
Towards Stepwise, Schema-Guided

Synthesis of Logic Programs

Pierre Flener
Institut d’Informatique, Université de Namur
Rue Grandgagnage 21, 5000 Namur, Belgium

Yves Deville
Unité d’Informatique, Université Catholique de Louvain

Place Ste Barbe 2, 1380 Louvain-la-Neuve, Belgium

Abstract

We present a general strategy for stepwise, sound and progressive synthesis of

logic programs from specifications by examples and properties. We particu-

larize this to schema-guided synthesis, and state a generic synthesis theorem.

We justify some design choices for the development of a particular synthesis

mechanism that is guided by a Divide-and-Conquer schema, is inductive and

deductive, is interactive, and features a non-incremental presentation of exam-

ples. Some crucial steps of this mechanism are explained, and illustrated by a

sample synthesis. We draw some conclusions on our results so far, state some

related work, and outline future research directions.

1 Introduction

Program synthesis research (see [1]) aims at automating the passage from specifications

to programs, as opposed to traditional, manual programming techniques. The key ques-

tion here is: “what is a specification?”. Today, an emerging consensus is that one may

speak of “synthesis” when the specification does not explicitly reveal recursion or itera-

tion. Otherwise, the technique could be classified as “transformation”. In this introducto-

ry section, we define the starting point and the result of synthesis from examples and prop-

erties in a logic programming framework.

Definition 1 A specification by examples and properties of a procedure r consists of:

• a set E(r) of ground (input/output) examples of the behavior of r;

• a set P(r) of properties (first-order logic statements) of r.

Let ℜ be the relation one has in mind when elaborating such a specification of r. We

shall callℜ the “intended relation”, in contrast to the relation actually specified, called



the “specified relation”. This distinction is very important to software engineering in gen-

eral, but crucial with incomplete specifications, where one deliberately admits a gap be-

tween the two.

The motivation for this specification format will be given in Section 3.1. Usually,

E(r) is empty, or non-empty only for illustrative purposes. Sometimes, P(r) is empty, and

the resulting specification by examples is (often) incomplete. Until Section 3, we shall just

assume that at least one of E(r) and P(r) is non-empty.

We are actually only interested in synthesizingalgorithms, rather than full-fledged

programs in an existing programming language. Indeed, algorithm design in itself is al-

ready very hard, and we do not want to encumber ourselves with the additional burdens

of algorithm optimization, transformation and implementation, that are all well-re-

searched topics anyway (see [2], and some papers in this volume). Algorithms expressed

in a logic formalism are here called “logic descriptions” (see [2]).

Definition 2 A logic description of a procedure r, denoted by LD(r), consists of a

formula of the form: r(X,Y)⇔ Def[X,Y], where Def is a first-order logic statement1,2.

Executable Prolog programs can easily be derived from such logic descriptions [2].

The rest of this paper is organized as follows. In Section 2, we present a general strat-

egy for stepwise, sound and progressive synthesis of logic descriptions from specifica-

tions by examples and properties. We particularize this to schema-guided synthesis, and

state a generic synthesis theorem. In Section 3, we justify some design choices for the de-

velopment of a particular synthesis mechanism. Some crucial steps of this mechanism are

explained, and illustrated by a sample synthesis. In Section 4, we draw some conclusions

on our results so far, state some related work, and outline future research directions.

2 A General Strategy for Stepwise Synthesis

In this section, we outline a general strategy for logic description synthesis. We focus on

stepwise synthesis, i.e. there is a series of refinements towards a correct logic description:

LD1(r) , LD2(r) , … , LDi (r) , … , LDf (r).

At each step, we want to measure the current logic description against the intended rela-

tion: in Section 2.1, we introduce logic description correctness criteria useful for charac-

terizing soundness of synthesis. Across several steps, we want to measure the progression

of the synthesized logic descriptions towards the intended relation: in Section 2.2, we in-

troduce logic description comparison criteria useful for characterizing progression of syn-

1. The variables X and Y are assumed to be universally quantified over LD(r).

2. F[X,Y] denotes a formula F whose free variables are X and Y; F[a,b] denotes F[X,Y] where the free oc-
currences of X and Y have been replaced by a and b, respectively.



thesis. In Section 2.3, we present a strategy for stepwise, sound and progressive synthesis

of logic descriptions. In Section 2.4, we particularize this strategy for schema-guided syn-

thesis. In Section 2.5, we state a generic synthesis theorem.

2.1 Correctness Criteria of Logic Descriptions

It is important to measure a logic description against its intended relation. Since we are

only concerned with the declarative semantics of logic descriptions, we shall assume

model-theoretic criteria for doing so, rather than proof-theoretic ones.

A logic description LD(r) is (totally) correct wrtℜ iff:

LD(r) |= r(a,b) iff <a,b>∈ℜ

LD(r) |= ~r(a,b) iff <a,b>∉ℜ

i.e. iff the predicate r is interpreted as the relationℜ in all (Herbrand) models of LD(r).

With logic description design by structural induction on some parameter, one only

has to focus on a single (Herbrand) interpretation (because the truth value of a ground

atom r(a,b) will be the same in all (Herbrand) models of LD(r), see [2]).

Let thus ℑ be a Herbrand interpretation such that:

• r(a,b) is true in ℑ iff  ℜ(a,b)

• ℑ is a model of all primitive predicates (such as “=”)

• ℑ is a model of all predicates used in the property set P(r).

In the sequel, all logic formulas will be interpreted in ℑ.

Let LD(r) be: r(X,Y)⇔ Def[X,Y].

There are three layers of correctness criteria. The (total) correctness of a logic de-

scription wrt its intended relationℜ can now be redefined as follows:

Definition 3 LD(r) is (totally) correct wrt ℜ iff  r(X,Y)⇔ Def[X,Y] is true in ℑ.

(Total) correctness can be decomposed intopartial correctness (the relation defined

by LD(r) is included inℜ) andcompleteness (ℜ is included in the relation defined by

LD(r)):

Definition 4 LD(r) is partially correct wrt ℜ iff  r(X,Y)⇐ Def[X,Y] is true in ℑ.

Definition 5 LD(r) is complete wrt ℜ iff r(X,Y)⇒ Def[X,Y] is true in ℑ.

Next comes completeness of a logic description wrt an example set E(r):

Definition 6 LD(r) is complete wrt E(r) iff  Def[a,b] is true in ℑ, for every example

r(a,b) of E(r).

Note that partial correctness of LD(r) wrt E(r) is an irrelevant concept, because we

are not interested in logic descriptions that do not cover all the examples of E(r).

Finally, there is consistency of examples and properties wrt the intended relationℜ:



Definition 7 E(r) is consistent with ℜ iff every example of E(r) is true in ℑ.

Definition 8 P(r) is consistent with ℜ iff every property of P(r) is true in ℑ.

The specified relation of a consistent specification is a subset of the intended relation.

There is obviously no formal definition of the intended relationℜ, so some correct-

ness criteria cannot be applied in a formal way. But these correctness criteria can be used

to state features and heuristics of the synthesis process.

2.2 Comparison Criteria of Logic Descriptions

It is also important to compare logic descriptions of the same predicate. Let:

• LD1(r): r(X,Y)⇔ Def1[X,Y]

• LD2(r): r(X,Y)⇔ Def2[X,Y]

be two logic descriptions. Intuitively, LD1(r) is more general than LD2(r) iff  Def1 is “more

often” true than Def2. More formally:

Definition 9 LD1(r) is more general than LD2(r) iff  Def2 ⇒ Def1 is true in ℑ.

This is denoted by LD1(r) ≥ LD2(r). The fact of being “less general” (≤) is defined

dually. The set of logic descriptions of a given predicate is partially ordered under “≤” and

“≥”. Two logic descriptions, each more general than the other, are “equivalent” (≅).

Let’s give a criterion for upward (or partial-correctness preserving) progression:

Definition 10 If (see Figure 1):

• LD2(r) ≥ LD1(r)

• LD2(r) is partially correct wrt ℜ

thenLD2(r) is abetter (partially correct) approximation of ℜ thanLD1(r).

LD1(r)

LD2(r)

ℜ

Figure 1 Partial Correctness Preserving (Upward) Progression



Dually, there is a criterion for downward (or completeness preserving) progression:

Definition 11 If (see Figure 2, where H stands for the Herbrand universe):

• LD2(r) ≤ LD1(r)

• LD2(r) is complete wrt ℜ

thenLD2(r) is abetter (complete) approximation of ℜ thanLD1(r).

2.3 A Strategy for Stepwise, Sound and Progressive Synthesis

We now have the terminology for defining a strategy for stepwise, sound and progressive

synthesis. The first question is to determine in which direction we want to progress: up-

wards, or downwards? A natural choice seems to be upward progression.

A First Strategy

The first formulation of a strategy of f steps thus reads as follows.

At Step 1, “create”LD1(r) such that:

• LD1(r) is partially correct wrt ℜ.

At Step i (1<i≤f), transformLDi-1(r) into LDi (r) such that:

• LDi (r) is a better (partially correct) approximation of ℜ thanLDi-1(r).

Our particular synthesis mechanism (see Section 3) even has the following feature:

• LDi(r) is complete wrt E(r), (1≤i≤f).

The Completeness Issue

An objection arises: what about the completeness of the synthesized logic descriptions?

We must remember that synthesis is here example-based, i.e. that constants from E(r) will

LD2(r)

LD1(r)

ℜ

H 2

Figure 2 Completeness Preserving (Downward) Progression



inevitably appear in the synthesized logic descriptions, thus destroying all possible com-

pleteness. We are thus forced to raise the completeness issue. We do it by allowing simul-

taneous downward progression of the series of logic descriptions that progresses upwards.

Definition 12 Let γ be a total function in the set of logic descriptions, such thatγ(LD(r))

is LD(r) without its equality atoms involving constants introduced from E(r).

It can be shown thatγ is a generalization function, i.e. γ(LD(r)) ≥ LD(r).

Example Let LD3(compress) be:

compress(L,CL) ⇔
L=[] ∧ L=[] ∧ CL=[]

∨ L=[HL|TL] ∧ L=[a] ∧ CL=[<a,1>]
∧ HL=a ∧ TL=[]

∨ L=[HL|TL] ∧ L=[b,b] ∧ CL=[<b,2>]
∧ HL=b ∧ TL=[b]

∨ L=[HL|TL] ∧ L=[c,d] ∧ CL=[<c,1>,<d,1>]
∧ HL=c ∧ TL=[d]

where thebold atoms are synthesized atoms, and the other atoms stem from examples E1

to E4 of Figure 4 below. Thus,γ(LD3(compress)) is:

compress(L,CL) ⇔
L=[]

∨ L=[HL|TL]

We shall use this functionγ to enhance our strategy.

An Enhanced Strategy

The strategy now reads:

At Step 1, “create”LD1(r) such that:

• LD1(r) is partially correct wrt ℜ

• γ(LD1(r)) is complete wrt ℜ.

At Step i (1<i≤f ), transformLDi-1(r) into LDi (r) such that:

• LDi (r) is a better (partially correct) approximation of ℜ thanLDi-1(r)

• γ(LDi (r)) is a better (complete) approximation of ℜ thanγ(LDi-1(r)).

At Step f, “obtain” LDf (r) such that:

• LDf (r) ≅ γ(LDf (r)).

Thus, the relation defined byLDf (r) is the intended relation ℜ, henceLDf (r) is cor-

rect wrt ℜ. Convergence of the synthesis process is thus achieved. Since there will usually

be a gap between the intended relation ℜ and the specified one, the given strategy cannot

be fully automated, but should serve as a guideline for interactive synthesis.



2.4 Schema-Guided Synthesis

Algorithm schemata are an old idea of computer science (see an early survey in [3]). They

are template algorithms with fixed control flows. They embody the essence of algorithm

design strategies (e.g. Divide-and-Conquer, Generate-and-Test, Global Search, …) and

are thus an invaluable knowledge source for guiding (semi-)automated algorithm design.

Example Loosely speaking, aDivide-and-Conquer algorithm for a binary predicate r

over parameters X and Y works as follows. Let X be the induction parameter. If X is

minimal, then Y is (usually) easily found by directly solving the problem. Otherwise, i.e.

if  X is non-minimal, we decompose X into a seriesHX of heads of X and a seriesTX of

tails of X, the latter being of the same type as X, as well as smaller than X according to

some well-founded relation. The tailsTX recursively yield tailsTY of Y. The headsHX

are processed into a series of headsHY of Y. Finally, Y is composed from its headsHY

and tailsTY. But it may happen that different process and compose patterns emerge for

the non-minimal form of X: we have to discriminate between them according to the values

of HX, TX and Y, unless non-determinism requires such alternatives.

Logic description schemata can be expressed as second-order logic descriptions. For

instance, logic descriptions designed by a Divide-and-Conquer strategy, and having one

single minimal case and one single non-minimal case, will fit the schema of Figure 3.

A Refined Strategy

We can now further refine the above strategy of logic description synthesis:

At Step i (1<i<f):

• synthesize instantiation(s) of some predicate variable(s) of the schema

• introduce some “trailing” equality atoms involving constants from E(r).

2.5 A Generic Synthesis Theorem

We now state a generic synthesis theorem explaining how synthesis step i can achieve

sound and progressive synthesis.

R(X,Y) ⇔ Minimal(X) ∧ Solve(X,Y)
∨ ∨1≤k≤C NonMinimal(X)∧ Decompose(X,HX,TX)

∧ Discriminatek(HX,TX,Y)
∧ R(TX,TY)
∧ Processk(HX,HY)
∧ Composek(HY,TY,Y)

Figure 3 The Divide-and-Conquer Logic Description Schema



Theorem 1 Generic Synthesis Theorem

Let LDi-1(r) be: r(X,Y) ⇔ ∨1≤j≤m Aj ∧ Ej

and LDi (r) be: r(X,Y) ⇔ ∨1≤j≤m Aj ∧ Bj ∧ Ej ∧ Fj

where Aj, Bj are formulas without equality atoms involving constants introduced from

E(r), and Ej, Fj are conjunctions of equality atoms with constants introduced from E(r).

Thusγ(LDi-1(r)) is:r(X,Y) ⇔ ∨1≤j≤m Aj

andγ(LDi (r)) is: r(X,Y) ⇔ ∨1≤j≤m Aj ∧ Bj.

The following assertions hold:

(1.1) If LDi-1(r) is partially correct wrt ℜ
and Aj ∧ Ej ⇒ Bj ∧ Fj (1≤j≤m)

thenLDi(r) is abetter (partially correct) approximation of ℜ thanLDi-1(r).

(1.2) If γ(LDi-1(r)) is complete wrt ℜ
and ℜ(X,Y) ∧ Aj ⇒ Bj (1≤j≤m)

thenγ(LDi(r)) is abetter (complete) approximation of ℜ thanγ(LDi-1(r)).

Proof 1 The proof is straightforward (see [4]).

The second condition of assertion (1.1) ensures that the atoms introduced by Step i

are redundant with the already existing ones: in other words, we actually have LDi(r) ≅
LDi-1(r). This is not a disaster, because strict progression is achieved by the generaliza-

tions. The second condition of assertion (1.2) ensures that the atoms introduced by Step i

are “redundant” with the intended relation.

For a specific synthesis mechanism whose steps 2 to f-1 fit into the framework of this

theorem, it thus suffices to prove that the method of each step ensures its particular instan-

tiations of the conditions of both assertions. The first conditions of both assertions actu-

ally need not be proved, because Step 1 establishes them, and Theorem 1 preserves them.

3 A Particular Synthesis Mechanism

In this section, we present a particular synthesis mechanism. In Section 3.1, we explain

the design decisions taken while instantiating the parameters of the framework of Section

2. In Section 3.2 to Section 3.5, the steps of the synthesis mechanism are detailed. Let’s

first present a running example for this section:

Example Data compression. The compress(L,CL) procedure succeeds on facts such as:

compress([a, a, a, b, b, a, c, c, c, c], [<a, 3>, <b, 2>, <a, 1>, <c, 4>]).

Compression is performed without forward checking, i.e. each plateau is compressed re-

gardless of whether another plateau of the same character occurs later in the list L.



3.1 Decisions

A series of decisions have to be taken before producing a specific synthesis mechanism

within the framework of Section 2.

Which Schema?

We adopt the Divide-and-Conquer schema of Figure 3 for guiding synthesis. Indeed, the

class of algorithms that can be designed by this strategy is fairly large and important.

There will be eight steps to our mechanism:

• Step 1: Creation of a first approximation

• Step 2: Synthesis of Minimal and NonMinimal

• Step 3: Synthesis of Decompose

• Step 4: Synthesis of the recursive atoms

• Step 5: Synthesis of Solve

• Step 6: Synthesis of Process and Compose

• Step 7: Synthesis of Discriminate

• Step 8: Generalization

There are two phases: an “expansion phase” (Steps 1 to 4), where equality atoms in-

volving constants introduced from E(r) are added, and a “reduction phase” (Steps 5 to 8),

where the actual synthesis takes place. In this paper, we shall focus on the reduction phase.

Note that the schema is not an input to the synthesis mechanism. It is rather a conve-

nient way of explaining how synthesis works.

Which Language for Specifications?

Examples are a very appealing means of conveying information about a relation: they are

easy to elaborate/understand, and they implicitly reveal structural manipulations of the

parameters. Our plan is thus to use non-empty example sets in specifications. However,

examples alone are an incomplete information source, and they cannot explicitly convey

semantic operations/tests on parameters. We believe the specifier knows these additional

details, and ought thus to be able to provide them, rather than have the synthesis mecha-

nism guess them! We depart thus from traditional example-based synthesis and add a non-

empty property set to our specifications. But we would like to give properties the same

appeal as examples. It turns out that non-recursive Horn clauses, plus negation, are a very

convenient choice. Since synthesis should start from a non-recursive specification, we

must disallow recursive properties.



Example  Figure 4 gives sample versions of E(compress) and P(compress). Note that

properties P1 to P3 generalize examples E2 to E4, respectively. They also make explicit

why examples E3 and E4 behave differently: equality/disequality of the first two elements,

rather than any other criterion.

Our properties turn out to be an incomplete specification source, too. It is thus impor-

tant that we do not strive for completely automated synthesis, but rather for interactive

synthesis, so as to cope with incompleteness.

Examples give rise to inductive synthesis (generalization [5], [6], [7], learning [8],

[9]), whereas axiomatic specifications (and thus properties) give rise to deductive synthe-

sis (proofs-as-programs [10], [11], [12], rewriting [13], [14], [15]). Since we have both

specification types, we want to avoid using only one kind of inference, and thus degrading

the non-used information source into validation information. We shall therefore strive for

inductiveand deductive synthesis, using whichever inference type is best suited at each

step. This approach of course precludes synthesis whenever only examples or only prop-

erties are given. It also gives a constructive role to each information type.

How to Present the Examples?

There are two extreme ways of presenting examples:“one-by-one” (“ incrementally”), or

“all-at-once”. The former approach, advocated in [8] and by the machine learning school

of thought, has some nice convergence properties. But we shall adhere to the school of

thought advocated in [7], where the examples are presented all-at-once, so that a maxi-

mum of information is available at each step.

E(compress)={ compress([],[])(E1)

compress([a],[<a,1>])(E2)

compress([b,b],[<b,2>])(E3)

compress([c,d],[<c,1>,<d,1>])(E4)

compress([e,e,e],[<e,3>])(E5)

compress([f,f,g],[<f,2>,<g,1>])(E6)

compress([h,i,i],[<h,1>,<i,2>])(E7)

compress([j,k,l],[<j,1>,<k,1>,<l,1>])}(E8)

P(compress)={ compress([X],[<X,1>])(P1)

compress([X,Y],[<X,2>]) ⇐ X=Y(P2)
compress([X,Y],[<X,1>,<Y,1>]) ⇐ X≠Y}(P3)

Figure 4 Sample versions of E(compress) and P(compress)



Which Language for Logic Descriptions?

Since the Divide-and-Conquer schema has a definition part in disjunctive normal form,

we shall stick to such logic descriptions at all steps of synthesis.

Example To give a preliminary glimpse of what the synthesis mechanism is supposed to

produce, Figure 5 gives a sample version of LD(compress), constructed by the

methodology of [2].

Let’s now see how the eight synthesis steps identified above can produce an equiva-

lent logic description from the specification by examples and properties of Figure 4.

3.2 The Expansion Phase of Synthesis (Steps 1 - 4)

During theexpansion phase, the following steps are performed:

• creation of a first approximation (Step 1), via re-expression of the example set as a

logic description. In order to ensure applicability of Theorem 1 for Steps 2 - 7, we

must assume that E(r) and P(r) are consistent wrt the intended relation;

• synthesis of Minimal and NonMinimal (Step 2), from a set of predefined, type-spe-

cific, parameterized instantiations;

• synthesis of Decompose (Step 3), from a set of predefined, type-specific, parame-

terized instantiations;

• synthesis of the recursive atoms (Step 4), via deductive and/or analogical reasoning.

Steps 1 to 3 are quite straightforward, but Step 4 isn’t (see the results in [4]).

Example Figure 6 shows LD4(compress), where disjunct Di corresponds to example Ei.

Note that there is one minimal case (disjunct D1), and one non-minimal case (disjuncts D2

to D8). Also note that γ(LD4(compress)) is:

compress(L,CL) ⇔
L=[] ∧ CL=[]

∨ L=[H1] ∧ CL=[<H1,1>]
∨ L=[H1,H2|TL]∧ H1=H2

∧ compress([H2|TL],[<H2,M>|T])
∧ add(M,1,N) ∧ CL=[<H1,N>|T]

∨ L=[H1,H2|TL]∧ H1≠H2
∧ compress([H2|TL],TCL)
∧ CL=[<H1,1>|TCL])

Figure 5 A sample version of LD(compress)



compress(L,CL) ⇔
L=[]

∨ L=[HL|TL] ∧ compress(TL,TCL).

Let’s now have a close look at the steps of thereduction phase.

3.3 Synthesis of Solve, Compose and Process (Steps 5 - 6)

At Step 5, the synthesis of Solve for the minimal case is similar to what happens at Steps

6 and 7 for the non-minimal case, and we shall thus not delve into details. Just consider

that CL=L is synthesized as an instance of Solve(L,CL).

At Step 6, the aim is to transform LD5(r) into LD6(r) which fits the following schema:

compress(L,CL) ⇔
L=[] ∧ L=[] ∧ CL=[](D1)

∨ L=[HL|TL] ∧ compress(TL,TCL)
∧ L=[a] ∧ CL=[<a,1>]
∧ HL=a ∧ TL=[] ∧ TCL=[](D2)

∨ L=[HL|TL] ∧ compress(TL,TCL)
∧ L=[b,b] ∧ CL=[<b,2>]
∧ HL=b ∧ TL=[b] ∧ TCL=[<b,1>](D3)

∨ L=[HL|TL] ∧ compress(TL,TCL)
∧ L=[c,d] ∧ CL=[<c,1>,<d,1>]
∧ HL=c ∧ TL=[d] ∧ TCL=[<d,1>](D4)

∨ L=[HL|TL] ∧ compress(TL,TCL)
∧ L=[e,e,e] ∧ CL=[<e,3>]
∧ HL=e ∧ TL=[e,e] ∧ TCL=[<e,2>](D5)

∨ L=[HL|TL] ∧ compress(TL,TCL)
∧ L=[f,f,g] ∧ CL=[<f,2>,<g,1>]
∧ HL=f ∧ TL=[f,g]
∧ TCL=[<f,1>,<g,1>](D6)

∨ L=[HL|TL] ∧ compress(TL,TCL)
∧ L=[h,i,i] ∧ CL=[<h,1>,<i,2>]
∧ HL=h ∧ TL=[i,i] ∧ TCL=[<i,2>](D7)

∨ L=[HL|TL] ∧ compress(TL,TCL)
∧ L=[j,k,l] ∧ CL=[<j,1>,<k,1>,<l,1>]
∧ HL=j ∧ TL=[k,l]
∧ TCL=[<k,1>,<l,1>](D8)

Figure 6 LD4(compress)



r(X,Y) ⇔ minimal(X) ∧ solve(X,Y)
∧ ∨1≤i<b X=xi ∧ Y=yi

∨ ∨1≤k≤C nonMinimal(X)∧ decompose(X,HX,TX)
∧ r(TX,TY)
∧ Processk(HX,HY) ∧ Composek(HY,TY,Y)
∧ ∨i∈|k| X=xi ∧ Y=yi

∧ HX=hxi ∧ TX=txi
∧ HY=hyi ∧ TY=tyi

i.e. we want to partition the non-minimal disjuncts into C equivalence classes |1|, …, |C|

whose members have equal instantiations of Process and Compose.

For Process, we take the following approach:

• first assume that “=” is a suitable instantiation of Process, and synthesize a partition.

Note that this assumption is also successful when “=” is actually not a suitable in-

stantiation of Process, but the latter can be (loop-)merged with Compose;

• otherwise assume that the synthesis of Process requires other techniques (not men-

tioned here), and synthesize a partition, leaving Process uninstantiated.

We have two methods to synthesize a partition, and thus an instantiation of Compose:

• computation of most specific generalizations: thisMSG Method will be successful

if  Compose can be expressed as a conjunction of equality atoms;

• synthesis from an inferred specification by examples and properties: thisSynthesis

Method applies when Compose itself needs a full-fledged recursive logic descrip-

tion. We shall not explain here when to apply this method, nor how a specification

for Compose can be inferred from the current logic description (see [4] for details).

The MSG Method fulfills the conditions of Theorem 1. Since the Synthesis Method

eventually boils down to using the MSG Method, it is, by induction, sound and progres-

sive as well, provided the specification inference is sound.

Example Assuming Process is “=”, the MSG Method synthesizes the disjunct partition:

{ {D2, D4, D7, D8}, {D3, D5, D6} }

• for the first class, we have the following instances of<HCL, TCL, CL>:

<a,[],           [<a,1>]> (D2)

<c,[<d,1>],      [<c,1>,<d,1>]> (D4)

<h,[<i,2>],      [<h,1>,<i,2>]> (D7)

<j,[<k,1>,<l,1>],[<j,1>,<k,1>,<l,1>]> (D8)

Hence the MSG:<H,T,[<H,1>|T]> .

And Compose1(HCL,TCL,CL) is thus: CL=[<HCL, 1>|TCL]



• similarly, for the second class, Compose2(HCL,TCL,CL) is:

TCL=[<HCL, M>|TTCL] ∧ CL=[<HCL, s(M)>|TTCL].

Hence LD6(compress) looks as depicted in Figure 7. Note that the assumption that Pro-

cess is “=” works because Process and Compose could be merged.

3.4 Synthesis of Discriminate (Step 7)

At Step 7, the aim is to transform LD6(r) into LD7(r) which fits the following schema:

r(X,Y) ⇔ minimal(X) ∧ solve(X,Y)
∧ ∨1≤i<b X=xi ∧ Y=yi

∨ ∨1≤k≤c nonMinimal(X)∧ decompose(X,HX,TX)
∧ Discriminatek(HX,TX,Y)

∧ r(TX,TY)
∧ processk(HX,HY) ∧ composek(HY,TY,Y)
∧ ∨i∈|k| X=xi ∧ Y=yi

∧ HX=hxi ∧ TX=txi
∧ HY=hyi ∧ TY=tyi

This objective is achieved by two consecutive tasks:

• synthesis of specialized instantiations of the Discriminatek

• generalization of these specialized instantiations of the Discriminatek.

compress(L,CL) ⇔
L=[] ∧ CL=L

∧ L=[] ∧ CL=[]
∨ L=[HL|TL] ∧ compress(TL,TCL)

∧ CL=[<HL,1>|TCL]

∧ HL=a ∧ TL=[] ∧ TCL=[] ∧ ...

∨ HL=c ∧ TL=[d] ∧ TCL=[<d,1>] ∧ ...

∨ HL=h ∧ TL=[i,i] ∧ TCL=[<i,2>] ∧ ...

∨ HL=j ∧ TL=[k,l] ∧ TCL=[<k,1>,<l,1>] ∧ ...

∨ L=[HL|TL] ∧ compress(TL,TCL)
∧ TCL=[<HL,M>|TTCL] ∧ CL=[<HL,s(M)>|TTCL]

∧ HL=b ∧ TL=[b] ∧ TCL=[<b,1>] ∧ ...

∨ HL=e ∧ TL=[e,e] ∧ TCL=[<e,2>] ∧ ...

∨ HL=f ∧ TL=[f,g] ∧ TCL=[<f,1>,<g,1>] ∧ ...

Figure 7 LD6(compress)



The first task is done using aProofs-as-Programs Method (see [10], [11], [12]): in-

stantiations of the Discriminatek are extracted from the proof that:

γ(LD6(r)) |− P(r) .

The second task is heuristic-driven, i.e. after applying some generalization heuristics,

we postulate that the resulting discriminators are the intended ones.

Some theoretical aspects of this step are further detailed in [4].

Example For our compress procedure:

• the proof of P1 reveals a partial, specialized discriminator for the first class:

discriminate1(HL, [], [ <HL, 1>]).

• the proof of P3 reveals another partial, specialized discriminator for the first class:

discriminate1(HL, [HTL], [ <HL, 1>, <HTL, 1>])  ⇐ HL≠HTL.

We join both, generalize TL, eliminate the CL=… atoms, and “postulate”:

discriminate1(HL, TL, CL) ⇔ TL=[]  ∨ (TL=[HTL|TTL] ∧ HL≠HTL).

• the proof of P2 reveals a specialized discriminator for the second class:

discriminate2(HL, [HTL], [ <HL, 2>])  ⇐ HL=HTL.

We generalize TL, eliminate the CL=… atom, and “postulate”:

discriminate2(HL, TL, CL) ⇔ TL=[HTL|TTL] ∧ HL=HTL.

Hence LD7(compress) looks as depicted in Figure 8.

compress(L,CL) ⇔
L=[] ∧ CL=L

∧ L=[] ∧ Cl=[]
∨ L=[HL|TL] ∧ (TL=[]) ∨ (TL=[HTL|TTL] ∧ HL≠HTL)

∧ compress(TL,TCL)
∧ CL=[<HL,1>|TCL]
∧ HL=a ∧ TL=[] ∧ TCL=[] ∧ ...

∨ HL=c ∧ TL=[d] ∧ TCL=[<d,1>] ∧ ...

∨ HL=h ∧ TL=[i,i] ∧ TCL=[<i,2>] ∧ ...

∨ HL=j ∧ TL=[k,l] ∧ TCL=[<k,1>,<l,1>] ∧ ...

∨ L=[HL|TL] ∧ TL=[HTL|TTL] ∧ HL=HTL
∧ compress(TL,TCL)
∧ TCL=[<HL,M>|TTCL] ∧ CL=[<HL,s(M)>|TTCL]
∧ HL=b ∧ TL=[b] ∧ TCL=[<b,1>] ∧ ...

∨ HL=e ∧ TL=[e,e] ∧ TCL=[<e,2>] ∧ ...

∨ HL=f ∧ TL=[f,g] ∧ TCL=[<f,1>,<g,1>] ∧ ...

Figure 8 LD7(compress)



3.5 Generalization (Step 8)

At Step 8, the aim is to transform LD7(r) into LD8(r) which looks like:

r(X,Y) ⇔ minimal(X) ∧ solve(X,Y)
∨ ∨1≤k≤c nonMinimal(X)∧ decompose(X,HX,TX)

∧ discriminatek(HX,TX,Y)
∧ r(TX,TY)
∧ processk(HX,HY) ∧ composek(HY,TY,Y)

This is simply achieved by postulating thatLD8(r) is γ(LD7(r)).

Example LD8(compress) looks as depicted in Figure 9. Note that this logic description

can be proven to be equivalent to the one given in Figure 5.

4 Conclusions

We have shown how to perform a stepwise, schema-guided, inductive and deductive, non-

incremental synthesis of logic descriptions from examples and properties. Most steps are

non-deterministic. In this last section, we shall present the framework, results and contri-

butions of this research, and mention some related research, as well as future research.

4.1 Framework, Results and Contributions

This research is led within the framework of the FOLON research project (Université de

Namur, Belgium) whose objective is twofold. First, it aims at elaborating a methodology

of logic program development, such as described in [2]. Second, it aims at designing an

integrated set of tools supporting this methodology. Our research tackles the aspects of

logic program synthesis from examples and properties.

compress(L,CL) ⇔
L=[] ∧ CL=L

∨ L=[HL|TL] ∧ TL=[]
∧ compress(TL,TCL)
∧ CL=[<HL,1>|TCL]

∨ L=[HL|TL] ∧ TL=[HTL|TTL] ∧ HL≠HTL
∧ compress(TL,TCL)
∧ CL=[<HL,1>|TCL]

∨ L=[HL|TL] ∧ TL=[HTL|TTL] ∧ HL=HTL
∧ compress(TL,TCL)
∧ TCL=[<HL,M>|TTCL] ∧ CL=[<HL,s(M)>|TTCL]

Figure 9 LD8(compress)



The main results of our work on logic program synthesis so far are the definition of

a synthesis calculus, the identification of a particular synthesis mechanism, and the devel-

opment of methods for each of its steps. The descriptions of Steps 5 to 7 in this paper are

only target scenarios,a complete survey of all results can be found in [4].

One of the originalities of our approach is the combination of examples with proper-

ties, so as to cope with some classical problems of example-based synthesis.

4.2 Related Research

Pointers to related research in program synthesis have been given throughout the text, and

we have already stressed in detail how our approach differs from the state of the art. The

use of schemata is also advocated in [16], [17], [18], [9] (Divide-and-Conquer), [19] (Glo-

bal Search), and others, although sometimes in different contexts (e.g. programming tu-

tors/assistants). An early study of the concept of “most specific generalization” is [20].

4.3 Future Research

In the future, we plan to pursue research on the following aspects:

• development of a “proof-of-concept” implementation (in Prolog) of the synthesis

mechanism. This should allow the identification of points of interaction with the

specifier so that we can cope with incompleteness: wherever inductive reasoning is

used, the specifier should be able to give his feedback. It is important to keep this

dialogue easy, i.e. a question/answer method asking for the classification of ground

atoms as examples/counter-examples seems to be an appropriate choice;

• incorporation of counter-examples in the specifications, the general synthesis strat-

egy, and the synthesis mechanism. Indeed, negative information is quite useful in

avoiding over-generalization during inductive reasoning;

• formulation of a choice methodology for examples and properties: it is important to

guide the specifier towards choosing relevant examples and properties. This reduces

interaction with the specifier, and results thus in highly automated synthesis.

Acknowledgments

The authors gratefully acknowledge many insightful discussions with B. Le Charlier

(Université de Namur, Belgium). Parts of the results presented here were found while the

first author was on leave at Duke University (NC, USA): many thanks to Prof. A. W. Bier-

mann and Prof. D. W. Loveland for their interest in our research. The first author and the

FOLON project are supported by the Belgian National Incentive Program for Fundamen-

tal Research in AI.



References

[1] Biermann AW.Automatic Programming. In: Encyclopedia of Artificial Intelli-

gence. John Wiley & Sons, 1987, pp 18-35. (A second, extended version is in print).

[2] Deville Y. Logic Programming - Systematic Program Development. Addison Wes-

ley, Reading (MA, USA), 1990.

[3] Manna Z.Mathematical Theory of Computation. McGraw-Hill, New York (NY,

USA), 1974.

[4] Flener P.Towards Programming by Examples and Properties. Research Report

CS-1991-09, Duke University, Durham (NC, USA), 1991.

[5] Biermann AW.Dealing with Search. In: Biermann AW, Guiho G and Kodratoff Y

(eds)Automatic Program Construction Techniques. Macmillan Publishing Compa-

ny, New York (NY, USA), 1984, pp 375-392.

[6] Biermann AW and Smith DR.A Production Rule Mechanism for Generating LISP

Code. IEEE Transactions on Systems, Man and Cybernetics 1979; 5:260-276.

[7] Summers P.A Methodology for LISP Program Construction from Examples. Jour-

nal of the ACM 1977; 1:161-175.

[8] Shapiro E.Algorithmic Program Debugging. PhD thesis. MIT Press, Cambridge

(MA, USA), 1982.

[9] Tinkham NL.Induction of Schemata for Program Synthesis. PhD thesis, Research

Report CS-1990-14, Duke University, Durham (NC, USA), 1990.

[10] Bundy A, Smaill A and Wiggins G.The Synthesis of Logic Programs from Induc-

tive Proofs. In: Lloyd JW (ed)Computational Logic. Springer Verlag, 1990, pp 135-

149.

[11] Fribourg L.Extracting Logic Programs from Proofs that Use Extended Prolog Ex-

ecution and Induction. In: Proceedings of ICLP-90, MIT Press, Cambridge (MA,

USA), 1990, pp 685-699.

[12] Manna Z and Waldinger R.Synthesis: Dreams⇒ Programs. IEEE Transactions on

Software Engineering 1979; 4:294-328.

[13] Clark KL. The Synthesis and Verification of Logic Programs. Research Report

DOC 81/36, Imperial College, London (UK), 1981.

[14] Hansson Å.A Formal Development of Programs. PhD thesis, University of Stock-

holm (Sweden), 1980.

[15] Hogger CJ.Derivation of Logic Programs. Journal of the ACM 1981; 2:372-392.

[16] Burnay J and Deville Y.Generalization and Program Schemata. In: Proceedings of

NACLP-89, MIT Press, Cambridge (MA, USA), 1989, pp 409-425.



[17] Gegg-Harrison TS.Basic Prolog Schemata. Research Report CS-1989-20, Duke

University, Durham (NC, USA), 1989.

[18] Smith DR.Top-Down Synthesis of Divide-and-Conquer Algorithms. Artificial In-

telligence 1985, 27:43-96.

[19] Smith DR.The Structure and Design of Global Search Algorithms. Technical Re-

port KES.U.87.12, Kestrel Institute, Palo Alto (CA, USA), 1988.

[20] Plotkin GD.A Note on Inductive Generalization. Machine Intelligence 1970; 5:153-

163, Edinburgh University Press (Scotland), 1970.


