(X;HX;TX1; : : : ; TXt); B = bt(L;E; R);(nonMinimal(TX1); : : : ;nonMinimal(TXp�1)); L = bt(; ;);minimal(TXp); : : : ;minimal(TXt); R = void;minimal(U1); : : : ;minimal(Up�1); UL = void;decompose(N;HX;U1; : : : ; Up�1; TXp; : : : ; TXt); N = bt(UL; E;R);r tupling([TX1 ; : : : ; TXp�1;N jTXs]; Y) infix flat t([L;N jTBs]; TF);r tupling(Xs;Y) infix flat t(Bs;F) Xs = [XjTXs]; Bs = [BjTBs];nonMinimal(X); B = bt(; ;);decompose(X;HX;TX1; : : : ; TXt); B = bt(L;E; R);(nonMinimal(TX1); : : : ;nonMinimal(TXp�1)); L = bt(; ;);(nonMinimal(TXp); : : : ;nonMinimal(TXt)); R = bt(; ;);minimal(U1); : : : ;minimal(Ut); UL = void;UR = void;decompose(N;HX;U1; : : : ; Ut); N = bt(UL; E;UR);r tupling([TX1 ; : : : ; TXp�1;N;TXp; : : : ; TXtjTXs]; Y) infix flat t([L;N;RjTBs]; F)Template TG and Program 3

Example 2. The speci�cation of the infix flat problem, and its DCLR andDCRL programs, are in Example 1 in Section 2. The infix flat problem canbe tupling-generalised using the TGi transformation schemas above, since theinfix flat programs have open relations that satisfy the applicability and op-timisability conditions of these schemas. So, the speci�cation of the tupling-generalised problem of infix flat is:infix flat t(Bs; F) i� F is the concatenation of the in�x representations of theelements in the binary tree list Bs.Program 3 on the previous page is the tupling-generalised program for infix flatas an instance of TG, for t = p = 2.Although the tupling generalisation schemas are constructed to tupling-generalise DC programs (i.e., to transform DC programs into TG programs),these schemas can also be used in the reverse direction, such that they trans-form TG programs into DC programs, provided the optimisability conditionsfor the corresponding DC schema pattern are satis�ed; note that applicabilityconditions work in both directions.4 Program Transformation by Descending GeneralisationDescending generalisation [9] can also be called the accumulation strategy (as infunctional programming [2], and in logic programming [17]), since it introducesan accumulator parameter and progressively extends it to the �nal result. De-scending generalisation can also be seen as transformation towards di�erencestructure manipulation, since any form of di�erence structures can be createdby descending generalisation, and not just di�erence-lists.Four descending generalisation schemas (two for each DC schema pattern) aregiven. Since the applicability conditions of each descending generalisation schemaare di�erent, the process of choosing the appropriate generalisation schema forthe input DC program is done only by checking the applicability and optimisabil-ity conditions, and the eureka (i.e., the speci�cation of the generalised problem)then comes for free.The reason why we call the descendingly generalised (DG) schema patterns`DGLR' and `DGRL' is similar to the reason why we call the divide-and-conquerschema patterns DCLR and DCRL, respectively. In descending generalisation,the composition ordering for extending the accumulator parameter in the tem-plate DGLR (resp. DGRL) is from left-to-right (LR) (resp. right-to-left (RL)).The �rst two descending generalisation schemas are:DG1 : h DCLR, DGLR, Adg1 , Odg112, Odg121 i whereAdg1 : - compose is associative- compose has e as the left identity elementOdg112 : - compose has e as the right identity elementand Ir(X) ^minimal(X)) Or(X;e)- partial evaluation of the conjunction

process(HX;HY); compose(Ap�1;HY;Ap)results in the introduction of a non-recursively de�ned relationOdg121 : - partial evaluation of the conjunctionprocess(HX;HY); compose(Ip�1;HY; Ip)results in the introduction of a non-recursively de�ned relationDG4 : h DCRL, DGLR, Adg4 , Odg412, Odg421i whereAdg4 : - compose is associative- compose has e as the left and right identity elementOdg412 : - Ir(X) ^minimal(X)) Or(X; e)- partial evaluation of the conjunctionprocess(HX;HY); compose(Ap�1;HY;Ap)results in the introduction of a non-recursively de�ned relationOdg421 : - partial evaluation of the conjunctionprocess(HX;HY); compose(HY;Ip; Ip�1)results in the introduction of a non-recursively de�ned relationwhere e is the (unique) term for which init holds. These schemas have the sameformal speci�cation (i.e., eureka) for the relation r descending1 of the schemapattern DGLR, namely:8X : X : 8Y;A : Y: Ir(X))[r descending1(X;Y;A) , 9S : Y: Or(X;S) ^Oc(A; S; Y)]where Oc is the output condition of compose. The template of the commonschema pattern DGLR of DG1 and DG4 is:r(X;Y) init(A); r descending1(X;Y;A)r descending1(X;Y;A) minimal(X);solve(X;S); compose(A;S; Y)r descending1(X;Y;A) nonMinimal(X);decompose(X;HX;TX1; : : : ; TXt);init(E); compose(A;E; A0);r descending1(TX1; A1; A0); : : : ; r descending1(TXp�1; Ap�1; Ap�2);process(HX;HY); compose(Ap�1;HY;Ap);r descending1(TXp; Ap+1; Ap); : : : ; r descending1(TXt; At+1; At);Y = At+1 Template DGLRNote that, in the DGLR template, all the open relations of DCLR (or DCRL)appear, but no new relations. The applicability and optimisability conditions ofthese two generalisation schemas di�er, since the composition ordering is changedfrom RL to LR in DG4.We now illustrate descending generalisation on our infix flat problem.

Example 3. The speci�cation of a program for the LR descendingly generalisedversion of infix flat is:infix flat descending1(B;F;A) i� list F is the concatenation of list A and thein�x representation of binary tree B.Program 4 is the program for infix flat as an instance of DGLR, for t = p = 2.infix flat(B;F) infix flat descending1(B;F; [])infix flat descending1(B;F;A) B = void;S = []; append(A; S;F)infix flat descending1(B;F;A) B = bt(; ;);B = bt(L;E; R);append(A; []; A0);infix flat descending1(L;A1; A0);HF = [E]; append(A1;HF;A2);infix flat descending1(R;A3; A2);F = A3 Program 4Since the applicability conditions of DG1 (resp. DG4) are satis�ed for the in-put DCLR (resp. DCRL) infix flat program, the descendingly generalisedinfix flat program can be Program 4. However, for this problem, descendinggeneralisation of the infix flat programs with the DG transformation schemasabove should not be done, since the optimisability conditions of DG1 (resp.DG4) are not satis�ed by the open relations of infix flat. Indeed, in the non-minimal case of infix flat descending1, partial evaluation of the conjunctionHF = [E]; append(A1;HF;A2) does not result in the introduction of a non-recursively de�ned relation, because of properties of append (actually, due tothe inductive de�nition of lists). Moreover, the induction parameter of append,which is here the accumulator parameter, increases in length each time appendis called in the non-minimal case, which shows that this program is not a goodchoice as a descendingly generalised program for this problem. So, the optimis-ability conditions are really useful to prevent non-optimising transformations.The other two descending generalisation schemas are:DG2 : h DCLR, DGRL, Adg2 , Odg212, Odg221 i whereAdg2 : - compose is associative- compose has e as the left and right identity elementOdg212 : - Ir(X) ^minimal(X)) Or(X;e)

- partial evaluation of the conjunctionprocess(HX;HY); compose(HY;Ap; Ap�1)results in the introduction of a non-recursively de�ned relationOdg221 : - partial evaluation of the conjunctionprocess(HX;HY); compose(Ip�1;HY; Ip)results in the introduction of a non-recursively de�ned relationDG3 : h DCRL, DGRL, Adg3 , Odg312, Odg321i whereAdg3 : - compose is associative- compose has e as the right identity elementOdg312 : - compose has e as the left identity elementand Ir(X) ^minimal(X)) Or(X; e)- partial evaluation of the conjunctionprocess(HX;HY); compose(HY;Ap; Ap�1)results in the introduction of a non-recursively de�ned relationOdg321 : - partial evaluation of the conjunctionprocess(HX;HY); compose(HY;Ip; Ip�1)results in the introduction of a non-recursively de�ned relationwhere e is the (unique) term for which init holds. These schemas have the sameformal speci�cation (i.e., eureka) for the relation r descending2 of the schemapattern DGRL, namely:8X : X : 8Y;A : Y: Ir(X))[r descending2(X;Y;A) , 9S : Y: Or(X;S) ^Oc(S;A; Y)]where Oc is the output condition of compose. Note the reversal of the roles ofA and S compared to the speci�cation of r descending1 above. The template ofthe common schema pattern DGRL of DG2 and DG3 is:r(X;Y) init(A); r descending2(X;Y;A)r descending2(X;Y;A) minimal(X);solve(X;S); compose(S;A; Y)r descending2(X;Y;A) nonMinimal(X);decompose(X;HX;TX1; : : : ; TXt);init(E); compose(E;A;At+1);r descending2(TXt; At; At+1); : : : ; r descending2(TXp; Ap; Ap+1);process(HX;HY); compose(HY;Ap; Ap�1);r descending2(TXp�1; Ap�2; Ap�1); : : : ; r descending2(TX1; A0; A1);Y = A0 Template DGRL

Note that, in the DGRL template, all the open relations of DCLR (or DCRL)appear, but no new relations. The applicability and optimisability conditions ofthese two generalisation schemas di�er, since the composition ordering is changedfrom LR to RL in DG2.Example 4. The speci�cation of a program for the RL descendingly generalisedversion of infix flat is:infix flat descending2(B;F;A) i� list F is the concatenation of the in�x rep-resentation of binary tree B and list A.Program 5 is the program for infix flat as an instance of DGRL, for t = p = 2.infix flat(B;F) infix flat descending2(B;F; [])infix flat descending2(B;F;A) B = void;S = []; append(S; A;F)infix flat descending2(B;F;A) B = bt(; ;);B = bt(L;E; R);append([]; A;A3);infix flat descending2(R;A2; A3);HF = [E]; append(HF;A2; A1);infix flat descending2(L;A0; A1);F = A0 Program 5Since both the applicability conditions and the optimisability conditions of DG2(resp. DG3) are satis�ed for the input DCLR (resp. DCRL) infix flat pro-gram, descending generalisation of the infix flat programs results in Program 5.Partial evaluation of the conjunction HF = [E]; append(HF;A2; A1) in the non-minimal case of infix flat descending2 then results in A1 = [EjA2]. Similarly,partial evaluation of the conjunction S = []; append(S;A; F) in the minimal caseresults in F = A. Altogether, this amounts to the elimination of append.Although the descending generalisation schemas are constructed to descend-ingly generalise DC programs, these schemas can also be used to transform DGprograms into DC programs, provided the optimisability conditions for the cor-responding DC schema pattern are satis�ed. It is thus possible that we haveProgram 4 for the infix flat problem, and that we want to transform it into amore e�cient program; then the DC programs are good candidates, if we havethe descending generalisation schemas above.

5 Program Transformation using Duality LawsIn Section 2, while we discussed the composition ordering in the DC programschemas, the reader who is familiar with functional programming has noticedthe similarities with the fold operators in functional programming. A detailedexplanation of the fold operators and their laws can be found in [3]. Here, weonly give the de�nitions of the fold operators, and their �rst law. The foldroperator can be de�ned as follows:foldr (�) a [x1; x2; : : : ; xn] = x1 � (x2 � (: : : (xn � a) : : :))where � is a variable that is bound to a function of two arguments.Similarly, the foldl operator can be de�ned as follows:foldl (�) a [x1; x2; : : : ; xn] = (: : : ((a� x1)� x2) : : :)� xnThus, equation (1) in Section 2, which illustrates the composition of Y in theDCLR template, can be rewritten using foldl:Y = foldl (�) e [TY1; : : : ; TYp�1;HY; TYp; : : : ; TYt]Similarly, the foldr operator can be used to rewrite equation (2), which illus-trates the composition of Y in the DCRL template:Y = foldr (�) e [TY1; : : : ; TYp�1;HY; TYp; : : : ; TYt]The �rst three laws of the fold operators are called duality theorems. The �rstduality theorem states that:foldr (�) a xs = foldl (�) a xsif � is associative and has (left/right) identity element a, and xs is a �nite list.By adding optimisability conditions, we can now devise a transformationschema based on this �rst duality theorem (compare with [16]):Ddc : h DCLR, DCRL, Addc, Oddc12, Oddc21i whereAddc : - compose is associative- compose has e as the left and right identity elementOddc12 : - partial evaluation of the conjunctionprocess(HX;HY); compose(HY;Ip; Ip�1)results in the introduction of a non-recursively de�ned relationOddc21 : - partial evaluation of the conjunctionprocess(HX;HY); compose(Ip�1;HY; Ip)results in the introduction of a non-recursively de�ned relationwhere e is the (unique) term for which init holds, where the schema patternsDCLR and DCRL are given in Section 2, and where Addc comes from the con-straints of the �rst duality theorem. The optimisability conditions check whetherthe compose operator can be eliminated in the output program.Similarly, it is possible to give a duality schema between the DG schemapatterns:

Ddg : h DGLR, DGRL, Addg, Oddg12, Oddg21i whereAddg : - compose is associative- compose has e as the left and right identity elementOddg12: - 8X : X : Ir(X) ^minimal(X)) Or(X;e)- partial evaluation of the conjunctionprocess(HX;HY); compose(HY;Ap; Ap�1)results in the introduction of a non-recursively de�ned relationOddg21: - 8X : X : Ir(X) ^minimal(X)) Or(X;e)- partial evaluation of the conjunctionprocess(HX;HY); compose(Ap�1;HY; Ap)results in the introduction of a non-recursively de�ned relationwhere e is the (unique) term for which init holds, and where the schema patternsDGLR and DGRL are given in Section 4.6 Evaluation of the Transformation SchemasWe evaluate the transformation schemas using performance tests done on par-tially evaluated input and output programs of each transformation schema. How-ever, the reader may �nd this evaluation a little bit dubious, since the transfor-mation schemas in this paper are only dealing with the declarative features ofprograms. This evaluation is made because we think that these performancetests will help us see what our theoretical results amount to when tested prac-tically, although in an environment with procedural side-e�ects. The programsare executed using Mercury 0:6 (for an overview of Mercury, please refer to [22])on a SPARCstation 4. Since the programs are really short, the procedures werecalled 500 or 1000 times to achieve meaningful timing results. In Table 1, theresults of the performance tests for �ve selected relations are shown, where eachcolumn heading represents the schema pattern to which the program written forthe relation of that row belongs. (Of course, quicksort is not really a relation:we just mean to indicate that some partitioning is used as decompose for thesort relation.) The timing results are normalised wrt the DCLR column.relations DCLR DCRL TG DGLR DGRLPre�x flat 1.00 0.92 0.23 11.88 0.15In�x flat 1.00 0.49 0.02 7.78 0.05Post�x flat 1.00 0.69 0.14 5.48 0.09reverse 1.00 1.00 0.04 1.01 0.01quicksort 1.00 0.85 0.72 6.02 0.56Table 1. Performance test resultsThe reason why we chose the relations above is that for all the �ve consideredschema patterns programs can be written for these relations.Let us �rst compare the DCLR and DCRL schema patterns. For reverse,the DCLR and DCRL programs are the same, since they are singly recursive,

and their compose relation is append, which is associative. For the binary treeflat relations and for quicksort, the DCRL programs are much better than theDCLR programs, because of properties of relations like append (which is thecompose relation in all these programs), which are the main reason for achiev-ing the optimisations of the DCRL programs for the relations above. Hence,if the input programs for the binary tree flat relations and for the quicksortproblem to the duality schema are instances of the DCLR schema pattern, thena duality transformation will be performed, resulting in DCRL programs forthese relations, since both the applicability and the optimisability conditionsare satis�ed by these programs. If the DCRL programs for the relations aboveare input to the duality schema, then the duality transformation will not be per-formed, since the optimisability conditions are not satis�ed by append, which isthe compose relation of the DCRL programs. Of course, there may exist someother relations where the duality transformation of their DCRL programs intothe DCLR programs will provide an e�ciency gain. Unfortunately, we could not�nd a meaningful relation of this category.The next step in evaluating the transformation schemas is to compare thegeneralised programs of these example relations. If we look at Table 1, the mostobvious observation is that the DGRL programs for all these relations are verye�cient programs. However, tupling generalisation seems to be the second bestas a generalisation choice, and it must even be the �rst choice for relations likein�x flat, where the composition place of the head in the result parameter is inthe middle, and where the minimal and nonMinimal checks can be performedin minimum time. Although a similar situation occurs for quicksort, its TGprogram is not quite as e�cient as its DGRL program. This is mainly because ofpartition, which is the decompose relation of quicksort, being a costly operation,although we eliminated most of the partition calls by putting extra minimalitychecks into the TG template. Since append, which is the compose relation inall the programs, cannot be eliminated in the resulting DGLR programs, theDGLR programs for these relations have the worst timing results. The reason fortheir bad performance is that the percentages of the total running times of theDGLR programs used by append are much higher than the percentages of thetotal running times of the DCLR andDCRL programs used by append for theserelations. The reason for the increase in the percentages is that the length of theaccumulator, which is the input parameter to append in the DGLR programs,is larger than the length of the input parameter of append in the DCLR andDCRL programs, since the partial result has to be repeatedly input to thecompose relation in descending generalisation.A transformation should be performed only if it really results in a programthat is more e�cient than the input program. So, for instance, the descendinggeneralisation of the input DCLR program for in�x flat resulting in the DGLRprogrammust not be done, even though the applicability conditions are satis�ed.This is the main reason for the existence of the optimisability conditions in theschemas.

In some of the cases, using generalisation schemas to transform input pro-grams that are already generalised programs into DC programs can produce ane�ciency gain. For example, if the DGLR program for any of the flat relationsis the input program to descending generalisation (namely DG1 or DG4), thena de-generalisation will be performed resulting in the DCLR (or DCRL) pro-gram, which is more e�cient than the input DGLR program. However, with thecurrent optimisability conditions, if the input program for any of the relationsabove to generalisation is a DGRL program, then the generalisation schemasare still applied in the reverse direction, resulting in a DCRL program, whichmeans that the de-generalisation will result in a program that is less e�cientthan the input program. This makes us think of even more accurate ways ofde�ning the optimisability conditions, namely as actual optimisation conditions,such that the transformation will always result in a better program than theinput program. However, more performance analyses and complexity analysesare needed to derive such conditions.7 A Prototype Transformation SystemTranSys is a prototypical implementation of the schema-based program trans-formation approach summarised in this paper. TranSys is a fully automaticprogram transformation system and was developed to be integrated with aschema-guided program development environment. Therefore, the input programto TranSys is assumed to be developed by a synthesiser using the database ofschema patterns known to TranSys. The schema pattern of which the inputprogram is an instance is thus a priori known, and so are the renamings ofthe open relation symbols, the particularisations of the schema variables suchas t and p, as well as the \closing" programs de�ning these open relations ofthe template. In other words, no matching between the input program and thetemplates of the transformation schemas has to be performed, unlike in [6, 25].Given an input program, TranSys outputs (what it believes to be) the bestprograms that are more e�cient than the input program: this is done by collect-ing the leaves of the tree rooted in that input program and where child nodesare developed when both the applicability and the optimisability conditions ofa transformation schema hold. All the transformation schemas and the schemapatterns, which are the input (or output) schema patterns of these transforma-tion schemas, given in [5] (i.e., a superset of the schemas given in this paper),are available in the database of the system.TranSys has been developed in SICStus Prolog 3. Since TranSys is a pro-totype system, for some parts of the system, instead of implementing them our-selves, we reused and integrated other systems:{ For verifying the applicability conditions and some of the optimisability con-ditions, PTTP is integrated into the system. The Prolog Technology TheoremProver (PTTP) was developed by M. Stickel (for a detailed explanation ofPTTP, the reader can refer to [24]). PTTP is an implementation of the model

elimination theorem proving procedure for the full �rst-order predicate cal-culus. TranSys uses the version of PTTP that is written in Prolog and thatcompiles clauses into Prolog.{ For verifying the other optimisability conditions, and for applying these op-timisations to the output programs of the transformation schemas, we in-tegrated Mixtus 0.3.6. Mixtus was developed by D. Sahlin (for a detailedexplanation of Mixtus, the reader can refer to [19]). Mixtus is an automaticpartial evaluator for full Prolog. Given a Prolog program and a query, it willproduce a new program specialised for all instances of that query. The partialevaluator is guaranteed to terminate for all input programs and queries.For a detailed explanation of the TranSys system, the reader is invited toconsult [5].8 Conclusions and Future WorkThis paper results from the research that began by investigating the suggestionsin [11]. The contributions of this research are:{ pre-compilation of more general generalisation schemas (tupling and de-scending) than those in [11], which were restricted to sub-families of divide-and-conquer programs;{ discovery of the duality schemas;{ discovery of the optimisability conditions;{ validation of the correctness of the transformation schemas, based on thenotions of correctness of a program, steadfastness of a program in a set ofspeci�cations, and equivalence of two programs (the correctness proofs of thetransformation schemas given in this paper and in [5] can be found in [4]; an-other approach to validation of transformation schemas can be found in [18]);{ development of a prototype transformation system;{ validation of the e�ectiveness of the transformation schemas by performancetests.This research opens future work directions, such as:{ extension to normal programs and open frameworks;{ consideration of other program schemas (or schema patterns);{ extension of the schema pattern language so as to express even more generalprogram families;{ representation of the loop merging strategy as a transformation schema;{ search for other transformation schemas;{ identi�cation of optimisation conditions that always ensure improved per-formance (or complexity) of the output program wrt the input program;{ validation of the e�ectiveness of the transformation schemas by automatedcomplexity analysis (using GAIA [7] and/or CASLOG [8]).

Acknowledgments. We wish to thank the anonymous reviewers of the previ-ous versions of this paper as well as the participants of the LOPSTR'97 workshopfor their valuable comments and suggestions, especially Yves Deville (UC Lou-vain, Belgium). We also gratefully acknowledge the feedback of the students ofthe second author's Automated Software Engineering course at Bilkent, espe-cially Necip Faz�l Ayan, Brahim Hnich, Ay�se P�nar Sayg�n, Tuba Yavuz, andCemal Y�lmaz.References1. T. Batu. Schema-Guided Transformations of Logic Algorithms. Senior Project Re-port, Bilkent University, Department of Computer Science, 1996.2. R.S. Bird. The promotion and accumulation strategies in transformational pro-gramming. ACM Transactions on Programming Languages and Systems 6(4):487{504, 1984.3. R.S. Bird and P. Wadler. Introduction to Functional Programming. Prentice Hall,1988.4. H. B�uy�uky�ld�z and P. Flener. Correctness Proofs of Transformation Schemas.Technical Report BU-CEIS-9713. Bilkent University, Department of Computer Sci-ence, 1997.5. H. B�uy�uky�ld�z. Schema-based Logic Program Transformation. M.Sc. Thesis, Tech-nical Report BU-CEIS-9714. Bilkent University, Department of Computer Science,1997.6. E. Chasseur and Y. Deville. Logic program schemas, semi-uni�cation, and con-straints. In: N.E. Fuchs (ed), Proc. of LOPSTR'97 (this volume).7. A. Cortesi, B. Le Charlier, and S. Rossi. Speci�cation-based automatic veri�ca-tion of Prolog programs. In: J. Gallagher (ed), Proc. of LOPSTR'96, pp. 38{57.LNCS 1207. Springer-Verlag, 1997.8. S.K. Debray and N.W. Lin. Cost analysis of logic programs. ACM TOPLAS15(5):826{875, 1993.9. Y. Deville. Logic Programming: Systematic Program Development. Addison-Wesley, 1990.10. Y. Deville and J. Burnay. Generalization and program schemata: A step towardscomputer-aided construction of logic programs. In: E.L. Lusk and R.A. Overbeek(eds), Proc. of NACLP'89, pp. 409{425. The MIT Press, 1989.11. P. Flener and Y. Deville. Logic program transformation through generalizationschemata. In: M. Proietti (ed), Proc. of LOPSTR'95, pp. 171{173. LNCS 1048.Springer-Verlag, 1996.12. P. Flener, K.-K. Lau, and M. Ornaghi. On correct program schemas. In:N.E. Fuchs (ed), Proc. of LOPSTR'97 (this volume).13. N.E. Fuchs and M.P.J. Fromherz. Schema-based transformation of logic programs.In: T. Clement and K.-K. Lau (eds), Proc. of LOPSTR'91, pp. 111{125. SpringerVerlag, 1992.14. T.S. Gegg-Harrison. Representing logic program schemata in �Prolog. In: L. Ster-ling (ed), Proc. of ICLP'95, pp. 467{481. The MIT Press, 1995.15. T.S. Gegg-Harrison. Extensible logic program schemata. In: J. Gallagher (ed),Proc. of LOPSTR'96, pp. 256{274. LNCS 1207. Springer-Verlag, 1997.

16. A. Hamfelt and J. Fischer Nilsson. Declarative logic programming with primitiverecursion relations on lists. In: L. Sterling (ed), Proc of JICSLP'96. The MIT Press.17. A. Pettorossi and M. Proietti. Transformation of logic programs: foundations andtechniques. Journal of Logic Programming 19(20):261{320, 1994.18. J. Richardson and N.E. Fuchs. Development of correct transformation schematafor Prolog programs. In: N.E. Fuchs (ed), Proc. of LOPSTR'97 (this volume).19. D. Sahlin. An Automatic Partial Evaluator of Full Prolog. Ph.D. Thesis, SwedishInstitute of Computer Science, 1991.20. D.R. Smith. Top-down synthesis of divide-and-conquer algorithms. Arti�cial Intel-ligence 27(1):43{96, 1985.21. D.R. Smith. KIDS: A semiautomatic program development system. IEEE Trans-actions on Software Engineering 16(9):1024{1043, 1990.22. Z. Somogyi, F. Henderson, and T. Conway. Mercury: An e�cient purely declar-ative logic programming language. In: Proc. of the Australian Computer ScienceConference, pp. 499{512, 1995.23. L.S. Sterling and M. Kirschenbaum. Applying techniques to skeletons. In: J.-M. Jacquet (ed), Constructing Logic Programs, pp. 127{140, John Wiley, 1993.24. M.E. Stickel. A Prolog technology theorem prover: A new exposition and imple-mentation in Prolog. Theoretical Computer Science 104:109{128, 1992.25. W.W. Vasconcelos and N.E. Fuchs. An opportunistic approach for logic pro-gram analysis and optimisation using enhanced schema-based transformations. In:M. Proietti (ed), Proc. of LOPSTR'95, pp. 174{188. LNCS 1048. Springer-Verlag,1996.
This paper was painstakingly typeset using the LaTEX macro package with LLNCSstyle.

