
Logic Program Transformation
through Generalization Schemata

Pierre Flener

Department of Computer Engineering and Information Science
Faculty of Engineering, Bilkent University, 06533 Bilkent, Ankara, Turkey

Email: pf@cs.bilkent.edu.tr Voice: +90/312/266-4000 ext.1450

Yves Deville

Department of Computing Science and Engineering
Université Catholique de Louvain, B–1348 Louvain-la-Neuve, Belgium

Email: yde@info.ucl.ac.be Voice: +32/10/47-2067

Abstract

In program synthesis, program transformation can be done on the fly, based on information generated and ex-
ploited during the program construction process. For instance, some logic program generalization techniques
can be pre-compiled at the logic program schema level, yielding transformation schemata that give rise to
elimination of the eureka discovery, full automation of the transformation process itself, and even the predic-
tion whether and which optimizations will be achieved.

1 Introduction

Programs can be classified according to their construction methodologies, such as divide-and-conquer, gen-
erate-and-test, top-down decomposition, global search, and so on, or any composition thereof. Informally,
aprogram schema is a template program with a fixed control and data flow, but without specific indications
about the actual parameters or the actual computations, except that they must satisfy certain constraints. A
program schema thus abstracts a whole family of particular programs that can be obtained by instantiating
its place-holders to particular parameters or computations, using the specification, the program synthesized
so far, and the constraints of the schema. It is therefore interesting to guide program construction by a sche-
ma that captures the essence of some methodology. This reflects the conjecture that experienced program-
mers actually instantiate schemata when programming, which schemata are summaries of their past
programming experience. For a more complete treatise on this subject, please refer to [3] [4].

Moreover, in contrast to traditional programming methodologies where program transformation sequen-
tially follows program construction and is merely based on the constructed program, these two phases can
actually be interleaved in (semi-)automated program synthesis, based on information generated and exploit-
ed during the program construction process.

In this introductory section, we introduce a schema for divide-and-conquer logic programs (Section 1.1),
and argue for schema-guided transformation (Section 1.2). Finally, we introduce the notion of problem gen-
eralization (Section 1.3).

2

1.1 A Divide-and-Conquer Logic Program Schema

In this sub-section, for the purpose of illustration only, we focus on the divide-and-conquer construction
methodology, and we restrict ourselves, for pedagogical purposes only, to binary predicates. Adivide-and-
conquer program for a binary predicate R over parameters X and Y works as follows. Let X be the induction
parameter. If X is minimal, then Y is (usually) easily found by directly solving the problem. Otherwise, that
is if X is non-minimal, decompose (or: divide)X into a vectorHX of h heads of X and a vectorTX of t tails
of X, the tails being of the same type as X, as well as smaller than X according to some well-founded relation.
Thet tailsTX recursively yieldt tailsTY of Y (this is the conquer step). Theh headsHX are processed into
a vectorHY of h' heads of Y. Finally, Y is composed (or: combined) from its headsHY and tailsTY. Suppose
m subcases with different processing and composition operators emerge: one discriminates between them
according to the values ofHX, TX, andY. Them+1 clauses of logic programs synthesized by this divide-
and-conquer methodology are thus covered by the second-order clause schemata of Schema 1, where
R(TX,TY) stands for the conjunction of theR(TXj ,TYj), for 1≤ j ≤t:

R(X,Y) ←
Minimal(X),
Solve(X,Y)

R(X,Y) ←
NonMinimal(X),
Decompose(X,HX,TX),
Discriminatek(HX,TX,Y),
R(TX,TY),
Processk(HX,HY),
Composek(HY,TY,Y)

Schema 1: Divide-and-conquer schema

Note that, upon instantiation, the second clause schema yieldsm different clauses, for 1≤k≤m. The con-
straints to be verified by first-order instances of this schema are listed in [4]. The most important one is that
there must exist a well-founded relation “<” over the domain of the induction parameter, such that the
instantiation ofDecompose guarantees thatTXj “<” X, for every 1≤ j ≤t.

Example 1: Let sort(L,S) hold iff integer-listS is a non-decreasingly ordered permutation of integer-listL
The following insertion-sort program:

sort([],[])
sort([HL|TL],S) ←

sort(TL,TS),
insert(HL,TS,S)

is a rewriting of the program obtained by applying the substitution {Minimal /isEmptyList, Solve/=,
NonMinimal/isNonEmpty, Decompose/headTail, Discriminate1/true, Process1/=, Compose1/insert, m/1,
h/1, h'/1, t/1} to Schema 1, where the used primitives are defined as follows:

isEmptyList([]) isNonEmpty([_|_]) headTail([H|T],H,T)

and insert(I,L,R) holds iff list R is non-decreasing integer-listL with integerI inserted. Note that a logic
program forinsert/3 would not be an instance of Schema 1: covering it would require a generalization to
n-ary predicates, the handling ofnon-recursive non-minimal clauses, and the handling of auxiliary param-
eters (such asI), which can’t be induction parameters. Such extensions are discussed in [3] [4].♦

1.2 Schema-Guided Transformation

Regarding program transformation, it would be interesting to pre-compile transformation techniques at the
schema-level: atransformation schema is a pair〈T1, T2〉 of program schemata, such thatT2 is a transfor-
mation ofT1, according to some transformation technique. Transformation at the program-level then reduc-
es to (i) selecting a transformation schema〈T1, T2〉 such thatT1 covers the given program under some
substitutionσ, and (ii) applyingσ to T2. This is similar to the work of Fuchs and Fromherz [6], except that
they have a preliminary abstraction phase where the covering schema of the given program is discovered,

3

whereas we here assume that this program was synthesized in a schema-guided fashion, so that the covering
schema is already known. Moreover, their work is much more abstract than ours in the sense that they don’t
say much about the contents of the schemata, whereas we here assume that the given program is covered by
a divide-and-conquer schema. Waldau [8] shows how to formally validate such transformation schemata.

1.3 Problem Generalization

When synthesizing a divide-and-conquer program, it sometimes becomes “difficult,” if not impossible, to
process-composeY from theHX andTY. Besides changing the induction parameter, or the well-founded
relation over its domain (and hence the instances ofMinimal, NonMinimal, andDecompose), or the guiding
schema/methodology, one can also generalize the initial specification and then synthesize a recursive pro-
gram from the generalized specification as well as a non-recursive program for the initial problem as a par-
ticular case of the generalized one. Paradoxically, the new synthesis then becomes “easier,” if not possible
in the first place. As an additional and beneficial side-effect, programs for generalized problems are often
more efficient, because they feature (semi-)tail recursion (which is transformed by optimizing interpreters
into iteration) and/or because the generalization provoked a complexity reduction by loop merging.

For a detailed overview of problem generalization techniques, the reader is invited to consult [1] or [2].
We here summarize Deville’s presentation and borrow some of his examples, but adapt and extend where
appropriate. Basically, there are two generalization approaches:

• In structural generalization, one generalizes the structure (type) of some parameter. For instance, an
integer parameter could be generalized into a integer-list parameter, and the intended relation must then
be generalized accordingly. This is calledtupling generalization, and we shall restrict the discussion of
structural generalization to it.

• In computational generalization, one generalizes a state of computation in terms of “what has already
been done” and “what remains to be done.” If information about what has already been done is not
needed, then it is calleddescending generalization, otherwise it isascending generalization.

The remainder of this paper is organized as follows. In Sections 2 and 3 respectively, we show how tupling
generalization and descending generalization can be applied for the purposes of pre-compiled automatic
program transformation. (It is yet unclear to us how to do this with ascending generalization.) This yields
transformation schemata calledgeneralization schemata. Finally, in Section 4, we conclude.

2 Program Transformation by Structural Generalization

In this section, we first briefly illustrate tupling generalization on an example, and then examine its potential
for automatic logic program transformation.

Example 2: Let the constantvoid represent the empty binary tree, and the compound termbtree(L,E,R)
represent a binary tree of rootE, left subtreeL, and right subtreeR. Letflat(B,F) hold iff list F contains the
elements of binary treeB as they are visited by a prefix traversal ofB. We also say thatF is the prefix rep-
resentation ofB. A corresponding “naive” divide-and-conquer logic program could be:

flat(void,[])
flat(btree(L,E,R),F) ←

flat(L,U), flat(R,V),
H=[E],
append(U,V,I), append(H,I,F)

whereappend(A,B,C) holds iff listC is the concatenation of listB to the end of listA. If n is the number of
elements in treeB, then this logic program has anO(n2) time complexity (as opposed to the linear complex-
ity one might expect), because composition is done throughappend/3, whose time complexity is linear in
the number of elements in its first parameter (and not constant, as one might hope). This is all an inevitable
consequence of the definition of lists. Worse, ifh is the height ofB, then this logic program builds a stack
of h pairs of recursive calls, and creates 2·n intermediate data structures, so it also has a very bad space com-
plexity. In the (in,out) mode, the calls to the composition operatorappend/3 cannot be moved in front of
any of the recursive calls (well, at least not without significantly further degrading the time/space efficien-
cy), so theflat/2 logic program is not (semi-)tail-recursive (assuming a left-to-right computation rule).

4

Let’s now perform a tupling generalization of the initial specification: letflats(Bs,F) hold iff list F is the
concatenation of the prefix representations of the elements of binary tree listBs. Expressing the initial prob-
lem as a particular case of the generalized one yields:

flat(B,F) ←
flats([B],F)

and a logic program for the generalized problem is:

flats([],[])
flats([void|Bs],F) ←

flats(Bs,F)
flats([btree(L,E,R)|Bs],[E|TF]) ←

flats([L,R|Bs],TF)

Note that the calls toappend/3 have disappeared: theappend/3 loops have been merged into theflat/2 loop.
So the conjunction of the last four clauses yields the idealO(n) time complexity. This logic program builds
a stack of 2·n+1 recursive calls, and it creates as many intermediate data structures; fortunately, the logic
program forflats/2 can be made tail-recursive in the mode (in,out), as the last two clauses are exclusive.♦

Theeureka needed to adequately generalize the initial specification comes directly from the composition
operator of the initial program [5]. For instance,flats/2 was specified in terms of aconcatenation precisely
because the composition operator offlat/2 wasappend/3. Generally speaking now, suppose the specifica-
tion of the initial problem is (whereR is the intended relation, andT1, T2 are the types of its parameters):

R(X,Y) ⇔ R [X,Y],
where X ∈ T1 andY ∈ T2.

and that its initially synthesized divide-and-conquer program is covered by the following specialization (for
simplicity of presentation only) of Schema 1:

R(X,Y) ←
Minimal(X),
Solve(X,Y)

R(X,Y) ←
NonMinimal(X),
Decompose(X,HX,TX1,TX2),
R(TX1,TY1), R(TX2,TY2),
Process(HX,HY),
Compose(TY1,TY2,I), Compose(HY,I,Y)

Schema 2: Divide-and-conquer schema (whereh=h'=m=1 andt=2)

(note that this may require the rewriting ofProcess1 so that it type-transformsHX into a termHY of type T2,
and/or the rewriting ofCompose1 so that it is a conjunction of calls to someCompose/3, which must be
associative and must have some left/right-identity elemente).
The formal specification of the tupling-generalized problem then is:

Rs(Xs,Y) ⇔
(Xs= [] ∧ Y= ε) ∨ (Xs= [X1,X2,…,Xn] ∧ R(Xi ,Yi) ∧ I1 = Y1 ∧ Compose(I i−1,Yi ,Ii) ∧ Y= In),

where X ∈ list of T1 andY ∈ T2.

and the new logic program is:

R(X,Y) ←
Rs([X],Y) (1)

where:

Rs(Xs,Y) ←
Xs=[], % Minimal-Rs
Y=e % Solve-Rs

Rs(Xs,Y) ←
Xs=[_|_], % NonMinimal-Rs
Xs=[X|TXs], % Decompose1-Rs

5

Minimal(X), % Discriminate1-Rs
Rs(TXs,TY),
Solve(X,HY), % Process1-Rs
Compose(HY,TY,Y) % Compose1-Rs

Rs(Xs,Y) ←
Xs=[_|_], % NonMinimal-Rs
Xs=[X|TXs], % Decompose2-Rs (part 1)
NonMinimal(X), % Discriminate2-Rs
Decompose(X,HX,TX1,TX2), % Decompose2-Rs (part 2)
Rs([TX1,TX2|TXs],TY),
Process(HX,HY), % Process2-Rs
Compose(HY,TY,Y) % Compose2-Rs

Schema 3: Tupling generalization schema, expressed using the divide-and-conquer operators

This is easily proved by unfolding the body of (1) with Schema 3, and transforming into Schema 2 again
[5]. The annotations clearly show that logic programs for tupling-generalized problems are covered by a
slight generalization of the divide-and-conquer schema (Schema 1). Structural generalization is thus very
easy if a (naive) program is already given, as this technique is very suitable for mechanical transformation:
all operators of the generalized program are operators of the initial program.

Moreover, ifSolve/2 convertsX into a constant “size”Y, then the conjunction Solve(X,HY), Com-
pose(HY,TY,Y) of the second clause can be partially evaluated, which usually results in the disappear-
ance of that call toCompose/3, and thus in a merging of theCompose/3 loop into theR/2 loop. Often, this
partial evaluation even results in an equality atom forY, which can then be forward-compiled (into the head
of the second clause). The second and third clauses being mutually exclusive (by virtue of a constraint that
Minimal/1 andNonMinimal/1 must be complementary over the domain of the induction parameterX), the
recursive call Rs(TXs,TY) in the second clause can then be made iterative (by,e.g., placing a cut after
the call toMinimal/1). For instance, the prefix representation of the empty tree is the empty list (of size 0),
so partial evaluation givesF = TF, which can indeed be compiled into the head of the second clause.

Finally, if Process/2 convertsHX into a constant “size”HY, then the conjunction Process(HX,HY),
Compose(HY,TY,Y) of the third clause can also be partially evaluated, which usually results in the dis-
appearance of that call toCompose/3, and thus in a merging of theCompose/3 loop into theR/2 loop. Of-
ten, this partial evaluation even results in an equality atom forY, which can then be forward-compiled (into
the head of the third clause), so that the recursive call Rs([TX1,TX2|TXs],TY) in the third clause also
becomes iterative. For instance, the list [E] obtained through processing of the rootE being of size/length 1,
partial evaluation givesF = [E | TF], which can indeed be compiled into the head of the third clause.

If the last two conditions simultaneously hold (which is not unusual), thenCompose/3 effectively disap-
pears altogether. So, given a divide-and-conquer program, a mere inspection of the properties of its solving,
processing, and composition operators allows us to detect whether tupling generalization is possible, and
even to which optimizations it would lead. Even better, theeureka discovery is compiled away, and the
transformation can be completely automated. The pair〈Schema 2, Schema 3〉 thus constitutes a first gener-
alization schema.

This presentation generalizes the one of [1] and [2], whereT2 must belist (which is a useless restriction,
because it is unrelated to the nature of tupling generalization), and whereCompose/3 must beappend/3 and
e must be [] (which hides the fact that theeureka is always based onCompose/3, which can be different
from append/3). Also, Schema 3 was not discovered there, hence the possibility of full pre-compilation
went undetected there.

Moreover, in [1, p.139], the potential existence of structural cases other (or even more numerous) than []
and [_| _], with the first element either minimal or not, is identified. For instance, ifflat/2 was to compute
the infix representation of a binary tree, then the cases [], [void | Bs], [btree(void,E,R) | Bs], and
[btree(L,E,R) | Bs] ∧ L ≠ void would be needed forflats/2. This might seem disturbing at first sight, as it
seems to prevent full automation. But this simply follows from the fact that the program forflat/2 would
not be covered by Schema 2, but rather by a slight variant thereof, namely where the composition conjunc-
tion Compose(TY1,TY2,I), Compose(H,I,Y) is replaced by Compose(HY,TY2,I), Com-
pose(TY1,I,Y). Pre-compilation of the transformation yields the corresponding variant of Schema 3.

6

One can thus pre-compile more generalization schemata, one for each combination of values of〈h, h', t, m〉
and each ordering of composition ofY from HY and theTY [5].

3 Program Transformation by Descending Generalization

In this section, we first briefly illustrate descending generalization on the classical list reversal example, and
then examine its potential for automatic logic program transformation.

Example 3: Let reverse(L,R) hold iff list R is the reverse of listL. A corresponding “naive” divide-and-
conquer logic program could be:

reverse([],[])
reverse([HL|TL],R) ←

reverse(TL,TR),
HR=[HL],
append(TR,HR,R)

If n is the number of elements in listL, then this logic program has anO(n2) time complexity (as opposed
to the linear complexity one might expect), because composition is done throughappend/3, whose time
complexity is linear in the number of elements in its first parameter. Worse, this logic program builds a stack
of n recursive calls, and createsn intermediate data structures, so it also has a very bad space complexity.
In the (in,out) mode, the call to the composition operatorappend/3 cannot be moved in front of the recursive
call (well, at least not without significantly further degrading the time/space efficiency), so thereverse/2
logic program is not tail-recursive (assuming a left-to-right computation rule).

Let’s now perform a descending generalization of the initial specification: letreverseDesc(L,R,A) hold iff
list R is the concatenation of listA to the end of the reverse of listL. Expressing the initial problem as a
particular case of the generalized one yields:

reverse(L,R) ←
reverseDesc(L,R,[])

and a logic program for the generalized problem is:

reverseDesc([],R,R)
reverseDesc([HL|TL],R,A) ←

reverseDesc(TL,R,[HL|A])

Note that the call toappend/3 has disappeared: theappend/3 loop has been merged into thereverse/2 loop.
So the conjunction of the last three clauses yields the idealO(n) time complexity. This logic program also
builds a stack ofn recursive calls, but it creates no intermediate data structures; fortunately, the logic pro-
gram forreverseDesc/3 is even tail-recursive in the mode (in,out,in). ♦

In its simplest incarnation, descending generalization thus introduces an accumulator parameter, which is
progressively extended to the final result. The pair of parametersR andA can also be seen as representing
the difference-listR \ A, which itself represents the difference between listsR andA, whereA is a suffix of
R. But descending generalization yields something more general than transformation to difference-list ma-
nipulation, because it is by no means restricted to creating difference-lists only: any form of difference-
structures can be created. Another example would be difference-integerI \ J, which could representI−J or
max(I,J) or whatever.

It can again be shown that theeureka needed to adequately generalize the initial specification comes di-
rectly from the composition operator of the initial program [5]. For instance,reverseDesc/3 was specified
in terms of aconcatenation precisely because the composition operator ofreverse/2 wasappend/3. Its for-
mal specification, namely:

reverseDesc(TL,R,HR) ⇔ ∃TR reverse(TL,TR) ∧ append(TR,HR,R)

has a right-hand side built of two atoms extracted from the logic program forreverse/2. Generally speaking
now, suppose the initially synthesized divide-and-conquer program for the initial problem is covered by the
following specialization (for simplicity of presentation only) of Schema 1:

7

R(X,Y) ←
Minimal(X),
Solve(X,Y)

R(X,Y) ←
NonMinimal(X),
Decompose(X,HX,TX),
R(TX,TY),
Process(HX,HY),
Compose(HY,TY,Y)

Schema 4: Divide-and-conquer schema (whereh=t=m=1)

Theeureka can then be mechanically found [1] [7] by searching in the program forR/2 for a (not necessarily
consecutive) sub-formula of the form R(X,S), Compose(A,S,Y), so that the following formal spec-
ification forR-desc/3 can be postulated:

R-desc(X,Y,A) ⇔ ∃S R(X,S) ∧ Compose(A,S,Y)

The key principle here is that both parts of the sub-formula share some variableS. The same principle can
be employed for other loop mergers, but we are here only interested in descending generalization. This is
of course not a new result, but the following further development has some new ideas. This search is easy
if the program forR/2 was constructed in the first place so as to be an instance of Schema 4. Note that it is
thus crucial that theProcess/2 andCompose/3 operators are not merged (yet).

Now, if the initial problem exhibits a functional dependency from induction parameterX to parameterY,
and ifCompose/3 is associative with left-identity elemente, then the new logic program is:

R(X,Y) ←
R-desc(X,Y,e) (2)

where:

R-desc(X,Y,A) ←
Minimal(X),
(Solve(X,S), Compose(A,S,Y))

R-desc(X,Y,A) ←
NonMinimal(X),
Decompose(X,HX,TX),
(Process(HX,HI), Compose(A,HI,NewA)),
R-desc(TX,Y,NewA)

Schema 5: Descending generalization schema, expressed using the divide-and-conquer operators

This is easily proved by unfolding the body of (2) with Schema 5, and transforming into Schema 4 again
[5]. Logic programs for descendingly generalized problems are obviouslynot covered by a divide-and-con-
quer schema, because the accumulator is extended for recursive calls rather than reduced. The correspond-
ing tail-recursive schema is actually as follows:

R-desc(X,Y,A) ←
Minimal(X),
ExtendMin(X,A,Y)

R-desc(X,Y,A) ←
NonMinimal(X),
Decompose(X,HX,TX),
ExtendNonMin(HX,A,NewA),
R-desc(TX,Y,NewA)

Schema 6: Descending generalization schema

Descending generalization is thus very easy if a (naive) program is already given, as this technique is very
suitable for mechanical transformation: all operators of the generalized program are operators of the initial
program.

Moreover, if the intended relation behindR/2 maps the minimal form of parameterX into e, and ife is
also a right-identity element ofCompose/3, then the conjunctionSolve(X,S), Compose(A,S,Y)

8

of the first clause can be simplified into Y=A. For instance, the reverse of the empty list is the empty list,
which is indeed the right-identity element ofappend/3.

Finally, if Process/2 convertsHX into a constant “size”HY, then the atomCompose(A,HI,NewA) in
the second clause can be partially evaluated, which usually results in the disappearance of that call to
Compose/3, and thus in a merging of theCompose/3 loop into theR/2 loop. For instance, the processing
operator ofreverse/2 maps the first elementHL of a non-empty list into the singleton list [HL], so the atom
append([HL],A,NewA) can indeed be partially evaluated, namely into NewA=[HL|A]. Further
transformations yield thereverseDesc/3 program above. However, forminList(L,M), which holds iff inte-
gerM is the minimum element of integer-listL, the processing operator, namely=/2, maps the head of the
list to itself, that is to an arbitrary integer, so that call to the composition operator, namelymin/3, cannot be
partially evaluated away. Generally speaking, if the elements ofX are of the same type asY, then that call
to Compose/3 cannot be partially evaluated away, because the elements ofX are usually not of a constant
size, and hence are not processed into constant sizeHY.

If the last two conditions simultaneously hold (which is not unusual), thenCompose/3 effectively disap-
pears altogether. So, given a divide-and-conquer program, a mere inspection of the properties of its process-
ing and composition operators allows us to detect whether descending generalization is possible and even
to which optimizations it would lead. Even better, theeureka discovery is compiled away, and the transfor-
mation can be completely automated. The pair〈Schema 4, Schema 5〉 thus constitutes another generaliza-
tion schema.

This presentation generalizes the one of [1] and [2], where Schema 5 was not discovered, and hence the
possibility of full pre-compilation undetected. This also generalizes the presentation of [8], where a simpler
schema than Schema 4 was used. Further generalizations can be found in [5].

4 Conclusion

We have shown that some logic program generalization techniques can be pre-compiled at the program
schema level, so that the corresponding transformation can be fully automated, including the elimination of
theeureka discovery and the detection whether and which optimizations will result from the transformation.
This subsequently allows logic program synthesis to perform program transformations during the program
construction process, based on information that the latter generated and exploited.

References

[1] Yves Deville.Logic Programming: Systematic Program Development. Addison-Wesley, 1990.
[2] Yves Deville and Jean Burnay. Generalization and program schemata. In E.L. Lusk and R.A. Overbeek

(eds),Proc. of NACLP’89, pp. 409–425. The MIT Press, 1989.
[3] Pierre Flener.Logic Program Synthesis from Incomplete Information. Kluwer Academic Publ., 1995.
[4] Pierre Flener.Logic Program Schemata: Synthesis and Analysis. Technical Report BU-CEIS-9502,

Bilkent University, Ankara (Turkey), 1995. Submitted for publication.
[5] Pierre Flener and Yves Deville.Logic Program Transformation through Generalization Schemata.

Technical Report BU-CEIS-95xx, Bilkent University, Ankara (Turkey), 1995. In preparation.
[6] Norbert E. Fuchs and Markus P.J. Fromherz. Schema-based transformations of logic programs. In T.

Clement and K.-K. Lau (eds),Proc. of LOPSTR’91, pp. 111–125. Springer-Verlag, 1992.
[7] Maurizio Proietti and Alberto Pettorossi. Synthesis of eureka predicates for developing logic pro-

grams. In N. Jones (ed),Proc. of ESOP’90. LNCS 432:306–325. Springer-Verlag, 1990.
[8] Mattias Waldau. Formal validation of transformation schemata. In T. Clement and K.-K. Lau (eds),

Proc. of LOPSTR’91, pp. 97–110. Springer-Verlag, 1992.

