
Synthesis of Programs in Computational LogiDavid Basin1, Yves Deville2, Pierre Flener3, Andreas Hamfelt4, and J�rgenFisher Nilsson51 Department of Computer SieneETH ZurihZ�urih Switzerlandbasin�inf.ethz.h2 Department of Computing Siene and EngineeringUniversit�e atholique de Louvain,Pl. Ste Barbe 2, B-1348 Louvain-la-Neuve, Belgiumyde�info.ul.a.be3 Computing Siene Division,Department of Information TehnologyUppsala University, Box 337, S-751 05 Uppsala, SwedenPierre.Flener�it.uu.se4 Computer Siene Division,Department of Information SieneUppsala University, Box 513, S-751 20 Uppsala, SwedenAndreas.Hamfelt�dis.uu.se5 Informatis and Mathematial ModellingTehnial University of DenmarkDK-2800 Lyngby, Denmarkjfn�it.dtu.dkAbstrat. Sine the early days of programming and automated reason-ing, researhers have developed methods for systematially onstrutingprograms from their spei�ations. Espeially the last deade has seen aurry of ativities inluding the advent of speialized onferenes, suhas LOPSTR, overing the synthesis of programs in omputational logi.In this paper we analyze and ompare three state-of-the-art methods forsynthesizing reursive programs in omputational logi. The three ap-proahes are onstrutive/dedutive synthesis, shema-guided synthesis,and indutive synthesis. Our omparison is arried out in a systematiway where, for eah approah, we desribe the key ideas and synthesizea ommon running example. In doing so, we explore the synergies be-tween the approahes, whih we believe are neessary in order to ahieveprogress over the next deade in this �eld.1 IntrodutionProgram synthesis is onerned with the following question: Given a not ne-essarily exeutable spei�ation, how an an exeutable program satisfying thespei�ation be developed? The notions of \spei�ation" and \exeutable" are

here interpreted broadly. The objetive of program synthesis is to develop meth-ods and tools to mehanize or automate (part of) this proess.In the last 30 years, program synthesis has been an ative researh area; seee.g. [14, 4, 40, 13, 26, 29℄ for a desription of major ahievements. The startingpoint of program synthesis is usually a formal spei�ation, that is an expressionin some formal language (a language having a syntax, a semantis, and usually aproof theory). Program synthesis thus has many relationships with formal spei-�ation [69℄. As the end produt is a veri�ed orret program, program synthesisis also related to formal methods in the development of omputer systems [22℄,and to automated software engineering. All of these disiplines share the goal ofimproving the quality of software.Program Synthesis in Computational Logi. It is generally reognizedthat a good starting point for program synthesis is to use delarative formalismssuh as funtional programming or omputational logi, where one spei�es whata program should do instead of how. We fous here on the synthesis of reur-sive programs in omputational logi, whih provides an expressive and uniformframework for program synthesis. On the one hand, the spei�ation, the result-ing program, and their relationship, an all be expressed in the same logi. Onthe other hand, logi spei�ations an desribe omplete spei�ations as wellas inomplete ones, suh as examples or properties of the relation that is to beomputed. Sine all this information an be expressed in the same language, itan be treated uniformly in a synthesis proess.There exist many di�erent approahes to program synthesis in omputationallogi and di�erent ways of viewing and ategorizing them. For example, one andistinguish onstrutive from dedutive synthesis. In onstrutive synthesis, aonjeture based on the spei�ation is onstrutively proved, and from thisproof a program is extrated. In the dedutive approah, a program is dedueddiretly from the spei�ation by suitably transforming it. As will be shownin this paper, these two approahes an pro�tably be viewed together and ex-pressed in a uniform framework. In a di�erent approah, alled shema-basedsynthesis, the idea is to use program shemas, that is some abstration of alass of atual programs, to guide and enhane the synthesis proess. Anotherapproah is indutive synthesis, where a program is indued from an inompletespei�ation.Objetives. Our intent in this paper is to analyze and ompare three state-of-the-art methods for synthesizing reursive programs in omputational logi. Thehosen approahes are onstrutive/dedutive synthesis, shema-guided synthe-sis, and indutive synthesis. We perform our omparison in a systemati way: we�rst identify ommon, generi features of all approahes and afterwards we usea ommon example to explain these features for eah approah. This analysisforms the basis for an in-depth omparison. We show, for example, that froman appropriately abstrat viewpoint, there are a number of synergies betweenthe approahes that an be exploited. For example, by identifying rules withshemas, all three methods have a ommon, underlying synthesis mehanism

and it beomes easier to see how the methods an be fruitfully ombined, or dif-ferentiated. Overall, we hope that our omparison will deepen the ommunitiesunderstanding of the approahes | their relationships, synergies, where theyexel, and why | and thereby ontribute to ahieving progress in this �eld.We see this paper as omplementary to surveys of program synthesis in om-putational logi (or more preisely in logi programming), in partiular [26, 29℄.Rather than a making a broad survey, we fous on the analysis and in-depthomparison of the di�erent approahes and we also onsider shema-guided syn-thesis. Due to lak of spae and to omply with our objetives, some tehnialdetails are omitted. Here, the reader may rely on his or her intuitive understand-ing of relevant onepts or follow pointers to referenes in the literature.Organization. Setion 2 presents the di�erent elements that will be used topresent and ompare the hosen synthesis approahes. These elements inludegeneral features of program synthesis approahes as well as the example thatwill be used for their omparison. Setions 3 through 5 desribe the three ho-sen approahes: onstrutive/dedutive synthesis, shema-guided synthesis, andindutive synthesis. To failitate a systemati analysis and omparison of themethods, eah setion has a similar struture. Setion 6 ompares the threeapproahes. Finally, Setion 7 draws onlusions and presents perspetives forfuture developments.2 Elements of ComparisonIn the subsequent setions, we will present three synthesis approahes. For eahapproah, one representative method is desribed. However, before desribingthem, we �rst present their general features. These features are developed in theontext of eah partiular method and serve both to failitate our analysis andsystematize our omparison. We also introdue our example.2.1 General FeaturesSpeifiation. The starting point for program synthesis is a spei�ation ex-pressed in some language. For eah synthesis method, we must �x the spei�-ation language and the form of the spei�ation (e.g., a formula or a set ofexamples).Mehanism. Program synthesis methods are based on aluli and proedurespresribing how program are synthesized from spei�ations. Although the un-derlying mehanisms of the various systems di�er, there are, in some ases,similar underlying onepts.Heuristis. Program synthesis is searh intensive and heuristis are required inpratie to guide the synthesis proess. Are the heuristis spei� to a synthesismethod or are there ommon heuristis? How e�etive are the heuristis in thedi�erent methods and to what extent do di�erent methods struture and restritthe searh spae?

Bakground Knowledge. Usually, non-trivial spei�ations refer to bak-ground knowledge that formalizes information about the properties of objetsused in the spei�ation, e.g., theories about the relevant data types.Human Interation. Human interation involves two di�erent issues. First,how muh an a human be automatially assisted? Seond, what is the nature ofhuman-omputer interation in synthesis? How an the human step in and, forexample, give key steps rather than leave the matter to blind searh? Allowinginput at ritial points requires appropriate system support.Tool Support. What kind of tool support is needed for turning a synthesismethod into a viable system?Salability. Salability is a major onern in program synthesis. Synthesissystems should not only be able to synthesize small simple programs, but theyshould also be able to takle large or omplex programs that solve real-life prob-lems.2.2 The Chosen ExampleThe same example will be used throughout the paper to failitate a omparisonof the di�erent methods. We have hosen a problem simple enough to presentin full, but omplex enough to illustrate the main issues assoiated with eahapproah.Spei�ation 21 Let L be a list, I a natural number, and E a term. The rela-tion atpos(L; I; E) holds i� E is the element of L at position I. By onvention,the �rst element of a list is at position 0. The atpos relation an be formallyspei�ed as follows:atpos(L; I; E)$ 9P; S : append (P;E � S;L) ^ length(P; I)where append and length have their usual meaning, and are assumed to be de�nedin the bakground theory.In the formula above, and in the rest of the paper, free variables are assumedto be universally quanti�ed over the entire formula. As list notation, we use nilto represent the empty list, and H � T for the list with head H and tail T .3 Construtive and Dedutive SynthesisWe will now look at two approahes to synthesizing programs that are oftengrouped together: onstrutive and dedutive synthesis. We shall highlight theirsimilarities by viewing both from the same perspetive: In both ases, dedu-tion an be used to synthesize programs by solving for unknowns during theappliation of rules.

3.1 BakgroundFor historial reasons, and beause the ideas are simplest to present there, webegin by onsidering synthesis of funtional programs in onstrutive type the-ory.Construtive type theories are logis used for reasoning about funtionalprograms. The simplest example is the simply typed �-alulus [5, 48℄, whih webriey review here. Programs in the simply typed �-alulus are terms in the�-alulus, whih are built from variables, appliation, and abstration. Typesare built from a set of base types, losed under the funtion spae onstrutor!. One reasons about judgments that assert that a term t has a type T , relativeto a sequene of bindings � , of the form x1 : A1; : : : ; xn : An, whih assoiatevariables to types. The valid judgments are indutively de�ned by the followingrules: x : A 2 � hyp� ` x : A �; x : A `M : B abst� ` (�x:M) : (A! B)� `M : A! B � ` N : A appl� ` (MN) : BThese rules omprise a dedution system for proving that a program t hasa type T . Under the propositions-as-types interpretation, this type may also beunderstood as a logial proposition (reading `!' as intuitionisti impliation)that spei�es t's properties. Of ourse, the spei�ation language is quite weak,so it is diÆult to speify many interesting properties. In stronger type theories,suh as [24, 56℄, types orrespond to propositions in riher logis and one an,for example, speify sorting as` t : (8x : int list : 9y : int list : perm(x; y) ^ ord (y)) : (1)This asserts that the program t is a funtion that, on input x, returns an orderedpermutation y.The given dedution system an be used for program veri�ation: given aprogram t and a spei�ation T , prove ` t : T . For example, for p and q types,we an verify that the program �x: �y: x satis�es the spei�ation p! (q ! p):x : p 2 x : p; y : q hypx : p; y : q ` x : p abstx : p ` �y: x : q ! p abst` �x: �y: x : p! (q ! p) (2)Perhaps less obviously, the same rules an be used for program synthesis :given a spei�ation T , onstrut a program t suh that ` t : T . This an bedone by1. Reversing the diretion in whih rules are applied and proofs are onstruted.That is, build the proof in a goal-direted, \re�nement style" way by startingwith the goal and working towards the axioms.

2. Leaving the program t as an unknown, or metavariable, whih is solvedduring proof.Let's try this out in the example above. Using apital letters to indiatemetavariables, we begin with ` R : p! (q ! p) :Resolving this with the (onlusion of the) abst rule yields the new goalx : p ` R1(x) : (q ! p) ;where R is uni�ed with �x:R1(x). Applying abst again results inx : p; y : q ` R2(x; y) : p ;where R1(x) = �y:R2(x; y). Finally, applying hyp uni�es the assumption x : pwith R2(x; y) : p, instantiating R2(x; y) to x and ompleting the proof. Compos-ing the substitutions yields the previously veri�ed program t = �x: �y: x.The aount above is ompliated by the fat that the abstration operator �binds variables and, to work properly, higher-order uni�ation is required whenapplying rules. The rules onstitute lauses in a higher-order (meta-)languageand proofs are onstruted by higher-order resolution. A higher-order logi pro-gramming language or logial framework based on higher-order resolution like�-Prolog [27℄, ELF [61℄, or Isabelle [59℄ would support this kind of proof.There are two onlusions we would like to draw. First, veri�ation andsynthesis are losely related ativities. In fat, when rules are applied using(higher-order) resolution, they are essentially idential. The only di�erene iswhether uni�ation is between ground or non-ground terms, i.e., whether ornot an answer substitution is built. This onlusion should not be surprising tothose working in logi programming: the same sequene of resolution steps anbe used to establish a ground query p(t) or a non-ground one p(X), generatingthe substitution X = t.Seond, onstrutive synthesis is of a dedutive nature and the line betweenthe two an be �ne. As the analogy with Prolog shows, proofs onstrut objets.In type theory, the objets are programs. Indeed, the idea of proofs synthesizingprograms, sometimes alled proofs-as-programs, an be deomposed intoproofs-as-programs = proofs-as-objets + objets-as-programs.In our example, uni�ation, not the onstrutivity of the logi, is responsiblefor onstruting an objet. Construtivity does not play a role in the synthesisof objets, but rather in their exeution and meaning. That is, beause thelogi is onstrutive, the synthesized terms an be exeuted and their evaluationbehavior agrees with the semantis of the type theory. In ontrast, [49℄, forexample, presents a lassial type theory where programs orrespond to (non-omputable) orales that annot be exeuted. There one might say that theline is rossed from onstrutive (and dedutive) program synthesis to dedutiveobjet synthesis.

The use of uni�ation is at the heart of dedutive and onstrutive synthesis.Uni�ation is driven by resolution, to synthesize, or solve for, programs duringproofs. This idea goes bak to work in the 1960s on using �rst-order resolutionto onstrut terms that represent plans or, more generally, programs [19, 42℄. Inthe logial framework ommunity, the use of higher-order metalogis to representrules and the use of higher-order uni�ation to apply them is now standard, e.g.,[2, 8, 9, 23℄. For example, the Isabelle distribution [59℄ omes with enodings of anumber of type theories, where programs an be synthesized as desribed here.The vast majority of approahes for synthesizing logi programs are basedon �rst-order reasoning, e.g., equivalene preserving transformations. There havebeen many proposed methods and [26℄ ontains a good survey. They di�er inthe form of their axioms (Horn lauses, i� -de�nitions, et.), exat notion ofequivalene used (and there are many, see e.g., [55℄), and ease of automation.Many of these, for example unfold-fold based transformations [60℄, an be reastas synthesis by resolution using rules like those presented here [7, 10℄.3.2 OverviewSpeifiations. In type theory, programs and spei�ations belong to di�er-ent languages. When synthesizing logi programs, the spei�ation language istypially the language of a �rst-order theory and the programming language issome suitable, exeutable subset thereof. By sharing the same language, logiprograms are well suited for dedutive synthesis where spei�ations are manip-ulated, using equivalene preserving transformations, until a formula with somedesired form or property is reahed.Mehanism. The mehanism for synthesizing logi programs during proofs isessentially the same as what we have just seen for type theory. However, what isproved (i.e., the form of the theorem to be proven), and the proof rules used toestablish it, are of ourse di�erent. Namely, we will prove theorems about equiv-alenes between spei�ations and programs and we will prove these theoremsusing rules suitable for establishing suh equivalenes.For our example, we will employ the following rules:$�reA$ A A1 $ B1 A2 $ B2 _�split(A1 _ A2)$ (B1 _ B2)In addition, for building reursive programs that reurse over lists we employthe rule shema A1 A2 A3 ind ;8L;X : P (L;X)$ Q(L;X)where L is a variable ranging over lists, X denotes sequenes of zero or morevariables of any type, and the assumptions Ai are:A1 � 8L;X : Q(L;X)$ (L = nil ^ B(X))_9H;T : L = H � T ^ S(H;T;X)

A2 � 8X : P (nil;X)$ B(X)A3 � 8T : (8X : P (T;X)$ Q(T;X))! 8H;X : P (H � T;X)$ S(H;T;X)This rule, whih an be derived by indution on the list L, states the equiv-alene between prediates P and Q (whih are metavariables). For the purposeof synthesis, we an take A1 as the de�nition of Q, and A2 and A3 onstrain(and will be used to de�ne) Q's base and reursive ases. In A3, we are allowedto use the existene of Q, when de�ning Q, but only on smaller arguments.We will show below how, by applying these rules (using higher-order resolu-tion), we an onstrut R while proving its equivalene to atpos .Heuristis and Human Interation. Proof rules, like those given above,an be applied interatively, semi-interatively, or even automatially. The useof a tati based theorem prover [41℄, whih allows users to write programs thatonstrut proofs, leaves open the degree of automation.[50, 51℄, for example, show how to ompletely automate the onstrution ofsuh synthesis proofs in a tati based setting. In this work, the most importanttati implements the rippling heuristi of [17, 12℄. This heuristi automates theappliation of rewrite or equivalene preserving transformation rules in a waythat minimizes di�erenes between terms or formulas. Rippling is typially usedin indutive theorem proving to enable the use of the indution hypothesis insimplifying the indution onlusion and it an be used in a similar way dur-ing program synthesis where rules that introdue reursion (like ind) produeindution-like proof obligations. Rippling has been used to automate ompletelythe synthesis of a number of non-trivial logi programs. However, it should benoted that some interation with the user is often desirable sine the appliationof proof rules, in partiular rules that build reursive programs, determines theeÆieny of the synthesized program.Bakground Knowledge. The approah we present here for synthesizinglogi programs involves two kinds of rules. The �rst kind are rules, like $�reand _�split , whih are derived rules of �rst-order logi. These derived rulesare not, stritly speaking, neessary (provided we are working in a ompleteaxiomatization of �rst-order logi), but their addition makes it easier to onstrutsynthesis proofs by reasoning about equivalenes. The seond kind of rules aretheory spei� rules, e.g., rules about indutively de�ned data types like numbersand lists. The rule ind given above is an example of suh a rule. It is derivablein a theory that axiomatizes lists and formalizes indution over lists.Tool Support. For synthesizing the atpos example, we have used the Isabellesystem. Isabelle's basi mehanism for proof onstrution is top-down proof byhigher-order resolution, whih is preisely what we require. Moreover, as a logi-al framework, Isabelle supports the derivation of new rules, so we an formallyderive, and thus insure the orretness of, the speialized rules needed for synthe-sis; in our example, we derive the rules just presented in a standard �rst-order

theory of lists. Finally, tatis an be used to partially, or entirely, automateproof onstrution. The Isabelle distribution omes with simpli�ers and deisionproedures that we used to semi-automate synthesis.Salability. The searh spae in most approahes to dedutive synthesis isquite large. In pratie, building non-trivial programs requires an environmentthat supports heuristis for automating simple proof steps, e.g., by the applia-tion of tatis. It is also important that the user an safely augment a synthesissystem with derived rules. As we will later observe, shemas, for shema guidedsynthesis, an be seen as derived rules speialized for synthesizing programs of apartiular form, and their integration with dedutive synthesis approahes anhelp with large sale developments. Examples of this are provided in [1℄.3.3 ExampleLet us illustrate our synthesis method on the atpos example. We wish to on-strut a logi program equivalent to the spei�ation 21. As with synthesis inthe type theory, we use a metavariable, R, to stand in for the desired program.Hene we start with̀ 8L; I; E : atpos(L; I; E)$ R(L; I; E) : (3)Working bakwards, resolving (using higher-order uni�ation) this onlusionwith the onlusion of the ind rule yields the three subgoals8L; I; E : R(L; I; E)$ (L = nil ^ B(I; E))_9H;T : L = H � T ^ S(H;T; I; E)8I; E : atpos(nil; I; E)$ B(I; E)8T : (8I; E : atpos(T; I; E)$R(T; I; E)! 8H; I; E : atpos(H � T; I; E)$ S(H;T; I; E)and Q is uni�ed with R.The �rst subgoal onstitutes a program template, whih will later be �lledout by solving the other subgoals. In the seond subgoal, expanding the de�nitionof atpos results in` 8I; E : (9P ;S : append (P ; E � S ; nil) ^ length(P ; I))$ B(I; E) :Let I and E be arbitrary. To show` (9P ;S : append (P ; E � S ; nil) ^ length(P ; I))$ B(I; E) ;observe that there are no values for P or S for whih append (P ; E � S ; nil) istrue. Hene this subgoal is equivalent to` false $ B(I; E) :We an omplete the proof with $�re , whih uni�es B(I; E) with false .

For the third subgoal, we assume the existene of an arbitrary list T andthe anteedent of the impliation (whih amounts to an indution hypothesis)and must prove the onsequent (the indution onlusion). Hene, expandingthe de�nition of atpos , we assume8I; E : (9P ;S : append (P ; E � S ; T) ^ length(P ; I))$ R(T; I; E)and we must prove, for some arbitrary H , I , and E,` (9P ;S : append (P ; E � S ; H � T) ^ length(P ; I))$ S(H;T; I; E) :Now, sine P ranges over lists, for any formula �(l), 9P :�(P) is equivalent(by ase analysis) to �(nil)_9H;T : �(H � T). Hene, the above is equivalent to` ((9S : append (nil; E � S ; H � T) ^ length(nil; I))_ (9H 0; T 0;S :append (H 0 � T 0; E � S ; H � T) ^ length(H 0 � T 0; I)))$ S(H;T; I; E) :We proeed by deomposing the disjuntion on the left-hand side by resolvingwith _�split . Doing so builds a disjuntion for S, by instantiating S(H;T; I; E)with S1(H;T; I; E) _ S2(H;T; I; E), and yields the two subgoals:` 9S : append (nil; E � S ; H � T) ^ length(nil; I)$ S1(H;T; I; E)` 9H 0; T 0;S : append (H 0 � T 0; E � S ; H � T)^length(H 0 � T 0; I)$ S2(H;T; I; E)For the �rst, the left-hand side is true whenever 9S : E = H ^ S = T ^ I = 0.Hene, setting S to T , this subgoal is equivalent to` (E = H ^ I = 0)$ S1(H;T; I; E) :We an again disharge this using $�re , whih uni�es S1(H;T; I; E) withE = H ^ I = 0. Now, under the standard de�nition of append and length , theseond subgoal is equivalent to` (9I 0:s(I 0) = I ^ (9T 0;S :append (T 0; E � S ; T) ^ length(T 0; I 0)))$ S2(H;T; I; E)where s(I 0) represents the suessor of I 0. We an now simplify this using theanteedent (indution hypothesis), whih yields(9I 0:s(I 0) = I ^ R(T; I 0; E))$ S2(H;T; I; E) :We omplete the proof with $�re , unifying S2(H;T; I; E) with 9I 0:s(I 0) =I ^ R(T; I 0; E).We are done! If we apply the aumulated substitutions to the remainingassumption A1 we have8L; I; E : R(L; I; E)$ (L = nil ^ false)_9H;T : L = H � T ^ ((E = H ^ I = 0)_ 9I 0 : s(I 0) = I ^ R(T; I 0; E)) :

and we have proved the equivalene of (3) under this de�nition, i.e.,atpos(L; I; E) is equivalent to the synthesized instane of R(L; I; E).The alert reader may have wondered why we did not omplete the proofearlier by resolving with $�re . In this example, our goal was to transformatpos so that the result falls within a partiular subset of �rst-order formulae,sometimes alled pure logi programs [16℄ or logi desriptions [25℄, that de�nelogi programs. These formulae an be easily translated to Horn lauses or rundiretly in a language like G�odel [47℄. In this ase, we get the lauses:atpos(nil; I; E) falseatpos(H � T; I; E) E = H; I = 0atpos(H � T; I; E) s(I 0) = I; atpos(T; I 0; E)whih an be simpli�ed toatpos(E � ; 0; E) atpos(� T; s(I 0); E) atpos(T; I 0; E)3.4 AnalysisOverall, when ast in this way, the dedutive synthesis of logi programs is quitesimilar to the previous onstrutive/dedutive synthesis of funtional programs.In both ases, we leave the program as an unknown, and solve for it, by uni-�ation, during proof. Of ourse, the metatheoreti properties of the programsprodued are quite di�erent. In the ase of logi program synthesis, the rules,as they are given, do not enfore that the objet onstruted has any speialsyntati properties (e.g., is a pure logi program); we only know that it is anequivalent formula. Moreover, we do not a priori know anything about its ter-mination behavior (although it is not diÆult to show that the indution rulebuilds prediates that terminate when the �rst argument is ground).This kind of development, as with most approahes to logi program synthe-sis, is best desribed as dedutive synthesis. They are onstrutive only in theweak sense that, at the metalevel (or metalogi, if one is arrying out the proofin a logial framework), one is essentially proving a theorem of the form9R : 8L; I; E :atpos(L; I; E)$ R(L; I; E)and building a witness (in this ase, a prediate de�nition) for R. (For moreon this notion of onstrutivity and the proof theory behind it, see [11℄.) Manyproposed methods for the onstrutive synthesis of logi programs an also beexplained in this way. For example, the Whelk Calulus of [71℄, whih is moti-vated by experiments in synthesizing relations in a onstrutive type theory, anbe reast as this kind of synthesis [6℄.

4 Shema-Guided SynthesisWe here outline Flener, Lau, Ornaghi, and Rihardson's de�nition, representa-tion, and semantis of program shemas: see [33℄ for details.4.1 BakgroundIntuitively, a program shema is an abstration of a lass of atual programs,in the sense that it represents their data-ow and ontrol-ow, but neither on-tains all their atual omputations nor all their atual data strutures. Programshemas have been shown to be useful in a variety of appliations. In synthesis,the main idea is to simplify the proof obligations by taking the diÆult oneso�ine, so that they are proven one and for all at shema design time. Also, thereuse of existing programs is made the main synthesis mehanism.A symbol ourring in a theory T is open [52℄ in T if it is neither de�ned in T ,nor a prede�ned symbol. A non-open symbol in T is losed in T . A theory with atleast one open symbol is an open theory; otherwise it is losed. This terminologyapplies to formal spei�ations and logi programs. An (open) program for arelation r is steadfast [25, 53℄ with respet to its spei�ation if it is orret withrespet to its spei�ation whenever omposed with programs that are orretwith respet to the spei�ations of its (open) relations other than r.Among the many possible forms of programs, there are the divide-and-onquerprograms with one reursive all: if a distinguished formal parameter, alled theindution parameter, say X , has a minimal value, then one an diretly solvefor a orresponding other formal parameter, alled the result parameter, say Y ;otherwise, X is deomposed into a \smaller" value T (under some well-foundedrelation �) by splitting o� a quantity H , so that a sub-result V orresponding toT an be omputed by a reursive all, and an overall result Y an be omposedfrom H and V . A third formal parameter, alled the passive parameter, say Z,partiipates unhanged in these operations. Formally, this problem-independentdataow and ontrol-ow an be aptured in the following open program for r:r(X;Y; Z) min(X;Z); solve(X;Y; Z)r(X;Y; Z) :min(X;Z); de(X;Z;H; T);r(T; V; Z); omp(H;Z; V; Y) (DC)The relationsmin, solve, de, omp are open. When I is the indution parameter,L the result, and E the passive parameter, so that atpos(L; I; E)$ r(I; L;E), alosed program for atpos is the instane of DC under the program substitutionmin(X;Z) X = 0 solve(X;Y; Z) Y = Z � Sde(X;Z;H; T) X = s(T) omp(H;Z; V; Y) Y = F � V (�1)This substitution aptures the problem-dependent omputations of that program.But programs by themselves are syntati entities, hene some programsare undesired instanes of open programs. For instane, the generate-and-test

program r(X;Y; Z) g(X;Y; Z); t(Y; Z) is an instane of DC under the sub-stitution min(X;Z) true solve(X;Y; Z) g(X;Y; Z); t(Y; Z)de(X;Z;H; T) true omp(H;Z; V; Y) trueAn open program suh as DC thus has no �xed meaning. The knowledge ap-tured by an open program is not ompletely formalized, and the domain knowl-edge and underlying language are still impliit. In order for suh open programsto be useful for guiding synthesis, suh undesired instanes need to be preventedand some semanti onsiderations need to be expliitly added.A program shema [33℄ has a name, a set of formal sort and relation pa-rameters, a signature with sorted relation and funtion delarations, a set ofaxioms de�ning the delared symbols, a set of onstraints restriting the atualparameters, an open program T alled the template, and spei�ations S of therelations in T , suh that T is steadfast with respet to S in that axiomatization.The shema DC an be abdued, as in [32℄, from our informal aount of howdivide-and-onquer programs work. The parameters SX, SY, SZ, SH are sorts;they are used in the signatures of the other parameters, whih are relations.There are no axioms beause the signature delares no other symbols than theparameters. The template is the open program DC, whih de�nes the relation rand hasmin, solve, de, omp as open relations. The losed relation r is spei�edby Sr, and the open relations have Smin, Ssolve, Sde, Somp as spei�ations.The onditional spei�ation Sr exhibits ir, or as the input/output onditionsof r, while Sde exhibits ide, ode as the input/output onditions of de. Theinput/output onditions of the remaining open relations are also expressed interms of the parameters ir, ide, or, ode. The onstraints restrit de to sueedat least one if its input ondition holds, and then to yield a value that satis�esthe input ondition of r (so that a reursive all to r is \legal") and that issmaller than X aording to �, whih must be a well-founded relation (so thatreursion terminates). The open program DC is steadfast with respet to Sr,within the given axiomatization.In the shema REUSE , the parameters SX, SY, SZ are sorts; they are usedin the signatures of the other parameters, whih are relations. There are noaxioms beause the signature delares no other symbols than the parameters.The template is the open program fr(X;Y; Z) q(X;Y; Z)g, whih de�nes therelation r and has q as the open relation. The relation r is spei�ed by Sr, and therelation q has the same input/output onditions as r. There are no onstraintson the parameters. This shema provides for the reuse of a program for q whenstarting from a spei�ation for r. The open program Reuse is steadfast withrespet to Sr, within the given axiomatization.4.2 OverviewLet us now examine the spei�ations, mehanism, heuristis, bakground knowl-edge, human interation, tool support, and salability of shema-guided synthe-sis.

Shema DC(SX; SY; SZ; SH;�; ir; or; ide; ode)sorts: SX; SY; SZ; SHrelations: ir; ide : (SX; SZ) � : (SX; SX)or : (SX; SY; SZ) ode : (SX; SZ; SH; SX)axioms: (none)onstrs: ide(X;Z)! 9H : SH : 9T : SX : ode(X;Z;H; T)ide(X;Z) ^ ode(X;Z;H; T)! ir(T; Z) ^ T � XwellFounded(�) (C1)(C2)(C3)speifs: ir(X;Z)! (r(X;Y; Z)$ or(X;Y; Z))ir(X;Z)! (min(X;Z)$:ide(X;Z))ir(X;Z) ^ :ide(X;Z)! (solve(X;Y; Z)$ or(X;Y; Z))ide(X;Z)! (de(X;Z;H; T)$ ode(X;Z;H; T))ode(X;Z;H; T) ^ or(T; V; Z)!(omp(H;Z; V; Y)$ or(X;Y; Z)) (Sr)(Smin)(Ssolve)(Sde)(Somp)template: r(X;Y; Z) min(X;Z); solve(X;Y; Z)r(X;Y; Z) :min(X;Z); de(X;Z;H; T);r(T; V; Z); omp(H;Z; V; Y) (DC)Shema REUSE(SX; SY; SZ; ir; or)sorts: SX; SY; SZrelations: ir : (SX; SZ) or : (SX; SY; SZ)axioms: (none)onstraints: (none)speifiations: ir(X;Z)! (r(X;Y;Z)$ or(X;Y; Z))ir(X;Z)! (q(X;Y; Z)$ or(X;Y; Z)) (Sr)(Sq)template: r(X;Y; Z) q(X;Y; Z) (Reuse)Speifiations. Among the many possible forms of spei�ations, there arethe lassial onditional spei�ations : under some input ondition ir on inputsX , Z, a program for relation r sueeds i� some output ondition or on X , Zand output Y holds. Formally, this gives rise to the following open spei�ationof r: 8X : SX : 8Y : SY : 8Z : SZ :ir(X;Z)! (r(X;Y; Z)$ or(X;Y; Z)) (Cond)The open symbols are the relations ir, or and the sorts SX, SY, SZ. Other formsof spei�ation an also be handled.Mehanism. Shema-guided synthesis from a spei�ation S0 is a tree on-strution proess onsisting of 5 steps, where the initial tree has just one node,namely S0:1. Choose a spei�ation Si that has not been handled yet.2. Choose a program shema with parameters P , axioms A, onstraints C,template T , and spei�ations S.

3. Infer a substitution �1 under whih Si is an instane of the spei�ation(available in S) of the de�ned relation in template T . This instantiates some(if not all) of the parameters P .4. Choose a substitution �2 that instantiates the remaining (if any) parametersin P , suh that the onstraints C hold (i.e., suh that �1 [�2 ` C) and suhthat one an reuse existing programs PQ for some (if not all) of the now fullyinstantiated spei�ations S [�1 [�2 of the open relations in template T .Simplify the remaining (if any) spei�ations in S [�1 [�2, yielding SG.5. Add T [PQ | alled the reused program | to the node with Si and addthe elements of SG to the unhandled spei�ations, as hildren of Si.These steps are iterated until all spei�ations have been handled; the overall re-sult program P0 for S0 is then assembled by onjoining, at eah node, the reusedprograms. If any of these steps fails, synthesis baktraks to its last hoie point.Shema-guided program synthesis is thus a reursive spei�ation (problem) de-omposition proess followed by a reursive program (solution) omposition pro-ess.The REUSE shema an be hosen at Step 2; it fores the reuse at Step 4 ofa program for q, beause q is its only open relation. Every shema leads to somereuse at Step 4; for instane, DC results in the reuse of a program for de.Heuristis. Many hoie points reside in shema-guided synthesis, so heuristisare needed to make good deisions, possibly by looking ahead into the synthesis.Some heuristis an be applied when designing a shema. For instane, asynthesis strategy is the hoie at Step 4 of the open relations for whih programsare reused. All templates envisaged by us so far have only a few meaningfulstrategies, hene it is best to hardwire these. For instane, template DC hasonly two interesting strategies: when starting with de, the divide-and-onquershema is as above; when starting with omp, it would have to be reexpressedin terms of the input/output onditions of r and omp, giving rise to anothershema, with the same template.Other heuristis an be expressed as appliability onditions. For instane,the question arises of what program shema to apply at Step 2. An impliitheuristi an be ahieved by ordering the shemas; putting REUSE �rst wouldenfore our emphasis on reuse. There also is the question of how to apply a hosenprogram shema at Step 3. For instane, with DC, one of the formal parametersin the given spei�ation Sr has to be the indution parameter, and anotherthe result parameter. This an be done based on the sort information in Sr:only a parameter of an indutively de�ned sort an be the indution parameter.One an also augment spei�ations with mode information, beause parametersdelared to be ground at all-time are partiularly good indution parameters[25℄.Bakground Knowledge. Step 2 assumes a base of program shemas, aptur-ing a range of program lasses. Also, Step 4 relies on a base of reusable programs.For instane, for the DC shema, a base of spei�ations and programs for deprograms and � well-founded relations needs to be available.

Human Interation. Shema-guided synthesis an be fully automated, asdemonstrated withCypress [65℄,Kids [66℄,DesignWare [67℄, and PlanWare[15℄. However, interative synthesis is preferable, with the human programmertaking the reative, high-level, heuristi design deisions, and the synthesizerdoing the more lerial work. The design issues are intelligible to humans beausethe very objetive of program shemas is to apture reognized, useful, human-designed programming strategies and program lasses.Tool Support. An implementation of shema-guided synthesis an be made ontop of any existing proof planner, exploiting the fat that program shemas anbe seen as proof methods [35℄. This provides support for the neessary higher-order mathing and disharging of proof obligations.Salability. The searh spae of shema-guided synthesis is muh smaller thanfor dedutive synthesis. First, shema-guided synthesis by de�nition bottomsout in reuse, both of the template itself and of existing programs. One ansigni�antly redue the number of reuse queries by applying heuristis detetingthat an ad ho program an be trivially built from the spei�ation. Seond,the proof obligations of Steps 3 and 4 are quite lightweight. Shema-guidedsynthesis thus sales up to real-life synthesis tasks, espeially if oupled witha powerful program optimization workbenh and suÆient domain knowledge.For instane, Smith [67℄ has suessfully deployed his tools on real-life problems,suh as transportation sheduling.4.3 ExampleLet us synthesize a program from the following spei�ation, open in sort ST:8L : list(ST) : 8I : nat : 8E : ST : true!(atpos(L; I; E)$ 9P ;S : list(ST) : append (P ; E � S ; L) ^ length(P ; I)) (Satpos)The �rst iteration of synthesis proeeds as follows. At Step 1, the spei�ationSatpos is hosen beause it is the only unhandled spei�ation. At Step 2, supposeshema DC is hosen, after a failed attempt to apply shema REUSE . At Step 3,the spei�ation Satpos is inferred to be an instane of Sr, when atpos(L; I; E)is seen as r(I; L;E), under the substitutionhSX; SY; SZi = hnat; list(ST); STiir(X;Z)$ trueor(X;Y; Z)$ 9P ;S : list(ST) : append (P ; Z � S ; Y)^length(P ; X) (�2)So far, 5 of the 9 parameters of DC have been instantiated. At Step 4, supposethe following substitution is hosen:SH = nat A � B $ B = s(A)ide(X;Z)$:X = 0 ode(X;Z;H; T)$ X = s(T)

This instantiates the remaining 4 parameters of DC in a way that the onstraintsC1, C2, C3 hold and that the program Pde = fde(X;Z;H; T) X = s(T)g anbe reused to meet the now fully instantiated spei�ation Sde. The spei�ationsof the remaining open relations in template DC are now also fully instantiated:true! (min(X;Z)$::X = 0) (Smin)true ^ ::X = 0!(solve(X;Y; Z)$ 9P ;S : append (P ; Z � S ; Y) ^ length(P ; X)) (Ssolve)X = s(T) ^ 9P ;S : append (P ; Z � S ; V) ^ length(P ; T)!(omp(H;Z; V; Y)$ 9P 0; S0 : append (P 0; Z � S0; Y)^length(P 0; X)) (Somp)They an be simpli�ed into the following spei�ations:min(X;Z)$ X = 0 (S0min)X = 0! (solve(X;Y; Z)$ 9S : list(ST) : Y = Z � S) (S0solve)X = s(T) ^ 9P ;S : append(P ; Z � S ; V) ^ length(P ; T)!(omp(H;Z; V; Y)$ 9F : ST : Y = F � V) (S0omp)At Step 5, the program DC [Pde beomes the reused program for Satpos ,while S0min, S0solve, and S0omp are added to the now empty list of unhandledspei�ations.The next iterations of synthesis proeed as follows. When S0min, S0solve, andS0omp are hosen, suppose appliations of some suitable variants of REUSEsueed through the ad ho building of the programs Pmin = fmin(X;Z) X =0g, Psolve = fsolve(X;Y; Z) Y = Z � Sg, and Pomp = fomp(H;Z; V; Y) Y = F �V g. Sine no new spei�ations were reated, the synthesis is ompletedand has disovered the substitution �1. For all-mode atpos(+;�;+), say, theorresponding logi programatpos(L; I; E) I = 0; L = E � Satpos(L; I; E) :I = 0; I = s(T); atpos(V; T;E); L = F � Van be implemented [25℄, say by the Merury ompiler [68℄, into the followingsteadfast program: atpos(E � S; 0; E) atpos(F � V; s(T); E) atpos(V; T;E)The omp operator had to be moved in front of the reursive all to ahieve this.(Prolog annot do this, so mode-spei� implementation is left as a manual taskto the Prolog programmer.)This example illustrated a relatively simple use of the DC shema. In [31℄,a quiksort program is synthesized, using a variant of the divide-and-onquershema DC with two reursive alls.

4.4 AnalysisShema-guided synthesis aptures reognized, useful, human-designed program-ming strategies and program lasses in program shemas. In doing so, it takesthe hardest proof obligations o�ine, preventing their repeated proof aross var-ious syntheses and making reuse of existing programs the entral mehanism forsynthesizing programs. In the presene of powerful program optimization toolsand suÆient domain knowledge, it thus naturally sales up, without any limita-tions on spei�ation forms or program forms, due to the modular nature of thevarious forms of bakground knowledge. Heuristi guidane issues are still besttakled by humans, so shema-guided synthesis is best arried out interatively.A uni�ed view of shema-guided synthesis and proof planning has been pro-posed [35℄, revealing potential new aspets of program shemas, suh as appli-ability onditions apturing heuristis, as well as the possibility of formulatingprogram shemas as proof methods and thereby reusing an existing proof plan-ner as a homogeneous implementation platform for both the shema appliationsand the proof obligations of shema-guided synthesis.Our future work inludes redoing the onstraint abdution proess for moregeneral divide-and-onquer templates, where some nonMinimal(X;Z) is notneessarily :min(X;Z), and rafting the orresponding strategies, in order toallow the synthesis of a larger lass of programs. Other design methodologiesneed to be aptured in logi programming shemas; for instane, a global searhshema has been proposed for the synthesis of onstraint logi programs [37℄.5 Indutive SynthesisFollowing a brief introdution to indutive generalization, we present a partiularapproah to indution of reursive logi program alled ompositional indutivesynthesis, whih is desribed in detail in [46℄.5.1 BakgroundThe indutive approah to program synthesis originates in indutive logi. In-dutive logi is onerned with the onstrution of logial theories T explainingavailable observations or events. This means that, given evidene in the formof atomi formulas a1; a2; : : : ; as, the logial indution approah is to devise anappropriate logial theory T so thatT ` a1 ^ a2 ^ : : : ^ as:A major onern is to onstrain T so as to rule out trivial solutions, suh asT being inonsistent (thus supporting any evidene), or T being idential to theonjuntion of available evidene. In the more traditional appliation of logialtheories of indution in arti�ial intelligene, the quest is for a theory T takingthe form of general rules, e.g., sienti� rules, supporting the given evidene. Inthe ontext of indution of logi programs addressed here, the \observations" are

intended sample program input-output results in the form of atomi formulas,and the theory T is to be a de�nite lause logi program. Thus the onsisteny ofT is guaranteed, but omputational properties suh as termination and ompu-tational tratability of the synthesized program have to be separately onsidered.So the goal of indutive logi programming (ILP) is to obtain a olletion oflauses with universally quanti�ed variables, whih subsumes the given �nite listof intended program results. The main approah to ahieve this goal is syntatigeneralization of the given examples. Consider atoms p(a; a�b�nil) and p(b; b�nil).These two unit lauses generalize to the lause program p(X;X �Y) . This restson the existene of a dual of the most general uni�er of two atoms known as theleast general generalization (LGG) [63, 62℄. In this simple ase, the LGG yieldsthe intended program as a unit lause witness, p(X;X � Y) ` p(a; a � b � nil) ^p(b; b � nil).The syntatial generalization of terms has been extended to a notion ofgeneralized subsumption of lauses [18, 63℄ and further to a method known asinverse resolution, see e.g., [58℄. This method has proven useful for onept for-mation, dedutive databases and data mining. However, it is too weak for in-dution of reursive logi programs. Consider examples of list onatenation,e.g., p(nil; a � nil; a � nil) and p(a � nil; b � nil; a � b � nil). The least general gen-eralization yields the lause p(X;Y � nil; a � Z) , whih fails to apture thereursive de�nition of onatenation. Providing more examples eventually leadsto an overly general lause: the universal prediate p(X;Y; Z); whih subsumesall onatenation examples though it blatantly fails to apture onatenation oflists. A general remedy for over-generalization is to inlude negative examples,whih are understood as examples in the omplement set of the intended resultset of atoms. In general, the key problem in synthesizing suh programs is theinvention and introdution of appropriate reursive forms of lauses.Compositional indutive synthesis employs a ompositional logial languagefor omputing relations in analogy to funtional programming languages in-tended for omposing and omputing funtions. The method does not apply theabove generalization mehanisms. A program takes the form of a variable-freeprediate expression ' enompassing elementary prediates and operators forombining relations and produing new resulting relations.Let ' ` e mean that the tuple (of terms) e is deduible from the programprediate expression '. The omputational semantis of the language an thenbe explained by means of inferene rules of the form'1 ` e1 : : : 'n ` enop('1; : : : ; 'n) ` e ;where e depends on op and e1; : : : ; en, as expliated in the onrete rules below.Let ' ` e1 + : : :+ en mean ' ` ei for i = 1::n, so that + ombines result tuples.Thus, ' ` e1+e2+: : : expresses that the tuples ei of the term form ht1; t2; : : : ; tniare omputable from the n-ary prediate expression '.In the language Combilog employed here, the given elementary prediatesare onstant formation, identity and list onstrution de�ned by the inferene

rules: onst ` hi id ` ht; ti ons ` hh; t; h � tiIn addition to the elementary prediates, there is a olletion of operators,whih map argument relations to relations. The three fundamental operators arehere de�ned by: ' ` ht1; t2; : : : ; tni (make)make�1;�2;:::;�m(') ` ht�1 ; t�2 ; : : : ; t�mi'1 ` e+ e0 '2 ` e+ e00 (and)and('1; '2) ` e '1 ` e1 '2 ` e2 (or)or('1; '2) ` e1 + e2The make operator is a generalized unary projetion operator arrying an aux-iliary vetor of indies �1; : : : ; �m serving to reorder arguments and introduedon't ares. As desribed in [46℄, Combilog possesses a ompositional semantisin whih and is set intersetion and or is set union, whih motivates the inferenerules for the and and or operators. These operators reet, respetively, logialonjuntions in lause bodies and multiple de�ning lauses.This operator language beomes as expressive as ordinary lause programsif the language is extended with failities for naming prediate expressions andusing these names reursively in program prediate de�nitions. However, in thepresent form the language does not introdue prediate names in a program.Instead, the de�ned prediates are anonymous and in order to aommodatereursive formulations e.g., for list proessing, the iteration operators foldr andfoldl are introdued. These operators are akin to the fold operators in funtionalprogramming and with theoretial underpinning in the theory of primitive re-ursive funtions as disussed in [45, 46℄, The assoiated rules are: ` ht1; t3i (foldr 0)foldr (';) ` ht1; nil; t3ifoldr (';) ` ht1; t2; zi ' ` hh; z; t3i (foldr > 0)foldr (';) ` ht1; h � t2; t3i ` ht1; t3i (foldl 0)foldl (';) ` ht1; nil; t3i' ` hh; t1; zi foldl (';) ` hz; t2; t3i (foldl > 0)foldl (';) ` ht1; h � t2; t3iFor instane, with foldr available, the well-known append onatenation predi-ate is make2;1;3(foldr (ons ; id)), where the make operator swaps the two �rstarguments.

Below we illustrate the appliation of the rules using the append program,proving make2;1;3(foldr (ons ; id)) ` ha � nil; b � nil; a � b � nili:id ` hb � nil; b � nili (foldr 0)foldr (ons ; id) ` hb � nil; nil; b � nili ons ` ha; b � nil; a � b � nili (foldr > 0)foldr (ons ; id) ` hb � nil; a � nil; a � b � nili (make)make2;1;3(foldr (ons ; id)) ` ha � nil; b � nil; a � b � niliWhen the inferene rules are used to ompute result tuples, these tuples areunknown parameters to be determined in the ourse of the exeution. In on-trast, in the ompositional indutive synthesis method, the result tuples aregiven initially, as a ontribution to the result, whereas '1; : : : ; 'n are (partly)unknown program onstituents to be determined reursively in the ourse of thesynthesis. These inferene rules are used in the way desribed in Setion 3.1for building proofs in a goal direted manner where the program onstruts areunknowns, given as metavariables, and instantiated during proof. This faili-tates understanding of the indution proess as a stepwise, prinipled, programomposition proess.5.2 OverviewLet us now present ompositional indutive synthesis in terms of its generifeatures.Speifiations. In indutive synthesis, spei�ations are partial extensionalde�nitions of the programs to be indued, i.e., a set of atoms or tuples onsti-tuting sample program results. No other problem spei� spei�ations need beemployed.Mehanism. The operators are similar to shemas in the shema guided ap-proah to synthesis. In the present method, the program is synthesized in astrit reursive divide-and-onquer proess by tentatively seleting an operatorand then reursively attempting synthesis of onstituent parameter programs.Our synthesis takes advantage of the metainterpreter outlined below for om-positional programs and does not rely on generalization mehanisms. The ap-proah an be haraterized as the top-down stepwise omposition and speial-ization of a Combilog program intended as a solution in the sense that the pro-gram subsumes the program examples. The searh involved in hoosing betweenoperators is taken are of by the bak-traking mehanism in the synthesizer.In priniple, our synthesis proeeds by introduing meta-variables for the leftoperand prediate expressions of ` in the proof onstrution, and then sues-sively instantiating these variables in the ourse of the goal-driven proof on-strution; in doing so, we also appeal to the rule' ` e1 ' ` e2' ` e1 + e2 ;

whih is used for goal splitting on the program examples. Thus the above proofmay be oneived of as a trae of a sample indutive synthesis proof.In our metainterpreter system, the relationship ' ` e is realized as a binaryprediate syn, whih simultaneously serves as metainterpreter and synthesizer.The key priniple of our synthesis method is the inverted use of our metainter-preter so that the �rst argument program prediate is to be instantiated in theourse of synthesizing a program.Thus the heart of the synthesizer is lauses of the following, general, divide-and-onquer form for the available operators:syn(omb(P1; : : : ; Pm);Ex) apply omb(Ex ;Ex 1; : : : ;Exm)^ syn(P1;Ex 1) ^ : : : ^ syn(Pm;Exm):Programs onsisting of an elementary prediate are trivially synthesized withoutreursive invoation of syn. Let us onsider the synthesis of a basi prediateexpression for the head prediate yielding the head of a non-empty list, givensay the two examples ha � b � nil; ai and ha � nil; ai. Synthesis of head is initiatedwith a goal lause syn(P; [[a; b℄; a℄) ^ syn(P; [[a℄; a℄):A suessful proof instantiates P with the synthesized expressionmake3;1(ons).Heuristis. A detailed desription of the synthesizer is found in [46℄. To pre-vent the synthesizer from running astray in the in�nite spae of possible pro-gram hypotheses, the searh is onduted as an iterative deepening. To avoidunwanted trivial program solutions, further onstraints are imposed on the syn-thesizer. Consider, for instane, synthesis of the append prediate. An overlygeneral solution is obtained as the universal prediate, say, with the expressionmake2;3;4(onst) orresponding to the lause p(X1; X2; X3). As mentioned, suhunwanted solutions might be ruled out by the use of negative examples. How-ever in our synthesizer we have hosen to enfore well-modedness onstraintson the synthesized programs thus suppressing the above solution in favor of thereursive P = make2;1;3(foldr (ons ; id));whih is obtained as the syntatially smallest solution given the two sampleresults hnil; nil; nili and ha �nil; b �nil; a � b �nili and the mode pattern [+;+;�℄,and omplying with the usual lauses for append. The synthesis proeeds as agoal-driven proof onstrution of the sample proof shown in the above setion.Bakground Knowledge. The elementary prediates and the operators de-termine the admissible forms of programs and thereby onstitute a form of bak-ground knowledge. No problem-spei� bakground knowledge is provided buta searh bias may be imposed by providing additional auxiliary prediates.

Tool Support. For synthesizing the at pos program, a system alled Com-bindue was used, whih is based on the method outlined above and desribedin detail in [46℄.Human Interation and Salability. The urrent experimental systemonduts the indutive synthesis automatially. The omputational searh ostslimit the size of induible programs to around 6 prediates and operators.However, we envisage integration of the CombiIndue priniples into a semi-automati ompositional development system. In this system, the programmeran o�er assistane by proposing appropriate auxiliary prediates within thepertinent data type. The imposition of data types will also serve to onstrainfurther the searh spae of well-moded program andidates. Reursion (fold)over lists will be generalized to other data types later.5.3 ExampleSine at this stage, the synthesis system supports list as the only data type werepresent the number n as a list of length n with onstants i, where i an be anyonstant. Synthesis of the atpos program from the single sample ha�b�nil; i�nil; biyields the solutionatpos = foldl (make4;3;2(ons);make3;1(ons)))as illustrated by the following trae:make4;3;2(ons) `h ; a � b � nil; b � nili make3;1(ons) ` hb � nil; bi (foldl 0)foldl (make4;3;2(ons);make3;1(ons)) `hb � nil; nil; bi (foldl > 0)foldl (make4;3;2(ons);make3;1(ons)) ` ha � b � nil; i � nil; biThe synthesized program is the Combilog form of the de�nite lause programatpos(L; I; E) syn(foldl (tail 0; head); [L; I; E℄)syn(tail 0; [; F � T; T ℄) syn(head ; [F � T; F ℄) Synthesis with the foldr operator is not possible. However, swapping thetwo subgoals of foldr yields the operator foldrrev allowing the following variantprogram to be synthesizedatpos = make3;2;1(foldrrev (ons ;make1;3(ons))):The relationship between suh a pair of variant programs is theoretiallyestablished by a duality theorem stated and proved in [44℄.In order to failitate the omparison of the synthesis approahes, let us trans-form the �rst Combilog form of the atpos de�nite lause program into a reur-sive atpos program. We �rst unfold the atpos lause:atpos(L; nil; E) head(L;E)atpos(L;X � T;E) tail 0(X;L;Z); syn(foldl (tail 0; head); [Z; T;E℄)

Now, unfolding head and tail, and folding bak the seond literal with atpos, weobtain the following logi program.atpos(L; nil; E) L = E � Tatpos(L;X � T;E) L = F � Z; atpos(Z; T;E)5.4 AnalysisChek that meaning is preserved! Designing a metainterpreter for Combilogis simpli�ed by the variable-free form of Combilog programs, the separationof prediate expressions and terms in separate arguments, and the eliminationof introdued prediate names. These simpli�ations substantially redue searhand allow us to e�etively use the metainterpreter as the bakbone of our ILPmethod by reversing the provability metalogi programming demo prediate asexamined e.g., in [43℄ and in [21℄ for ordinary de�nite lauses.In [46℄ we ompare with other indutive synthesis systems and report resultson suessful automati synthesis of a number of textbook programs inludingnon-naive as well as naive reversal of lists. The latter program makes alls forthe auxiliary prediate append, whih is reursively indued. This prediate in-vention, whih is generally onsidered problemati in ILP, is handled smoothlyin our ompositional method sine expliit prediate names are not introdued.The outlined ompositional method failitates a program development method-ology where ustomized domain spei� operators are added to the general pur-pose ones. Moreover, it seems that the ompositional method surpasses moretraditional ILP methods with respet to prediate invention and terminationof indued programs within the onsidered lass of primitive reursive relationsdelineated by the available reursive operators.6 ComparisonIn this setion, the synthesis approahes are ompared from di�erent points ofview. First, we ompare the synthesized atpos programs. Afterwards, we on-trast the general features of the di�erent approahes. Finally, we onlude byanalyzing how shemas are used, impliitly or expliitly, in program synthesisand we suggest that they play a entral role in understanding di�erent synthesismethods. In the following, we will refer to indutive synthesis, dedutive syn-thesis, and shema-guided synthesis to denote the partiular synthesis methodspresented in this paper.6.1 The atpos(L,I,E) ProgramAll three methods yielded the same program. This was the ase even though theydi�er in whih variable they hoose as an indution parameter: both indutivesynthesis and shema-guided synthesis hoose I as the indution parameter, while

dedutive synthesis hooses L. In the ase of dedutive synthesis, we ould justas well have arried out indution on I . However, for shema-guided synthesis,swithing would require a separate shema with a di�erent template, namely withan additional non-reursive lause for the non-minimal ase. The same holds forindutive synthesis where a fold ombinator over numbers and an assoiated rulewould be required.In general, the hoie of the indution parameter will a�et the form ofthe resulting program and even its omplexity [25℄. In this regard, dedutivesynthesis o�ers more exibility, as one an perform indution over any well-founded relation, and development (hene program onstrution) proeeds insmaller steps. Of ourse, in shema-guided synthesis and indutive synthesis, onean always introdue new shemas, respetively operators, orresponding to newways of building programs, as the need arises.6.2 Spei�ationThe forms of the spei�ations in dedutive synthesis and shema-guided syn-thesis are similar. Both are �rst-order formulas asserting a possibly onditionalequivalene. In indutive synthesis, the spei�ation is a �nite set of examples(a subset of the extensional de�nition of the relation), whih is by nature in-omplete (when the extensional de�nition is in�nite). Spei�ations in indutivesynthesis may also inlude negative examples or properties [28, 36℄, but in gen-eral they remain inomplete. This inompleteness is a signi�ant di�erene and,as we will see, it has far-reahing onsequenes. Indeed, it will play a key role indi�erentiating indutive synthesis from the other two approahes with respetto the other generi features.For the dedutive synthesis and shema-guided synthesis approahes, in on-trast to indutive synthesis, it is important for non-trivial appliations to beable to onstrut omplex spei�ations and this requires ways of parameteriz-ing and ombining spei�ations. In our work on dedutive synthesis, we ahievethis, in pratie, by using logial frameworks like Isabelle [59℄, whih providesupport for strutured theory presentations. In shema-guided synthesis, [33℄express program shemas as extensions of spei�ation frameworks [52℄, whihsupport parameterized spei�ations and their omposition.Of ourse, the use of �rst-order logi as a spei�ation language has its limita-tions. For example, in shema-guided synthesis, we needed the well-foundednessof a relation � as a onstraint in the DC shema. However, a formalization ofwell-foundedness generally falls outside of �rst-order logi, unless one formal-izes, e.g., set-theory. A work-around is to assume that some �xed olletion ofrelations is delared to be well-founded. The alternative is to use a stronger(higher-order) logi or theory [1℄ where onepts suh as well-foundedness anbe de�ned and well-founded relations an be onstruted. Stronger logis, ofourse, have their own drawbaks; in partiular it is more diÆult to automatededution.

6.3 MehanismAs presented, the mehanisms used in the three methods appear quite dissimi-lar. Dedutive synthesis is oriented around derivations, shema-guided synthesiswas desribed using an algorithm for applying shemas, and indutive synthe-sis uses a meta-interpreter to build programs. Yet it is possible to reast allthree so that the entral mehanism is the same: a top-down appliation ofrules is used to inrementally onstrut a program, during a derivation, in aorretness-preserving way. In dedutive synthesis, derived rules are applied top-down, using higher-order uni�ation to build programs as a \side-e�et" of proofonstrution. Although the mehanism for applying shemas has been presentedin an algorithmi fashion, it is possible to reast shema-guided synthesis as theappliation of rules in a dedutive system [1℄; namely, a shema onstitutes a(derivable) rule whose premises are given by the shema's onstraints and (theompletion of its) template and the onlusion is given by the shema's spei-�ations. Viewed in this way, shema-guided synthesis, like dedutive synthesis,onstruts programs, during proofs, by the higher-order appliation of rules. Themain distintion between the two methods boils down to the rules, granularityof steps, and heuristis/interation for onstruting proofs. Finally, in indutivesynthesis, rules are also given for onstruting Combilog programs. There, therules are automatially applied by a Prolog meta-interpreter.Although they di�er in form, the rules employed by the di�erent methodshave a similar nature. Not surprisingly, in all ases, mathematial indutionplays a key role in program synthesis, as it is neessary for onstruting itera-tive or reursive programs. In dedutive synthesis, indution priniples an bederived from indution priniples for data types or even the indutive (least-�xedpoint) semantis of logi programs [1℄. The indution priniples (perhaps ina reformulated form, e.g., the ind rule of Setion 3.2) are then expliitly appliedand their appliation onstruts a template for a reursive program. In shema-guided synthesis, the orretness of shemas for synthesizing reursive programsis also justi�ed by indutive arguments. Indeed, omplex shemas an be seen askinds of omplex maro-development steps that preompile many miro steps,inluding indution. One might say that indution is impliitly applied when us-ing a shema to onstrut reursive programs. In indutive synthesis, programsare iterative, instead of reursive, and programs that iterate over lists (or, moregenerally, other indutively de�ned data types) are built using fold rules. Again,mathematial indution priniples play a role, behind-the-senes, in justifyingthe orretness of iteration rules, and rule appliation an be seen as an impliituse of indution. There is, of ourse, a tradeo�. By ompiling indution into spe-ialized rules, shema-guided synthesis and indutive synthesis an take largersteps than dedutive synthesis; however, they are more speialized. In partiular,by building only iterative programs, the indutive synthesis method presentedan sharply redue the searh spae, but at the prie of limited expressibility.The underlying mehanisms are, in some respets, fundamentally di�erent.Although all three methods are based on �rst-order logi, any system imple-menting dedutive synthesis (respetively shema-guided synthesis) will require

higher-order uni�ation (respetively higher-order mathing). This is neessaryto onstrut substitution instanes for variables in rules and shemas that rangeover funtions, relations, and more generally, ontexts (terms with holes); thedownside is that higher-order mathing and uni�ation are more diÆult thantheir �rst-order ounterparts, and the existene of multiple uni�ers (respetivelymathers) an lead to large branhing points in the synthesis searh spae. Theoperator form of Combilog means that rules in indutive synthesis manipulateonly �rst-order terms. Moreover, all ompliations onerning objet languagevariables are eliminated. This simpli�es the metainterpreter and redues thesynthesis to searh in the spae of operator ombinations subjeted to well-modedness onstraints.Finally, the di�ering nature of the spei�ations, in partiular, omplete ver-sus inomplete information, makes a substantial di�erene in the underlying se-mantis of the di�erent methods and the relationship of the synthesized programto its spei�ation. As presented here, both dedutive synthesis and shema-guided synthesis onstrut programs that are (possibly under onditions) equiv-alent to some initial spei�ation. In the ase of indutive synthesis, equivaleneis weakened to impliation or entailment. This hanges, of ourse, the semantisof the rules. Moreover it has a signi�ant impat on extra-logial onsidera-tions, i.e., onsiderations that are not formalized in the synthesis logi (e.g.,the program synthesized should have a partiular syntati form or omplexity).In indutive synthesis these onsiderations (in partiular, having a syntatiallysmall reursive program that entails the examples) beome entral to the syn-thesis proess and it is important to use a well-spei�ed strategy, embodied in ametainterpreter, to ensure them.6.4 HeuristisEah of the methods presented has an in�nite searh spae. However, the spaesare di�erently strutured and di�erent heuristis may be employed in searhingthem.In dedutive synthesis, one proeeds in a top-down fashion, employing in-dution and simpli�ation. The searh spae has both in�nite branhing pointsassoiated with the appliation of higher-order uni�ation (as there may be in-�nitely many uni�ers) and branhes of unbounded length (as indution maybe applied in�nitely often and simpli�ation may not neessarily terminate).In pratie, an e�etive heuristi is to follow an indution step by eager sim-pli�ation; here, rippling an be used to ontrol the simpli�ation proess andguarantee its termination. Moreover, with the exeption of applying indution,uni�ation problems are usually of a restrited form, involving \seond-orderpatterns," whih an be easily solved [51℄. Hene, it is possible, in some ases,to use heuristis to redue the searh spae to the point where synthesis an beompletely automated.Shema-guided synthesis uses a strit reursive divide-and-onquer strategyin the seletion of operators and the synthesis of the parameter programs. It alsoemploys a stepwise omposition/speialization of programs where the objetive is

to reuse existing ode. Analogous to dedutive synthesis, ritial branh-pointsinlude shema seletion and seletion of a substitution (higher-order math-ing is required as the same shema an be used in di�erent ways). Searh anbe onduted as an iterative deepening searh employing heuristis. Althoughshema-guided synthesis also has an in�nite searh spae, it is fair to say thatwhen a program is in the searh spae, one is likely to �nd it more quikly thanwith dedutive synthesis sine the steps in shema-guided synthesis are larger,and hene the program is at a shallower ply in the searh tree.The searh spae in indutive synthesis is more diÆult to navigate thanin the other two methods beause of the additional extra-logial onerns men-tioned previously. Here a strit ontrol (ditated by a metainterpreter) is requiredto generate andidate programs in a partiular order. To make automated searhpratial, the searh spae is restrited, a priori, by restritions in the method.For example, the programs synthesizable are restrited to those involving itera-tion, instead of general reursion, and the use of ombinators ensures that �rst-order (Prolog) uni�ation suÆes for program onstrution. In addition there isthe well-modedness requirement and, to redue explosive branhing, the use ofor is restrited. It is an interesting question as to whether any of these pruningmeasures ould be pro�tably used in the other approahes.6.5 Bakground KnowledgeThe three approahes formalize bakground knowledge in di�erent ways. For de-dutive synthesis, bakground knowledge about data types is given by a standard�rst-order theory augmented with appropriately reformulated (for synthesis) in-dution shemas (e.g., ind). For shema-guided synthesis, bakground knowledgemust be formalized in terms of a base of program shemas, apturing a rangeof program lasses, whih may (or may not) diretly inorporate informationabout data types, as well as a database of reusable programs and informationabout well-founded relations (typially assoiated with data types). Here, morework is usually required to formalize bakground knowledge, but the payo� isthat this work is done one and for all and the resulting shemas an be usedto redue searh and guide development to speialized lasses of programs. Forindutive synthesis, the bakground knowledge is basially the elementary oper-ators (onst, id, ons, et.), whih enode knowledge about iterative programsoperating over lists. As with the other approahes, this knowledge is domain-dependent, and synthesizing programs operating over other data types wouldrequire additional rules.6.6 Human Interation and SalabilityThe dedutive synthesis proof presented was onstruted interatively. There,within a �rst-order formalization of list theory, speialized rules for synthesiswere derived, and interatively applied. However, proof searh an also be auto-mated using tatis and one an adjust the size of proof steps by deriving newproof rules (analogous to omplex program shemas). This proess of writing

tatis and deriving new rules is open, leads to a ustomizable approah, andan, at least in theory, sale arbitrarily. The use of tatis also makes it possibleto arbitrarily mix automation with human interation.Conversely, the shema-guided synthesis method was presented as fully au-tomatable, although a human ould be used to drive the seletion of shemasand substitution instanes. Indeed, as with dedutive synthesis, this is oftenpreferable, as it provides a way of inuening extra-logial onerns, suh as theomplexity of the synthesized program. The approah sales well as speializedshemas an be tuned to partiular lasses of problems (divide and onquer,global searh, et.). Moreover, there is a natural mehanism for the reuse ofprograms.For the moment, there is no human interation in the presented method forindutive synthesis. It is not lear either how feasible this is, given the impor-tane that extra-logial onerns play in the synthesis proess. How would ahuman know, for example, that steps suggested will generate the simplest pos-sible program? The reuse of existing programs also is not handled.It is not lear how the indutive synthesis approah an be saled up tosynthesize more omplex programs with reursion or iteration. For omplex ex-amples, the inomplete nature of the input spei�ation makes the programspae so intratable that human interation, heuristis, support for reuse, and\more omplete" spei�ation information, suh as properties [30, 28℄, appearneessary. But even with these extensions, the purely indutive approah to thesynthesis of programs with reursion or iteration remains very hard, and it seemsdoubtful whether this approah will ever sale up to the synthesis of omplex,real-life programs.When the synthesized program does not feature reursion or iteration (andmethods for this are outside the sope of this paper) then the indutive synthesisapproah an usefully sale. This is witnessed by reent progress in ILP, onproblems in domains, suh as fae reognition [54℄, where only (large) sets ofinput/output examples are available as humans have diÆulty writing a formal,omplete spei�ation [34℄.6.7 Tool SupportFor dedutive synthesis, we used Isabelle [59℄, a generi logial framework, forour implementation. For shema-guided synthesis, the higher-order proof plan-ning system �Clam an be used, upon reformulation of the program shemas asproof planning methods [35℄; this has the nie side-e�et that the proof obliga-tions of shema-guided synthesis an also be disharged using the same theoremproving mahinery. For indutive synthesis, a speialized Prolog implementationwas used.It is interesting to speulate on whether generi logial frameworks, like Is-abelle, ould be e�etively used for all three approahes. And ould the ap-proahes even be pro�tably ombined?Our disussion at the top of Setion 6.3 suggests that a generi logial frame-work an e�etively be used for shema-guided synthesis. Of ourse, there are

some potential drawbaks. First, a logial framework requires reasting any syn-thesis method as one based on theorem proving; for instane, shema-guidedsynthesis was not ast this way in Setion 4. This may require some ontortions;see [9℄ for an example of this. Seond, the logial framework will impose its owndisipline for presenting and struturing theories, and this may deviate fromthat desired by a partiular synthesis method; e.g., spei�ation frameworks[52℄ provide more struturing possibilities than those possible using the Isabellesystem. Finally, a hand-oded synthesis system will probably be more eÆient.Although it is easy to write a Prolog interpreter (to realize indutive synthesis)as a tati in a logial framework, this involves a layer of metainterpretation anda orresponding slow-down in exeution time. The prie may be too high whensubstantial searh is involved.As to the question whether the approahes ould be pro�tably ombined, theanswer is a lear `yes' for dedutive synthesis and shema-guided synthesis, andwe will develop this point in the next sub-setion. Combining indutive synthesiswith the other approahes raises the question of how to deal with the ensuingredundany in the overall spei�ation, as the inomplete part supposedly is alogial onsequene of the omplete one. To a human programmer, examplesattahed to a spei�ation that is intended to be omplete often failitate theunderstanding of the task. But an automated synthesizer probably does not needsuh help. Should there be a ontradition between the omplete spei�ationand the examples, then the overall spei�ation is almost ertainly wrong. Inthe absene of suh a ontradition, one knows nothing about the quality of theoverall spei�ation and thus has to forge ahead. The question then arises ofhow to exploit the redundany. A onvining proposal was made by Minton [57℄:to ope with the instane sensitivity of the heuristis used to eÆiently solveubiquitous, NP-hard, onstraint satisfation problems, industry-strength solversynthesizers should use training instanes (i.e., the input parts of examples) inaddition to the spei�ation of the problem, so that the most suitable heuristisan be empirially determined during synthesis. As long as the atual runs ofthe synthesised program are on instanes within the distribution of the traininginstanes, a good performane an be guaranteed.6.8 Impliit versus Expliit Use of ShemaA entral part of our omparison has been that the boundaries between dedutivesynthesis, shema-guided synthesis, and indutive synthesis are somewhat uidwith respet to the use of shemas. In partiular, from the appropriate view-point, the di�erene between dedutive synthesis and shema-guided synthesis isvanishingly small. We would like to lose the omparison by driving these pointshome.The derived rules in dedutive synthesis for reasoning about equivalenes arerule shemas, i.e., rules with metavariables ranging over prediates. These aremetavariables from the view of a metalogi, but they also an be viewed asuninterpreted relations in the objet logi and play the same role as the openrelation symbols in shema-guided synthesis. Viewed this way, if the bakground

theory of dedutive synthesis is formalized as a spei�ation framework, thenthe inferene rules are a variation of the program shemas in shema-guidedsynthesis.For example, the ind rule with its assumptions A1{A3 presented here in de-dutive synthesis is similar (although not equivalent) to theDC shema developedin shema-guided synthesis. In partiular:{ ind ommits to an indution parameter of type list, whereas DC has an opensort SX for the indution parameter;{ ind ommits to one-step, head-tail deomposition of the indution parame-ter, whereas DC has an open relation de for this;{ DC ommits to always one reursive all in the step ase, whereas ind isexible (there an be any number of reursive alls);{ the assumption A1 of ind plays the same role as the template DC in DC,but they di�er in ontent;{ the prediate variable B of ind plays the same role as the open relation solvein DC;{ the assumption A2 of ind plays the same role as the spei�ation Ssolve inDC;{ the prediate variable S of ind does not play the same role as the openrelation omp in DC; indeed, an instane of S may inlude reursive all(s),whereas reursion is ditated by the template DC and is thus not onsideredwhen instantiating omp;{ the assumption A3 of ind plays the same role as the spei�ation Somp inDC, but they di�er in ontent;{ there is no expliit equivalent of the onstraints C1, C2, and C3 and thespei�ations Smin and Sde of DC in ind.The di�erenes here are not due to the underlying synthesis mehanism, butare an artifat of the partiular impliit shema used (for reasons of simpliity)in this presentation of dedutive synthesis. More elaborate rules and shemas,neither ommitted to a partiular type nor a well-founded relation, have beendeveloped in dedutive synthesis, as presented in, e.g., [1, 3℄.A similar omparison an be made between the foldr and foldl operators inindutive synthesis, and the DC shema in shema-guided synthesis. The foldrand foldl operators an also be seen as impliit program shemas. More elaboraterules ould also be used to build Combilog programs in larger steps.Program shemas are thus used (impliitly or expliitly) in the di�erentsynthesis approahes. In the literature, program shemas are often redued totemplates, formalized as higher-order expressions, and applied using higher-order uni�ation. As shown in shema-guided synthesis, suh templates mustbe enhaned with semanti information, expressed for instane through axioms,onstraints, and spei�ations. Viewing suh shemas as derivation rules, andshema appliation as logial inferene, the distintion vanishes between theshema-guided and dedutive/onstrutive approahes. For instane, in [1℄ it isshown how shemas for transformational development an be formalized as de-rived rules and ombined with other kinds of veri�ation and synthesis. In [30,28℄, a DC-like shema is used in the ontext of indutive synthesis.

7 ConlusionIn this paper, we have analyzed and ompared representative methods of threeapproahes to program synthesis in omputational logi. Despite their di�er-enes, we established strong similarities. In partiular, program shemas are used(impliitly or expliitly) in eah of the methods and are entral in driving thesynthesis proess and exploiting synergies. We would therefore like to onludeby disussing some limitations of shemas and open issues.Despite their entral role, shemas have their limitations. Shemas are usu-ally expressed in some logial language, but any given language has syntatialrestritions that in turn restrit what an be expressed as a shema. For example,a �rst-order language �xes the arity of prediates and funtions, their assoiatedtypes, et. There is no way to apture ertain simple kinds of generalization orextra-logial annotations, for example to employ term or atom ellipses t1; : : : ; tnof variable length n. As an example of this limitation, onsider the ind rule ofSetion 3.2. There we used X to denote a sequene of zero or more variablesand hene the indution rule given annot be aptured by a single shema, butrather requires a family of shemas, one for eah n. Extensions here are possible;[64, 28, 70, 39, 20℄ provide notions of shema patterns that desribe suh familiesand an be speialized as needed before, or during, synthesis.Shemas are here de�ned as abstrations of lasses of programs. At the sametime, they formalize partiular design strategies, suh as divide-and-onquer orglobal searh; part of the assoiated strategy an also be spei�ed by assoiatedtatis, whih hoose indution parameters, �nd appropriate well-founded rela-tions, and so on. However, in their present form, shemas annot handle moresophistiated design strategies, namely strategies abstrating a lass of programsthat annot be obtained by instantiation with formulae. Typial examples areso-alled design patterns [38℄, whih aim at the desription of software designsolutions and arhitetures (typially desribed by UML diagrams and text).How to extend shemas to handle suh strategies is an open problem in programsynthesis.Overall, by examining the relationships and di�erenes between the hosensynthesis methods, we have sought to bring out synergies and possibilities forross-fertilization, as well as limitations. The primary synergies involve a om-mon mehanism: a notion of shemati rule and the use of uni�ation to ap-ply rules in a top-down way that inrementally onstrut a program, during aderivation that demonstrates its orretness. The primary di�erenes onernthe nature of the spei�ations, in partiular the information present; this alsomanifests itself in di�erent semantis and radially di�erent searh spaes forthe di�erent methods. As it is, the purely indutive approah to the synthesisof programs with reursion or iteration remains very hard, and it seems doubt-ful whether this approah will ever sale up to the synthesis of omplex, real-lifeprograms. Fortunately, fruitful ombinations of these synthesis approahes exist.In the end, we believe that progress in this �eld will be based on exploiting theidenti�ed synergies and possibilities for ross-fertilization, as well as supportingan enhaned, exible use of shemas. We hope, with this paper, to have made a

onstrutive analysis of the last deade of researh, thereby showing a possiblepath for the next deade.AknowledgementsWe would like to thank the anonymous referees for their feedbak and our o-investigators on researh related to this paper.Referenes1. P. Anderson and D. Basin. Program development shemata as derived rules. Jour-nal of Symboli Computation, 30(1):5{36, 2000.2. A. Ayari and D. Basin. Generi system support for dedutive program develop-ment. In T. Margaria and B. Ste�en, editors, Pro. of TACAS'96, volume 1055 ofLNCS, pages 313{328. Springer-Verlag, 1996.3. A. Ayari and D. Basin. A higher-order interpretation of dedutive tableau. Journalof Symboli Computation, 2002. To Appear.4. R. Balzer. A 15 year perspetive on automati programming. IEEE Transationson Software Engineering, 11(11):1257{1268, 1985.5. H.P. Barendregt. The Lambda Calulus: Its Syntax and Semantis, volume 103 ofStudies in Logi. North-Holland, seond, revised edition, 1984.6. D. Basin. IsaWhelk: Whelk interpreted in Isabelle. In P. Van Hentenryk, editor,Pro. of ICLP'94, page 741. The MIT Press, 1994.7. D. Basin. Logi frameworks for logi programs. In L. Fribourg and F. Turini,editors, Pro. of LOPSTR'94 and META'94, volume 883 of LNCS, pages 1{16.Springer-Verlag, 1994.8. D. Basin. Logial-framework-based program development. ACM Computing Sur-veys, 30(3es):1{4, 1998.9. D. Basin and S. Friedrih. Modeling a hardware synthesis methodology in Isabelle.Formal Methods in Systems Design, 15(2):99{122, September 1999.10. D. Basin and B. Krieg-Br�ukner. Formalization of the development proess. InE. Astesiano, H.-J. Kreowski, and B. Krieg-Br�ukner, editors, Algebrai Founda-tions of System Spei�ation, pages 521{562. Springer-Verlag, 1998.11. D. Basin and S. Matthews. Adding metatheoreti failities to �rst-order theories.Journal of Logi and Computation, 6(6):835{849, 1996.12. D. Basin and T. Walsh. Annotated rewriting in indutive theorem proving. Journalof Automated Reasoning, 16(1{2):147{180, 1996.13. A.W. Biermann. Automati programming. In S.C. Shapiro, editor, Enylopediaof Arti�ial Intelligene, pages 59{83. John Wiley, seond, extended edition, 1992.14. A.W. Biermann, G. Guiho, and Y. Kodrato�, editors. Automati Program Con-strution Tehniques. Mamillan, 1984.15. L. Blaine, L. Gilham, J. Liu, D.R. Smith, and S. Westfold. PlanWare: Domain-spei� synthesis of high-performane shedulers. In Pro. of ASE'98, pages 270{279. IEEE Computer Soiety Press, 1998.16. A. Bundy, A. Smaill, and G.A. Wiggins. The synthesis of logi programs from in-dutive proofs. In J.W. Lloyd, editor, Computational Logi, Esprit Basi ResearhSeries, pages 135{149. Springer-Verlag, 1990.

17. A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling: Aheuristi for guiding indutive proofs. Arti�ial Intelligene, 62(2):185{253, 1993.18. W. Buntine. Generalized subsumption and its appliation to indution and redun-dany. Arti�ial Intelligene, 36(2):375{399, 1988.19. C.-L. Chang and R.C.-T. Lee. Symboli Logi and Mehanial Theorem Proving.Aademi Press, 1973.20. E. Chasseur and Y. Deville. Logi program shemas, onstraints and semi-uni�ation. In N.E. Fuhs, editor, Pro. of LOPSTR'97, volume 1463 of LNCS,pages 69{89. Springer-Verlag, 1998.21. H. Christiansen. Impliit program synthesis by a reversible metainterpreter. InN.E. Fuhs, editor, Pro. of LOPSTR'97, volume 1463 of LNCS, pages 90{110.Springer-Verlag, 1998.22. E.M. Clarke and J.M. Wing. Formal methods: State of the art and future dire-tions. ACM Computing Surveys, 28(4):626{643, 1996.23. M.D. Coen. Interative program derivation. Tehnial Report 272, CambridgeUniversity Computer Laboratory, UK, 1992.24. T. Coquand and G. Huet. The alulus of onstrutions. Information and Com-putation, pages 95{120, 1988.25. Y. Deville. Logi Programming: Systemati Program Development. InternationalSeries in Logi Programming. Addison-Wesley, 1990.26. Y. Deville and K.-K. Lau. Logi program synthesis. Journal of Logi Programming,19{20:321{350, 1994.27. A. Felty and D. Miller. Speifying theorem provers in a higher-order logi pro-gramming language. In E.L. Lusk and R.A. Overbeek, editors, Pro. of CADE'88,volume 310 of LNCS, pages 61{80. Springer-Verlag, 1988.28. P. Flener. Logi Program Synthesis from Inomplete Information. Kluwer AademiPublishers, 1995.29. P. Flener. Ahievements and prospets of program synthesis. In A.C. Kakas andF. Sadri, editors, Computational Logi: Logi Programming and Beyond; Essays inHonour of Robert A. Kowalski, volume 2407 of Leture Notes in Arti�ial Intelli-gene, pages 310{346. Springer-Verlag, 2002.30. P. Flener and Y. Deville. Logi program synthesis from inomplete spei�ations.Journal of Symboli Computation, 15(5{6):775{805, 1993.31. P. Flener, K.-K. Lau, and M. Ornaghi. Corret-shema-guided synthesis of stead-fast programs. In Pro. of ASE'97, pages 153{160. IEEE Computer Soiety Press,1997.32. P. Flener, K.-K. Lau, and M. Ornaghi. On orret program shemas. In N.E. Fuhs,editor, Pro. of LOPSTR'97, volume 1463 of LNCS, pages 124{143. Springer-Verlag, 1998.33. P. Flener, K.-K. Lau, M. Ornaghi, and J.D.C. Rihardson. An abstrat formalisa-tion of orret shemas for program synthesis. Journal of Symboli Computation,30(1):93{127, 2000.34. P. Flener and D. Partridge. Indutive programming. Automated Software Engi-neering, 8(2):131{137, 2001.35. P. Flener and J.D.C. Rihardson. A uni�ed view of programming shemas andproof methods. In A. Bossi, editor, Pro. of LOPSTR'99, pages 75{82. Teh. rept.CS-99-16, Univ. of Venie, Italy, 1999. Also see Tehnial Report 2003-008 at theDepartment of Information Tehnology, Uppsala University, Sweden, 2003.36. P. Flener and S. Y�lmaz. Indutive synthesis of reursive logi programs: Ahieve-ments and prospets. Journal of Logi Programming, 41(2{3):141{195, 1999.

37. P. Flener, H. Zidoum, and B. Hnih. Shema-guided synthesis of CLP programs.In Pro. of ASE'98, pages 168{176. IEEE Computer Soiety Press, 1998.38. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements ofReusable Objet-Oriented Software. Addison-Wesley, 1995.39. T.S. Gegg-Harrison. Extensible logi program shemata. In J. Gallagher, editor,Pro. of LOPSTR'96, volume 1207 of LNCS, pages 256{274. Springer-Verlag, 1997.40. A.T. Goldberg. Knowledge-based programming: A survey of program design andonstrution tehniques. IEEE Transations on Software Engineering, 12(7):752{768, 1986.41. M.J. Gordon, R. Milner, and C.P. Wadsworth. Edinburgh LCF: A MehanizedLogi of Computation, volume 78 of Leture Notes in Computer Siene. Springer-Verlag, 1979.42. C. Green. Appliation of theorem proving to problem solving. In Pro. of IJCAI'69,pages 219{239. Morgan Kaufmann, 1969.43. A. Hamfelt and J. Fisher Nilsson. Indutive metalogi programming. In S. Wrobel,editor, Pro. of ILP'94, volume 237 of GMD-Studien, pages 85{96, 1994.44. A. Hamfelt and J. Fisher Nilsson. Delarative logi programming with primitivereursive relations on lists. In M.J. Maher, editor, Pro. of JICSLP'96, pages230{243. The MIT Press, 1996.45. A. Hamfelt and J. Fisher Nilsson. Towards a logi programming methodologybased on higher-order prediates. New Generation Computing, 15(4):421{448,1997.46. A. Hamfelt, J. Fisher Nilsson, and N. Oldager. Logi program synthesis as problemredution using ombining forms. Automated Software Engineering, 8(2):167{193,2001.47. P. Hill and J.W. Lloyd. The G�odel Programming Language. The MIT Press, 1994.48. J.R. Hindley and J.P. Seldin. Introdution to Combinators and the �-Calulus.Cambridge University Press, 1986.49. D.J. Howe. On omputational open-endedness in Martin-L�of's type theory. InPro. of LICS'91, pages 162{172. IEEE Computer Soiety Press, 1991.50. I. Kraan, D. Basin, and A. Bundy. Logi program synthesis via proof planning. InK.-K. Lau and T. Clement, editors, Pro. of LOPSTR'92, Workshops in ComputingSeries, pages 1{14. Springer-Verlag, 1993.51. I. Kraan, D. Basin, and A. Bundy. Middle-out reasoning for synthesis and indu-tion. Journal of Automated Reasoning, 16(1{2):113{145, 1996.52. K.-K. Lau and M. Ornaghi. On spei�ation frameworks and dedutive synthesisof logi programs. In L. Fribourg and F. Turini, editors, Pro. of LOPSTR'94 andMETA'94, volume 883 of LNCS, pages 104{121. Springer-Verlag, 1994.53. K.-K. Lau, M. Ornaghi, and S.-�A. T�arnlund. Steadfast logi programs. Journal ofLogi Programming, 38(3):259{294, 1999.54. C.L. Lisett and D.E Rumelhart. Faial reognition using a neural network. In Pro.of the 11th International Florida AI Researh Symposium FLAIRS-98, pages 328{332, 1998.55. M.J. Maher. Equivalenes of logi programs. In J. Minker, editor, Foundations ofDedutive Databases and Logi Programming. Morgan Kaufmann, 1987.56. P. Martin-L�of. Construtive mathematis and omputer programming. In Pro. ofthe Sixth International Congress for Logi, Methodology, and Philosophy of Siene,pages 153{175. North-Holland, 1982.57. S. Minton. Automatially on�guring onstraint satisfation programs: A asestudy. Constraints, 1(1{2):7{43, 1996.

58. S. Muggleton. Inverse entailment and Progol. New Generation Computing, 13(3{4):245{286, 1995.59. L.C. Paulson. Isabelle: A Generi Theorem Prover, volume 828 of LNCS. Springer-Verlag, 1994.60. A. Pettorossi and M. Proietti. Transformation of logi programs. In D.M. Gabbay,C.J. Hogger, and J.A. Robinson, editors, Handbook of Logi in Arti�ial Intelli-gene and Logi Programming. Clarendon Press, 1998.61. F. Pfenning. Logi programming in the LF logial framework. In Logial Frame-works, pages 149{181. Cambridge University Press, 1991.62. G.D. Plotkin. A note on indutive generalization. In B. Meltzer and D. Mihie,editors, Mahine Intelligene 5, pages 153{163. Edinburgh University Press, 1970.63. J.C. Reynolds. Transformational systems and the algebrai struture of atomiformulas. In B. Meltzer and D. Mihie, editors, Mahine Intelligene 5, pages135{151. Edinburgh University Press, 1970.64. D.R. Smith. The struture of divide and onquer algorithms. Tehnial Report52-83-002, Naval Postgraduate Shool, Monterey, California, USA, 1983.65. D.R. Smith. Top-down synthesis of divide-and-onquer algorithms. Arti�ial In-telligene, 27(1):43{96, 1985.66. D.R. Smith. KIDS: A semiautomati program development system. IEEE Trans-ations on Software Engineering, 16(9):1024{1043, 1990.67. D.R. Smith. Toward a lassi�ation approah to design. In M. Wirsing and M. Ni-vat, editors, Pro. of AMAST'96, volume 1101 of LNCS, pages 62{84. Springer-Verlag, 1996.68. Z. Somogyi, F. Henderson, and T. Conway. The exeution algorithm of Merury:An eÆient purely delarative logi programming language. Journal of Logi Pro-gramming, 29(1{3):17{64, 1996.69. A. van Lamsweerde. Formal spei�ation: A roadmap. In A. Finkelstein, editor,The Future of Software Engineering, pages 147{159. ACM Press, 2000.70. W.W. Vasonelos and N.E. Fuhs. An opportunisti approah for logi pro-gram analysis and optimisation using enhaned shema-based transformations. InM. Proietti, editor, Pro. of LOPSTR'95, volume 1048 of LNCS, pages 174{188.Springer-Verlag, 1996.71. G.A. Wiggins. Synthesis and transformation of logi programs in the Whelk proofdevelopment system. In K.R. Apt, editor, Pro. of JICSLP'92, pages 351{365. TheMIT Press, 1992.

