
Speci�cations Are Necessarily Informalor: Some More Myths of Formal Methods �Baudouin Le CharlierInstitut d'InformatiqueUniversity of Namur, B { 5000 Namur, BelgiumEmail: ble@info.fundp.ac.bePierre FlenerDepartment of Computer Engineering and Information ScienceBilkent University, 06533 Bilkent, Ankara, TurkeyEmail: pf@cs.bilkent.edu.trAbstractWe reconsider the concept of speci�cation in order to bring new insights into the debate offormal versus non-formal methods in computer science. In our view, the correctness of a usefulprogram corresponds to an objective fact, which must have a simple, precise, and understand-able formulation. As a consequence, a speci�cation can (and must) only make precise the linkexisting between the program (formality) and its purpose (informality). Moreover, programcorrectness can be argued only by means of non-formal reasonings, which should be as explicitas possible. This allows us to explain why speci�cations cannot be written in a strictly formallanguage. Our view of speci�cations does not imply a rejection of all ideas put forward inthe literature on formal methods. On the contrary, we agree with the proponents of formalmethods on most of their arguments, except on those following from the assumption thatspeci�cations could (or should) be formal. Finally, we examine why the role and nature ofspeci�cations are so often misunderstood.1 Introduction Gist speci�cations were nearly as hard to read as those in otherformal speci�cation languages. We soon realized that the problemwas not particular to Gist, but extant across the entire class of for-mal speci�cation languages. In their e�ort to be formal, all theselanguages have scrubbed out the mechanisms which make infor-mal languages understandable, such as summaries and overviews,alternative points of view, diagrams, and examples.| R. Balzer, in [1]Recently, there have been numerous papers advocating the use of formal methods in softwaredevelopment (e.g., [3, 4, 5, 13, 15, 16, 19, 25], plus some of the opinions in [32]). Similar opinionswere sporadically published before (e.g., [12, 18, 21, 29, 33], plus some of the opinions in [7]). Inthese papers, members of academe and industry describe formal methods as a key contribution toovercoming the chronic software crisis. Indeed, formal speci�cation languages force speci�ers tobe absolutely precise about their intentions, since (internal) inconsistency and incompleteness canbe mechanically detected. Moreover, formal speci�cations can be used during validation by thecustomer through animation or prototyping, and can guide the actual development of the software,or at least be used in the formal veri�cation of the developed software. All this is proposed atvarious degrees of formality, from fully formal to \formal light."�Contrary to previous papers of the \myths series" [4, 19], we do not discuss industry-level myths on theuselessness of formal methods, but we rather analyze some academic myths on their usefulness.1



However, fallacies in some assumptions underlying formal methods have been exposed, such asby pointing out essential di�erences between engineering and mathematics in general, and betweencomputing and mathematics in particular (see other opinions in [7, 32]), or by shedding somelight onto the real nature of requirements and speci�cations, so as to identify minimum standardsfor languages allowing their representation [23, 35]. Some authors have even been begging forcaution about formal methods, by mentioning fundamental theoretical and practical problems,e.g., DeMillo, Lipton, and Perlis [6], Fetzer [8], Karp (in [7]), Parnas ([30], and in [32]), andWinograd (in [7]).A similar debate is going on about the teaching of computer science [7]: should the curriculuminclude formal methods or not? To what extent?Simultaneously, there is a debate on whether formal speci�cation languages ought to be exe-cutable or not [14, 17, 20]. However, some researchers challenge the contention that speci�cationsought to be (fully) formal in the �rst place, e.g., Balzer et al. [1, 2], Karp (in [7]), and Parnas([30, 31], and in [32]).Our objective is to shed some further light onto these debates. We propose to go back tothe very reasons that make the running of a program useful, i.e., the fact that its results canbe straightforwardly interpreted as a statement about the real-world. Starting from this simpleobservation, we draw the conclusion that the speci�cation of a program only consists of (the state-ment of) the link relating the program (formality) and its purpose (informality). Since, as we willargue, the purpose of a program must be something directly understandable, speci�cations alsoare the essential tool for constructing, in practice, correct real-world programs through explicitbut non-formal reasonings. Additionally, our discussion of speci�cations allows us to explain whyformal speci�cations (i.e., speci�cations written in a formal speci�cation language) are not reallyspeci�cations, since this would be a contradiction in terms. Several researchers in formal methodshave recently reported insights related to ours, namely that informal \comments" are inevitableadjuncts to formal speci�cations [22, 23, 34, 35], or the fact that the knowledge of the environmentin which the program will be embedded is essential to the understanding and the writing of spec-i�cations [24]. But our reection goes, in a sense, beyond their conclusions, since we claim thatspeci�cations are, or ought to be, informal by their very role.Our view of speci�cations does not imply a rejection of all ideas put forward in the literatureon formal methods. On the contrary, we agree with the proponents of formal methods on mostof their arguments, except on the fact that speci�cations had better be written in a formal, i.e.,completely prede�ned and syntactically checkable, language. And, inevitably, we also disagree withother arguments that are a consequence of this assumption that formal speci�cation languages aredesirable.Formal methods are in general introduced as being the use of mathematics in the processof constructing computer software (including the elaboration of speci�cations). We agree thatmathematics are extremely useful in this context, but we disagree on reducing the concept ofmathematics for computer science to the restricted framework of any formal speci�cation language.Program veri�cation is advocated by most distinguished computer scientists as the only way toimprove the quality of software. We agree that program veri�cation or, better, systematic programconstruction is the only way to build satisfactory computer software, but we disagree on the factthat program proofs must be automated, since, as we try to demonstrate, this would imply avicious circle.Requirements engineering is viewed by most authors as the most crucial stage in the develop-ment of a large software system. We agree on this viewpoint and especially on the importance ofthe elicitation process, but we disagree with the opinion that writing formal speci�cations is thebest basis for the elicitation process: such a process is best achieved in a language as expressive aspossible, i.e., a natural language enhanced with any desired notational conventions.Finally, it is generally accepted that formal methods should be supported by correspondingsoftware tools. We argue that formal descriptions of any kind (programs, �nite-state automata,\declarative" descriptions, and the like) can be useful only because they can be the input ofan automated process whose output provides directly understandable information that could notbe realistically discovered by manual calculation. Nevertheless, the elaboration of any formaldescription (of whatever nature) requires a careful construction process that cannot be formalizedin any way since this would entail a regressum ad in�nitum. Note that we do not say that such2



tools are useless, but only that the crafting of their inputs already is a programming activity whosemastering de�nitely requires explicit informal reasoning.We conclude this introduction by summarizing the articulation of our argumentation along thethree main sections of the paper.Section 2. Our main thesis, i.e., the fact that explicit informal reasoning is the essential pivotof any well-conducted programming activity, is the subject of Section 2. Such reasonings are bestbased on clear speci�cations of all sub-problems that are identi�ed during the program constructionprocess (including the requirements engineering phase).Most of Section 2 (i.e., Sections 2.1 to 2.4) is devoted to demonstrating that such speci�cationsshould (and in fact can) be made extremely simple by clearly separating the statement of thepurpose of the program (which should boil down to citing a well-known concept) and a set ofrepresentation conventions (whose role in informal reasonings is subordinate yet necessary sincethe concepts of the programming language are totally alien to the problem that the programmust [help to] solve). Section 2.1 motivates our notion of speci�cation by showing through someexample problems that the results of a program are meaningless by themselves and should beinterpreted in some way to allow the resolution of the problem that the program helps to solve.We also show that this interpretation necessarily takes place at an intuitive (problem-related) level.Finally, if the program is really convenient to use, it is necessary that the interpretation of theresults be extremely simple. Section 2.2 draws an important conclusion from these observations,i.e., that a speci�cation should only 1) state the purpose of the program (in a straightforwardlyunderstandable way) and 2) state the representation conventions that one needs to know to use itproperly. Section 2.3 explains why such speci�cations are essential to articulate the programmingactivity, while Section 2.4 argues that it is actually possible to craft such speci�cations even for\real-world" problems.The intuitive knowledge necessary either to properly use a program or to construct it is generallynot available at the beginning. In order to write good speci�cations of the program and of all itsparts, one thus needs to build a \theory of the problem" that provides this necessary knowledge.Section 2.5 is devoted to this topic: we revisit a few classical problems in order to show that themain role of this theory is to identify useful properties of the actual, real-world problem, not of amore or less arbitrary and unreasoned rede�nition of it; since the objective is to understand theproblem as it is, we also dispute the idea that it is necessarily better to de�ne concepts as abstractdata types or in non-executable style.Section 2.6 summarizes our ideas by discussing the \general form" of speci�cations, whileSection 2.7 draws a parallel between requirements speci�cations and our notion of \theory of theproblem."Section 3 applies the ideas of Section 2 to a critique of the concept of formal speci�cation.Since the concepts of a formal speci�cation language are totally alien to those of any practical\real-world" problem, speci�cations in our sense cannot be written in such formal languages.Moreover, the correct construction of (what is usually called) formal speci�cations requires theuse of (informal) speci�cations in our sense. In fact, all our argumentation of Section 2 applies aswell to formal speci�cation languages and to programming languages. This thesis is developed inSection 3.1. It allows us to discuss seven frequently asked questions about formal speci�cations,in Section 3.2.Section 4. Finally, we try to explain why our view of speci�cations has not been largely ac-cepted by computer scientists. The belief that all practical1 mathematics can be embodied in asingle formal system is|we guess|a main reason of the importance given to formal speci�cations.Another important reason is the desire to �nd methods to measure the value of a program and theprogrammer's productivity. In our opinion, such a goal is largely unreasonable.1From a theoretical standpoint, this belief has been ruined by G�odel's incompleteness theorem, but formalistmathematicians argue that the limitations pointed out by G�odel have no impact on mathematicians' practice.3



This paper is based on the Ph.D. dissertation of the �rst author [26] (and includes translationsof tracts of this thesis). The �rst author has successfully used these ideas in several medium-sizedprojects [28]. The second author has used them for debunking some of the myths on deduction-based and induction-based approaches to the (semi-)automatic synthesis of (logic) programs [11].2 The Role and Nature of Speci�cationsIn this section, we more closely examine speci�cations of programs. Such speci�cations are theessential pivot of the whole programming activity: without good speci�cations, it is impossibleto understand what the correctness of a program means and hence to reason rigorously whileconstructing it or constructing another program using it. In the software engineering literature,the word \speci�cation" is used to designate many di�erent kinds of things (such as requirementsspeci�cations, for an entire software, and detailed-design speci�cations, for its modules), and yetthere is something in common to all of them. For the moment, we deliberately do not make precisethe kind of speci�cation that we consider, but we will come back to this issue in Section 2.7.2.1 Why and How can a Program be Useful?Despite all the doubts one might have about the purpose of computers for the resolution of realproblems such as the creation of a more just and harmonious society, if one writes and uses programsthen it is because one believes they are useful. This fact is so evident that one never wonders whyand how a program can be useful. However, it is the answer to that question that leads to anunderstanding of what programming is and why speci�cations play a fundamental role in it.If a program is useful, it is not because its execution results in displaying certain strings on thescreen or in changing the contents of the computer memory in a certain way. It is because thisexecution yields useful information or provides substantial help in the realization of a task. But,to take advantage of the program, other things than its text and the format of its data need to beknown. Even observing its behavior for some time does not su�ce. It must be possible to interpretthe produced results, but the knowledge necessary for this cannot be part of the program text norof its results. It is relative to concepts totally alien to the objects manipulated by the program,and to the conventions according to which these objects represent these concepts.Example: The Belgian National Lottery. Suppose all we know about a certain program ishow to launch it on a certain computer and that its execution only results in displaying the string:5; 11; 15; 22; 29; 46No information can be drawn from this; our lives are una�ected by the knowledge that the exe-cution of a certain program gives exactly this result. Now suppose, to the contrary, that we knowfrom an informed source that the execution results in displaying the next draw of the Belgiannational lottery. This changes everything: everybody now sees how such a program can be usedadvantageously : : :This single example shows why a program is \not useful" by itself, but only in conjunction withsome knowledge that is totally outside of it, of which neither its text nor its results can give theslightest clue. Some will now object that it is easy to change that program so that it exhibits itsown purpose, say by displaying the following string instead:5, 11, 15, 22, 29, 46 is the next draw of the Belgian national lottery.But this objection is awed for two reasons. First, it is not the simple observation of the result thatallows us to understand it. The act of \seeing" the string above cannot possibly give the knowledgenecessary to the understanding of the sentence it represents. This knowledge must be availablebefore or must be acquired by other means. Second, it is not enough to be able to interpret theresult of a program by an assertion in order to deduce from it whether it is true. To do so, thereshould be other good reasons to believe that an execution of a program can only produce outputsthat represent true assertions. 4



Finally, if a program can be useful, even though its manipulated objects have by themselves nomeaning, it is because it is possible to use these objects to represent useful information so as to beable, �rst, to write the program so that it computes the representations in a correct way (accordingto chosen conventions), and, second, to \easily �nish the job" by interpreting the results.Example: A payroll program. Let us now consider the payroll program of a company. It isuseful to the extent that it is easier to (correctly) solve the payroll problem with it than without it.In any case, it is not the running of the program that solves the problem. The problem is solvedif and only if the whole personnel gets their due salary at the deadline. This happens or does nothappen independently of the existence of a payroll program and its results. The responsibility ofthe solving of the payroll problem belongs to the corresponding accountant. The program can onlyhelp her as an intermediary and is only really useful if it noticeably reduces the amount of work theaccountant has to do to solve the problem. The accountant's task is, on the one hand, to preparethe inputs to the program, and on the other hand, to exploit its results so that all employees gettheir salary. So she must know how to use the program. This also means that she must be able tomake a reasoning by which, knowing the inputs, knowing the usage she made of the outputs, andknowing \su�ciently many things" about the program itself, she can conclude that everybody'sexact salary is paid at the deadline. Nowadays, the accountant may have almost nothing to doto complete her task, but some veri�cation (of whether the program performs its task) has to bedone nevertheless.Example: A search sub-program. Let us �nally consider a sub-program that locates a valuein an array. It is useful because one can use it as a primitive for writing a larger program, and thiswithout worrying about how the search is done. However, to use it properly, some supplementaryinformation must be available: how to call the sub-program and how the results are represented.One might think this example is fundamentally di�erent from the �rst one. In this case, some willsay, to understand the purpose of the program it su�ces to know the programming language andto have the text of the program. Indeed, the latter would be so simple that one will \immediatelysee" what the program does. The text would de�ne the purpose of the program. This opinion isincorrect: to understand the purpose of the program, the concept of membership in an array mustbe known in advance, but it is not a concept of the programming language because otherwise itwould not have been necessary to write a sub-program representing it. The opinion above stemsfrom the fact that one might recognize quite easily an array search in the program text providedone has already done some programming beforehand, hence one already knows what an arraysearch is, for what it can be used, and what form one generally gives to programs performing it.But this does not mean that this knowledge can be derived from the program text.This example has been chosen on purpose among the most simple and \classical" ones. It isclear, however, that in general one does not write programs solving known problems. Therefore, theknowledge of some programming concepts and methods is totally insu�cient for understanding notonly the purpose of a \large" program but also the one of most of its components. To understandthe use of a program computing sin(x) according to given representation conventions and a givenprecision, trigonometry and analysis notions must be known. Pretending that the program de�nesthe corresponding approximation is only a pleasant joke, because it is not the scrutiny of this textthat can give the slightest idea about trigonometry to somebody who does not already have it.Finally, it often happens that the concepts necessary to understanding the purpose of a (sub-)program cannot be found in our \preliminary knowledge" but must be invented ad hoc. It is well-known that the resolution of a simple problem may necessitate the introduction of completely newideas. Such invention is done via de�nitions. But there would be a vicious circle to try and explainthe purpose of a program by referring to concepts only known by their de�nitions: this wouldalmost amount to saying that this purpose can be understood by examining another program.To leave this vicious circle, it is necessary to give these newly de�ned concepts an intuitive andobjective \substance," by shaping them into a theory allowing their understanding without anyde�nitions. These ideas will be further developed in Section 2.5.Note that there is an important di�erence between our notion of speci�cation and the notionof requirements speci�cation, which consists of a description of the problem to be solved. In our5



view, this notion should essentially coincide with what we call the \theory of the problem." Again,we refer to Section 2.7 for more details on this issue.2.2 What is a Speci�cation?\De�nition." A program speci�cation is a statement whose role is to say (1) what purpose theprogram serves and (2) how the program can be correctly used.This \de�nition" is not a mathematical one, but the previous discussion will help us to un-derstand it in detail. The de�nition means that the speci�cation of a program is the necessarylink between what the program computes and the information that we can deduce from its results.This link is exactly what we need to use the program or to construct it.A speci�cation must be simple and directly understandable. The objective of a speci�-cation is to transmit information. So there is a parallel between the notions of speci�cation andprogram output. The output is meaningless by itself: it must be interpreted in order to extract theinformation it carries. This does not mean the particular form of the outputs is irrelevant as long asthe representation conventions are known. For instance, if the task of a teller machine in Belgiumis to display the balance of a bank account, then not all representations are equivalent: a decimalrepresentation of the amount expressed in Belgian Francs is acceptable, but a binary representationof the square root of the amount expressed in Turkish Lira is not. The good representation is theone that minimizes the work that remains to be done to transform the output into the desiredinformation. In the example above, the �rst representation is the only acceptable one because thecustomer immediately knows how much money can be withdrawn from the account, whereas along and tedious computation would be necessary from the second representation. Similarly, the\good" speci�cation of a program is the text that can be transformed as directly as possible into acorrect understanding of the purpose of the program and of the way of using it.Besides this analogy, there also is a fundamental di�erence between a speci�cation and theresults of a program. The principal role of the speci�cation precisely is to state how to interpretthe results, but there is no need for a text explaining how to interpret the speci�cation, as otherwiseone would need a speci�cation of the speci�cation, and a speci�cation of the speci�cation of thespeci�cation, ad in�nitum. Therefore, unless one completely denies the pertinence of this notion,one has to admit that a speci�cation is a text that must be comprehensible by itself. Hence itmust be written in the only language adapted to this end: natural language. We do not say thatspeci�cations ought to be written in pure natural language. It can be a technical language includingproblem-speci�c concepts and notations. But it cannot be a formal language, in the strict sense ofthe word (i.e., whose syntax and semantics are de�ned a priori). Indeed, statements in a formallanguage are incomprehensible by themselves (also see Section 3.1), because the problem conceptsare always totally alien to those of the formal language. Hence, formal statements always needto be accompanied by explicit representation conventions, i.e., informal speci�cations. To thecontrary, informal (natural language) statements are comprehensible by themselves because theydirectly refer to the problem concepts.A speci�cation need not be correct, but only correctly understandable. Since the roleof a speci�cation is to communicate the purpose of a program, the only correct means of judgingthe quality of a speci�cation is to ask whether it allows every potential reader to understandconveniently and in the most direct possible way the purpose of the program.The notion of \correctness" of a speci�cation is thus less important than the one of \beingcorrectly understandable." A speci�cation can perfectly play its role, even if it lacks style, or hasunorthodox phrases, if not even mistakes and contradictions.2 A reader may well have understoodit even though she estimates it to be \incorrect" or poorly written, because it does not follow2In our view, whenever a program addresses a meaningful problem, there is a model in the real-world for any\correct" theory of the problem. If we fail to build this correct theory, this does not mean in any way that the modeldoes not exist, since it is preexisting (unless we deny that the world exists). That is why we dispute the importanceof self-contradiction in a theory. A theory can be self-contradictory because of a single fortuitous mistake and yetone can be able to \see" the intended model underlying it. Self-contradiction can be problematic for technicalreasons in formal theories, but of course we also dispute the idea that the theory of the problem must be a formalone. 6



her own stylistic criteria or contains some obvious mistakes. But how is it possible to correctlyunderstand a speci�cation while judging it incorrect? The answer lies in the observation that therole of a speci�cation is not to de�ne everything that ought to be known to understand the purposeof the program, but only to state this purpose. Where is the di�erence? According to the �rstviewpoint, one would suppose that the knowledge necessary to use the program is entirely insidethe speci�cation (i.e., would be derivable from the speci�cation). It would, then, be evident thatan incorrect speci�cation cannot be satisfactorily understood by itself because it would be the onlyreference. According to the second viewpoint, one supposes that the reader already knows almosteverything on what makes the program interesting, the role of the speci�cation being somehow tosay \this is the program that you needed." In this case, the presence of some errors or quirks inthe speci�cation would not really be an insurmountable obstacle to its understanding, because theenormous quantity of things already known allows the reader to �ll the gaps.All this does not imply that speci�cations can be written carelessly, but only that the qualityof speci�cations cannot be judged according to hypothetical correctness criteria. The key issue isthat they communicate \the message" in the most direct way. This entire argument holds of coursefor all consumers of speci�cations, be they end-users, or programmers, or whoever. Correctness isrelative to an external truth criterion, and the objective is to make a software correct with respectto a fact, but not with respect to a statement in a formal theory.2.3 Why are Adequate Speci�cations Necessary?The speci�cation of a program is an indispensable aid for remembering details. After close con-sideration, it is even only such an aid, as it only has to state the purpose of the program but notall the knowledge necessary to understand its meaning. The customer must thus already know,before reading the speci�cation of a program for the �rst time, everything that makes the programuseful to her. She will then know that a program with this purpose exists and how it can be used.Later, she can occasionally re-read the speci�cation, not because she has forgotten its purpose, butbecause she does not recall with certainty some representation details that are too arbitrary to bepossible (or useful) to remember.Speci�cations are not only absolutely necessary for documentation of already existing programs,but also before and during the construction of programs, for three reasons.First, one can only construct small programs at a time. The di�culty observed in the rigorousconstruction (�a la Dijkstra, Gries, etc.) of small programs is inherent to programming (and there isno way such techniques can ever be scaled up to constructing \real" programs), so small programsexactly represent the limit that should not be crossed if the programming activity is ever to bemastered. The only realistic approach is thus to build \large" programs from \small" ones that areconstructed independently of each other, and recursively so on (no matter whether one proceedstop-down or bottom-up). This is possible only because the speci�cations attached to programsallow us to consider them as new primitives of the programming language, no matter how largethese programs are.3 All speci�cations should be of the same level of complexity, namely of theutmost simplicity.Second, intermediate speci�cations, i.e., speci�cations of sub-problems perceived as potentiallyuseful during the design of the system's architecture, are necessary as a basis for the discussionbetween the computer scientist and the customer, because they are, in general, of too di�erentbackgrounds for coming up with the good speci�cation the �rst time. Starting from the spec-i�cation, the computer scientist must be able to make a reasoning to convince herself that shecan construct the required program, whereas the customer must be able to make a reasoning tomake sure the program will provide the expected service. The speci�cation thus takes the role ofa contract.Third, intermediate speci�cations are necessary during the design of an architecture for theprogram. Strictly linear top-down design is di�cult, and the implementation of certain sub-problems may reveal inadequacies in earlier choices, forcing backtracking in the design, if not thedeletion of already written code. Since programming is costly, there is a risk of trying to preserve atall cost what has already been done, even if this means going into blind alleys. A more reasonable3Note that we do not assume a pure hierarchical organization of programs. For concurrentprograms, for instance,a speci�cation could (essentially) consist of a global invariant and some fairness properties.7



approach is thus to write all speci�cations of all sub-programs before writing the �rst line of code.This requires mental persuasion that the program can be written using all and only the speci�edsub-problems. Designing such an architecture may still require backtracking, but it is less tediousto rewrite speci�cations than programs, and easier to persuade oneself that a program can bewritten than actually writing it.2.4 Can there be Adequate Speci�cations (for Real-World Problems)?We think that adequate speci�cations, according to our criteria, can be written, even for real-worldproblems. We know that most examples in this paper are small-scale|and space reasons prevent usfrom covering real-world problems|but our considerations do scale up, by their very nature. The�rst author has successfully applied them to rather complex medium-scale problems, as reportedin [28], and he believes that he was successful precisely because of this mind-set.A speci�cation is not meant for everybody. Only a program with a precise purpose shouldhave a speci�cation. Saying that a program has a precise purpose amounts to saying that somebodyis able to exactly understand this purpose. So the speci�cation of a \useful" program will alwaysexist because somebody must be able to say what its purpose is. But this does not mean thateverybody can understand this speci�cation. It is only comprehensible by somebody having the\same background" as its author, at least as far as the application domain is concerned. Theexistence of satisfactory speci�cations is thus only possible because they are only meant to be readand understood by people already knowing almost everything of the application domain in whichthe program has its purpose. This does not imply that only the speci�er will be able to understandit or that this privilege is reserved for a select few. It simply means that every user of the programmust �rst make a careful and su�ciently long study of its application domain.Remark. In practice, it is unfortunately rare that a person understanding the purpose of aprogram can express it simply. Programmers, for instance, tend to give incomprehensible technicalgibberish about the implementation technique and run-time behavior when prompted to explainwhat their programs do, instead of talking about the essentials. The absence of speci�cationsfor many actually used programs stems from an inability of many people to express themselvesclearly. (As already said by others before:) Instead of including speci�cation rules or formalismsin computer science curricula, it would be much better to teach students how to correctly use theirnative language (or natural language, in general).Another reason for the absence of convenient speci�cations is that programs are often con-structed by successive approximations, by trial and error, so that there cannot possibly be aconvenient speci�cation, because nobody is able to understand how to use it. But it is preciselybecause the programmer was unable, or thought it useless, to write a speci�cation that she, notknowing what to do and hoping to �nd it out progressively, constructed a mysterious program towhich no speci�cation can be attached.A speci�cation should have an objective meaning. Some will object to our notion ofspeci�cation by saying that two di�erent people never understand things in exactly the same way,so that we can never be sure whether a speci�cation is correctly understood by all concernedpeople. However, it is not necessary that the programmer and all users of a program understandits speci�cation in the same way. Note that such a condition is insu�cient anyway, because itdoes not matter whether all people have understood exactly the same thing, but rather whethereverybody has understood what is needed to do their job. And this new condition can be ful�lledbecause the speci�cation of a program must express a property that has an objective meaning. Itis true that nobody understands this meaning completely and in the same way as their neighbor,but everybody should understand that the question of correctness of the program with respect toits speci�cation corresponds to a fact, and not to personal interpretation. The programmer mustbe able to construct the program by making a reasoning to persuade herself that it has the desiredproperty; whereas the users must be able to derive other facts from it, such as the possibility ofdoing their job using the program. 8



For instance, consider a program computing the sine function under certain precise conventions.The programmer need not completely know the \essence" of this function, but only su�cientproperties for constructing a correct program. The users need not understand the function in thesame way as the programmer, but only other properties allowing them to solve their problems. Soit is because of its objective nature that the speci�cation of this program will be satisfactory: itexpresses a fact, the same for everybody, even though they may understand it di�erently. Hencethe speci�cation should act as the \ultimate" reference, i.e., the last thing to be doubted aboutand hence the central pivot of any reasoning about the program.A not completely unfounded objection to the previous example is that it is not realistic becausethe sine concept has been studied for such a long time that it would be foolish to deny its objectivenature, but that not all speci�cations can be expressed in terms of such well-established concepts.Indeed, this objection pinpoints one of the fundamental di�culties of programming compared to,say, mathematics: one never has the time to polish all the needed concepts for a speci�cation,because the program is needed urgently.Nevertheless, the objectivity condition for speci�cations seems absolutely necessary for thecorrect communication of the purpose of programs, and, hence, for mastering the programmingactivity. According to us, without this condition, one would have to admit that the usage of pro-grams for achieving a certain activity amounts to rede�ning that activity as being the exploitationof the results of the program without giving a satisfactory link between this rede�nition and theinitial concrete problem. Moreover, to us, this condition seems largely achievable, if one admitsthat the objectivity of the concepts necessary to the writing of good speci�cations can be foundedon the creation of a \theory" of these concepts, with more or less detail according to the impera-tives of the problem, a theory that can be studied by all concerned people until each of them hasconvinced themselves personally that it really corresponds to the intended object.This perception of course has the \disadvantage" of founding the mastery of programming andits usage on the competence and responsibility of people, whereas some would prefer to found themon rules that are easy to apply and verify.2.5 Role and Content of the \Theory of the Problem"The intuitive knowledge necessary either to properly use a program or to construct it is generallynot available at the beginning. In order to write good speci�cations of the program and of all itsparts, one thus needs to build a \theory of the problem" that provides this necessary knowledge.In this section, we revisit a few classical problems in order to show that the main role of this theoryis to identify useful properties of the actual, real-world problem, not of a more or less arbitraryand unreasoned rede�nition of it; since the objective is to understand the problem as it is, wealso dispute the idea that it is necessarily better to de�ne concepts in an abstract data type or innon-executable style.Since a program is normally constructed in order to help solve a practical preexisting problem,the concepts and objects of such a theory can be classi�ed into two main categories: those whoseidentity was determined before and independently of the program, and those that are de�ned (or,better, identi�ed) especially for the construction of the program. They should all have the same�nal status, namely to be known not by their de�nitions but by a su�ciently rich set of propertieslinking them to numerous other concepts. They thus have their own individuality, equivalent toan objective status. The theoretical development necessary for achieving this status is di�erentand more or less long and di�cult according to the category of concept. We elaborate on theseissues in Sections 2.5.1 and 2.5.2. In Sections 2.5.3 and 2.5.4, we discuss some aspects of de�nitionconstruction, stressing that there is no purely abstract way to de�ne a concept and that the non-executability of de�nitions is not necessarily a desirable objective.2.5.1 On the Study of \Long-Established" ConceptsDe�ning once again preexisting concepts is common practice in formal methods of program design.It is however unwise to start the study of a predetermined concept by de�ning it. Indeed, what isnecessary is to study the concept as it is, but not another concept given the same name througha de�nition. Even if a \predetermined" concept can be considered completely determined by a9



certain property (i.e., all other properties useful to the problem at hand can be derived from thatproperty), one cannot consider it a de�nition of the concept. On the contrary, one would have toensure that the concept really has that property. The objective of the theory to be built is to ensurethat things are su�ciently well-understood by all involved people. If one started rede�ning all thefundamental concepts of the problem, nothing would be known about the relationship between the(preexisting) problem and what has been done. In any case, all involved people have a preliminaryunderstanding of the problem. The role of the theory is to make things precise, if not to correctthem, but not to reconstruct everything from nothing. It is thus more important to stress thedi�cult or delicate issues than to try and found everything already known.The case of mathematical concepts. Suppose the concept of \greatest common divisor" isneeded in the resolution of a programming problem. It is not the following rede�nition of thisconcept that makes its role in the problem more precise:De�nition 2.1 The greatest common divisor of two natural numbers m and n is a naturalnumber p, denoted by gcd(m;n), such that p divides m and n, and, for every natural numberi, if i divides m and n, then i divides p.Indeed, if one does not already know the concept of greatest common divisor (gcd) and its applica-tions, this de�nition will not, by itself, help one understand its purpose. But let us consider a personwho already has a good idea about it. The only information she can draw from this de�nition isthat it probably is the de�nition of the notion of greatest common divisor that she already knows.Therefore, the only immediately useful part of this de�nition is the only word that is theoreticallyarbitrary ! Indeed, one could de�ne the same concept by naming it \foo" or \Nabuchodonosor."Two things are possible from here. Either this person is satis�ed with her conclusion, and thenthe de�nition has not brought any new information, or she wants to verify this �rst impression byexamining whether the de�nition is compatible with her existing knowledge of the concept of gcd.In this case, she might not be able to do so immediately, because her de�nition rather says thatgcd(m;n) is the greatest of the divisors of m and n, according to the usual ordering relation. Toshow that the two concepts coincide, she actually has to make a long reasoning, which should bythe way conclude negatively, because they do not coincide when m = n = 0 (where the greatestcommon divisor is usually considered unde�ned, but the de�nition above gives gcd(0; 0) = 0).Anyway, at the end of this superb intellectual e�ort, she will still not know whether this de�nitionwas introduced for the fun of scrambling the message or for some better reason. To conclude, itwould have been better to admit that the concept of gcd is predetermined beyond all de�nitionsand to show why the very close concept of greatest common divisor according to the \divides"ordering relation was substituted for it. For instance, it could have been because one wanted tobe able to apply, in all cases, the formula gcd(m; gcd(n; p)) = gcd(gcd(m;n); p). (For m = n = 0and p 6= 0, only the left-hand side of this equality is de�ned according to the usual de�nition.)The case of \non-mathematical" concepts. The preceding precept applies unchanged to anykind of problem. It is not because the program to be written has its purpose in, say, an accountingsetting, that one has to start by de�ning all involved concepts in order to understand its purpose.For instance, in the payroll program, the \theory" of the problem should not start with de�-nitions of employees, salaries, companies, etc. What is necessary is to arrive at a su�cient under-standing of these concepts (which are perfectly determined, even if they might be poorly understoodat the beginning) in order to solve the problem. It would not be acceptable either to de�ne thee�ect of the program by the rules of computing the salaries in terms of the employee database.One should study the legislation, the structure of the company, etc., in su�cient detail so as tobe able to deduce (i.e., to justify, by a rigorous reasoning) an adequate structure for said databaseas well as valid computation rules. The user of the program (i.e., the accountant) need not havestudied all the details of the \theory" that the programmers have had to elaborate, but she shouldunderstand it su�ciently for correctly using the program. It would be hard to say where the limitis: it is her responsibility to decide herself how far to go in order to reach a su�cient understanding.10



2.5.2 On the Study of Concepts \Tailored for the Problem"The writing and understanding of \good" speci�cations of programs nearly always requires usingconcepts especially tailored for the problem, discovered or created especially for constructing theprogram. Such concepts can only be introduced by de�nitions, but those de�nitions must bevalidated explicitly against our perception of the problem in order to ensure that the conceptsadequately relate to the \real" problem.The case of simple concepts that are close to known ones. One often has to deal withconcepts that can be considered already implicitly known and understood by all people who haveto use them, but whose relevancy is insu�cient for having been given a name that is universallyadmitted. It is then necessary to have recourse to a de�nition for naming the concept and makingeverybody agree on some important details whose identi�cation is necessary for correctly using it.When reading such de�nitions, it should be possible to \immediately see what they are about."The concept-speci�c theory then reduces to only a few things, because the concept \naturally takesits place" among already known ones.Let us illustrate this with a speci�cation of the classical plateau problem.De�nition 2.2 Let S = (s1; s2; : : : ; sn) be a �nite non-empty sequence of integers. A plateauof S is an interval4 hi : ji such that:1. 1 � i � j � n2. si = si+1 = : : : = sj3. hi : ji is not strictly included in any other interval with properties (1) and (2).Problem: Given a non-empty initialized array a[1::n] of integers, construct a program thatassigns to integer variable np the number of plateaus of the sequence (a[1]; a[2]; : : : ; a[n]),and to integer variable maxlp the maximum of their lengths (the length of a plateau is thenumber of its elements).The de�nition in the speci�cation above is su�cient for a satisfactory problem statement, fortwo reasons. First, the \technical" concept of plateau is not brand-new, but rather a particularand precise occurrence of a more general concept that we already know (the choice of the name\plateau" is thus not arbitrary). Second, this de�nition is su�ciently simple for linking thisparticular concept to the general one, that is for verifying whether the chosen terminology reallycorresponds to something intuitive. Moreover, the de�nition is necessary, because the intuitivenotion of plateau is too vague for being able to rule out, in its absence, a misunderstanding of thenotions of number and length of the plateaus of a sequence.On the usefulness of examples. Speci�cations may be accompanied by carefully chosen ex-amples, so as to facilitate their understanding. Since the role of a de�nition, as considered here,is not to be formally irreproachable (i.e., non-contradictory, for instance), but to help understandsomething, there is no reason to reject other means of communication that might have other qual-ities. Some well-chosen examples often provide an intuitive understanding that no de�nition couldachieve. The latter then only makes more precise the exact contours of the concept. Other exam-ples could help eliminate certain risks of ambiguity in the de�nition by illustrating delicate issuesthat are likely to be misunderstood for whatever reason.As far as the risk of contradiction between de�nition and examples is concerned, note that thiskind of contradiction would only be a real disaster if it were the non-contradiction of a de�nitionthat would lend value to a concept. There is a confusion here between truth and non-contradiction.What is important is to make known what one wants to say, not to escape contradiction. Onecould even argue that the discovery of a contradiction between an example and a de�nition is thebest thing that can happen in some cases, because it carries an undeniable message: something iswrong somewhere!4We assume the concept of interval is already known: hi : ji = fx j x is an integer and i � x � jg, where i, j areintegers. 11



Personal experience5 shows that a \poorly de�ned" concept can be perfectly understood thanksto examples, especially when the concept can be considered already implicitly known. De�nitionand examples are thus complementary means of designating the concept. And one may wellconclude that there is only one concept corresponding to both the de�nition and the examples,even if one has spotted an apparent contradiction between them. What one already knows helpsunderstand the error. Finally, note that the error risk is much higher in a de�nition than in anexample, because it has to cover all cases. Examples are more reliable, because more \local," andare thus an ideal means of getting things straight.Let us illustrate this on the plateau problem. Assume condition (3) was omitted from thede�nition above, but that the following example was added:Example 2.1 If S = (1; 1; 3; 3; 3;2; 3; 5;5), then there are 5 plateaus of S, namely h1 : 2i,h3 : 5i, h6 : 6i, h7 : 7i, and h8 : 9i. Also, its longest plateau is h3 : 5i, its length being 3.Starting from the de�nition and the example, one easily understands that plateaus are the longestnon-empty intervals hi : ji included in h1 : ni such that (2) holds. One could even have understoodthis without noticing that the de�nition is incomplete.On the usefulness of remarks, or, better, of a \reasoned" presentation of de�nitions.All this shows that it is di�cult to correctly de�ne a concept in order to explain it to somebodyelse. In a sense, writing the de�nition is already a programming act. A de�nition is thus alwaysthe product of a more or less explicit reasoning process. So if one wants to facilitate the correctunderstanding of a de�nition, one could point out delicate issues in remarks, or, better, one couldmake explicit this reasoning process.For the plateau problem, one might want to point out that the notion of plateau only makessense with respect to a sequence S, that a plateau of S is always a non-empty interval, and thatthe set of plateaus of S partitions the interval h1 : ni, where n is the number of elements of S.To do even better, one might show how the given de�nition was reached from a \reasonable"intuition of the concept of plateau of a sequence. This could go as follows.Let S = (s1; s2; : : : ; sn) be a �nite non-empty sequence of integers. Let us draw a coordinatesystem, and mark the points at coordinates (i; si), for 1 � i � n. Let us now draw, from eachof these points, a horizontal segment of unit length. Some of these segments can be merged,giving rise to disjoint segments of integer length, called plateaus of the sequence:
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1 2 3 4 5 6 7 8 9 10 11The plateaus of the sequence (1; 1; 3; 3; 3;2;3;5; 5).The objective is to write a program for computing the number of plateaus of a sequence andthe maximum of their lengths. It is obvious that to each plateau corresponds an intervalverifying conditions (1) to (3) [included here as above], and vice-versa. Moreover, the length5A few examples: as a student, the �rst author had to use the PL/I language and found it completely impossibleto understand the manuals except from the examples. As teachers in program proving, both authors always giveexamples to support program speci�cations. In a few cases, we eventually discovered errors in our speci�cations,although the students had understood them perfectly well.12



of a plateau is the number of elements of such an interval. This leads us to the followingrede�nition of the plateau concept, for our problem: [here follows the de�nition above].This presentation clearly allows one not only to understand the de�nition more quickly, but alsoto \verify" it according to one's own criteria. We even claim that such an intuitive presentation isself-su�cient and even preferable to the de�nition, as the latter is only a property of plateaus thatone might discover by oneself.A �nal remark: in practice, it is not always useful, nor possible (for \�nancial" reasons), todiscuss all introduced \simple" concepts in this much detail. An acceptable compromise betweenthe quality of the presentation and the time invested to its tuning must be found. Only experienceshows where to situate this compromise. The most important thing is to understand that theobjective is always the same: to capture the posed problem as well as possible, as it is.The case of more complicated or \new" concepts. Sometimes, the solving of a program-ming problem requires the invention of relatively original concepts that one cannot pretend havingknown before tackling the problem. They can thus not be imagined from nothing, but only con-structed in small steps after comparing the problem to what is already known. The role of ade�nition is then to anchor some ideas for further investigation: one must be able to deduce manyother properties from it, establishing thus the usefulness of the concept for solving the problem athand. The concept thus o�ers economies of thought and reveals ways of solving the problem. Thechoice of a de�nition is guided by an intuition, i.e., the impression of having perceived an analogywith something already known. This de�nition is, in general, not the good one, because it maylater turn out that not all the \desirable" properties can be derived from it, so that it does notplay an e�cient role in the problem solving process. The de�nition then has to be modi�ed, in thelight of these �rst conclusions, and so on, until the \good" concept has been obtained, namely theone that holds the key to the solution, or part of it. At the end of this process, whose essentialsteps must be reconstituted by all \clients" of the concept, the latter is known beyond the �nallyadopted de�nition. It is known by numerous properties linking it to other concepts. It has become\intuitive and well-known" and its de�nition is only one of its properties, among many others.Remark. The distinction made here between \simple, implicitly known concepts" and \com-plex, new concepts" is of course too crude. They are only the extremes between which intermediatescan be found, corresponding to a gradation of the e�ort to be done in order to construct a theory.2.5.3 Only Representations of Concepts Can Be De�ned, not the Concepts Them-selvesTo justify even more that the de�nitions introduced during the analysis of a problem are notthe ultimate reference point for judging the value of a \solution," but only (imperfect) meansof communication or \transient" starting points that can be (or actually should be) forgottenonce the concept is well-understood, it is interesting to remark that a de�nition never reallyde�nes a concept, but only a certain representation thereof. This remark ruins, by itself, the\absolute" character of de�nitions by showing why they can be \wrong": whereas a conceptcannot be something else than itself, its representations can be incorrect, i.e., can fail to respectthe (implicit or explicit) rules according to which they are supposed to represent the concept.In our opinion, a concept worthy of this name must have a real and original identity thatmakes it indivisible, distinct from every more or less complex combination of \simpler" concepts.A concept is an atom of thought. Therefore, an interesting concept will always escape any particularde�nition, because one can de�ne, from given concepts, only combinations thereof, i.e., nothingreally new.All this is particularly clear for \old," universally known concepts: for instance, whatever e�ortis undertaken to de�ne natural numbers must be arbitrary. A natural number is what it is andcannot be reduced to anything else. Any de�nition thereof rests on representation conventions thathad better be �xed very explicitly if one wants to wind up with a satisfactory de�nition.But all this is still true for \new," problem-tailored concepts. For instance, the concept ofplateau of a sequence introduced above by a de�nition corresponds, in fact, to an intuitive concept13



that is very precise, but impossible to communicate as it is. This is why that de�nition of aplateau only de�nes a representation of this concept, namely as an interval of integers. Otherrepresentation choices would have led to di�erent de�nitions. For example, one could have decidedto represent the intuitive notion of plateau by couples of integers instead, as follows:De�nition 2.3 Let S = (s1; s2; : : : ; sn) be a �nite non-empty sequence of integers. A plateauof S is a couple (i; j) such that:1. 1 � i � j � n2. si = si+1 = : : : = sj3. i = 1 or (i > 1 and si�1 6= si)4. j = n or (j < n and sj 6= sj+1)This de�nition seems (to us) less good than the previous one, because it handles di�erently theplateaus at the extremities of the sequence. This is due to the fact that one cannot talk about theinclusion of a couple in another one. The reasoning to be made for constructing and understandingthis second de�nition is thus slightly more tedious and error-prone. The plateau concept is thusmore easily assimilated from the �rst de�nition. In any case, in both approaches one has onlyde�ned a representation of the intuitive concept of plateau, which is the only really importantthing to understand. One should not believe however that an axiomatic de�nition (e.g., an abstractdatatype de�nition) would be immune from this. Consider, for example, the following de�nition:De�nition 2.4 Let S = (s1; s2; : : : ; sn) be a �nite non-empty sequence of integers. A plateaustructure on S is de�ned by choosing a set P and two functions lb, rb : P ! IN such that thefollowing conditions hold:1. 8p 2 P : 1 � lb(p) � rb(p) � n2. 8p 2 P; 8i : lb(p) � i � rb(p) : si = slb(p)3. 8i; j : (1 � i � j � n and si = si+1 = : : : = sj); 9!p 2 P : lb(p) � i and j � rb(p)But this de�nition certainly says no more than the previous two about the essentials of the plateauconcept. Refusing to say what plateaus are \made of" (be it intervals, couples, or beer bottles) isnot su�cient for guaranteeing that the reader immediately understands the concept.A concept is abstract not because it was introduced in a certain way, but because it hasacquired an importance and identity in our thoughts. Therefore, the important issue is not to tryand discover the good way of de�ning things, but to choose the adequate concepts, namely thosethat help us because we understand them the way they are.2.5.4 On the Usage of Executable De�nitionsNevertheless, not all ways of de�ning a concept are equally good. The \style" of a good de�nitionshould be adapted to the problem at hand in order to allow one both to validate the de�nition andto derive useful properties of the concept. Rather than giving rules for writing de�nitions, we willcriticize a commonly given one, i.e., that a good de�nition ought to be written in a non-executablelanguage [20]. To illustrate our point, we choose the very text formatting problem that was selectedto show the virtues of declarative (and formal) speci�cations, and that was already discussed somuch in the literature (see [29] for an overview).Most people involved with this problem sought to specify it well, because, according to them,the correctness of a program can only be judged against its speci�cation. According to us, thecorrectness of a program corresponds above all to an objective fact, independently of the way theproblem is posed. Indeed, posing a problem means �rst of all admitting that there is a problem,and, next, trying to understand it in order to be, �nally, able to solve it.Posing the text formatting problem requires �rst of all the de�nition of the input and outputtexts. This can only be done here after making some hypotheses on the \environment" of the user.If we had to solve this problem for a real environment rather than for the sake of this article, thenwe could not make any such hypotheses but should learn about the environment of the user so as14



to replace these hypotheses by facts, which would be substantially more complicated than thoseused here. We thus suppose the user \sees" texts as sequences of lines (corresponding, in general,to lines on the screen or on paper), each line being a sequence of characters. This leads to thefollowing de�nition of the input text:De�nition 2.5 A word is a �nite, non-empty sequence of non-blank characters.6 A lineis a �nite, possibly empty sequence of characters and blanks. Every line l can thus beuniquely decomposed as follows: b0 w1 b1 w2 b2 : : : wn bn, where n � 0, the wi are words,and the bi are sequences of blanks that are non-empty except possibly for b0 and bn. Thesequence of words (w1; w2; : : : ; wn) is the sequence of words represented by l, which we denoteby l repr (w1; w2; : : : ; wn). A text is a �nite, possibly empty sequence of lines. Let t =(l1; l2; : : : ; lp) be the input text. The sequence of words represented by t is the sequence ofwords S such that S = S1 �S2 � : : :�Sp, where the Si are the sequences of words representedby the li (and � denotes sequence concatenation). We denote this by t repr S. Two textsare equivalent if they represent the same sequence of words.Now we must de�ne the output text corresponding to a given input text. Therefore, we �rst have tocapture this concept from an intuitive point of view. So, to what does it correspond? The answeris: to the result of applying an algorithm! The best way to understand this concept is to imaginea human typist having a listing of the input text and a terminal where every line has a lengthof maxpos characters. The job of the typist is to type the input text into the terminal by �llingevery line as much as possible, without trespassing the limit of the screen nor breaking words.This clearly amounts to the application of an algorithm whose execution uniquely determines theoutput text. Therefore, if one absolutely wants to \mathematically" de�ne the output text interms of the input text (i.e., if the previous explanations are deemed insu�cient), then the bestone can do is to give a de�nition paraphrasing as closely as possible the typist's algorithm, becausesuch a de�nition has the best chances of being correct and comprehensible. We thus propose thefollowing de�nition:De�nition 2.6 Let S = (w1; w2; : : : ; wn) be a �nite, possibly empty sequence of words thatare each at most maxpos characters long. The compact representation of S, denoted bycompact(S), is the text de�ned as follows:1. if S = (), then compact(S) = ();2. else (i.e., if n � 1), let i be the largest integer such that 1 � i � n and the linew1 t w2 : : : t wi has no more than maxpos characters, and let l = w1 t w2 : : : t wiand S0 = (wi+1; : : : ; wn), so that compact(S) = (l) � compact(S0).Given an input text t and the sequence of words S represented by t, the output text corre-sponding to t is de�ned if and only if no word in S is longer than maxpos characters. It isthen equal to compact(S).Although it is not expressed in a strictly formal language and especially not in a programminglanguage, the de�nition of compact(S) can be viewed as executable since it strongly suggests a wayof computing compact(S). However, it can also be argued that the de�nition is declarative, becauseit does not prescribe an order for the computation. (The value of compact(S) can be computedeither top-down or bottom-up.) Nevertheless, the de�nition can be encoded relatively straight-forwardly in any programming language embodying recursion. More importantly, the de�nitionexpresses the e�ect of an algorithm executed by hand, which constitutes our fundamental intuitionof the problem. Hence the de�nition of compact(S) is not really a de�nition of the problem butrather an essential property that we can, on the one hand, validate against our intuition, and, onthe other hand, use to construct a correct program to solve the problem.76We consider an alphabet with a single blank character, denoted by t, and no layout characters, such as fortabulation and end-of-line.7An explicit proof of the correctness of a Pascal program solving the text processing problem, based on thede�nition of compact(S), has been given by the �rst author in [26].15



Note that our de�nition of compact(S) contains an over-speci�cation, according to [29], becausewe constrain the lines to be �lled as much as possible in top-down order, rather than in non-determinate order.8 We do not see the utility of preferring a non-deterministic speci�cation in thiscase.In conclusion, we agree on the value of declarative speci�cations if \declarative" means \asnatural and close to the intuition as possible." But we dispute the idea that such speci�cationsnecessarily are \non-executable" or \non-deterministic." In our view, the speci�cation in [29] isunnatural, i.e., di�cult to validate and di�cult to use, because too much emphasis is put onnon-executability and non-determinism, at the price of losing intelligibility.2.6 The \General Form" of Speci�cationsWe now try to capture the \general form" of speci�cations,9 without however giving systematicrules for writing \good" speci�cations, as such is too problem-speci�c.The speci�cation of a program should always have two parts that play very distinct roles:1. a statement indicating the purpose of the program, i.e., the information that can be drawnfrom the results of its execution;2. a list of representation conventions that are to be satis�ed for using the program correctlyand for interpreting its results correctly.Statement (1) must always be very simple because the information produced by a program (afterinterpretation of its results) must have a simple meaning to the user. Without it, she would beunable to use the program to her advantage. The role of the \theory" of the problem is to make surethat this meaning exists and that it can be clearly and simply formulated. The list (2) must also besu�ciently simple to understand for the purpose of the program not to be completely annulled bythe di�culty of its usage and the di�culty of interpretation of its results. This is not always easyto achieve due to the formal character of programming languages. It is thus sometimes necessaryto construct another theory before being able to simply state the representation conventions.We now state what the speci�cations of the three problems in Section 2.1 should contain.Example: The Belgian National Lottery. The speci�cation reduces to the indication of howto start the program and to the statement that it results in displaying the next draw of the Belgiannational lottery. (It is practically useless to state the exact format of the produced character stringand the rules for decoding this information, because everybody immediately understands how tointerpret the message when it appears.)Example: A payroll program. The accountant user of the payroll program must know thenecessary information as well as the rules of its representation by the input data. She must be ableto verify the correctness of these data. She also must know enough about the rules of representationof the results in order to be able to �nish the payroll task (this is actually the responsibility of abank, nowadays). The speci�cation thus reduces to the indication of how to start the program andto the statement that, from correct input data, the program produces correct results according tothe used representation rules.Example: A search sub-program. Depending on the desired generality, the programminglanguage used, and the general context of the problem at hand, there is a tremendous variety ofpossible speci�cations for a program performing a search in an array. A satisfactory speci�cation,in some cases, could be the following:8Notice that, although this constraint is a clear consequence of our basic intuition, the de�nition of compact(S)does not impose a unique order of computation to the program.9According to a suggestion by one of the anonymous reviewers, we can reexpress this in terms of the conceptsof problem and solution, as follows: �rst, the speci�cation of a program cites the (name of the) problem that ithelps to solve; second, it provides the interpretation rules (or whatever other necessary representation conventions)allowing the user to solve the problem thanks to the results of the program.16



Speci�cation 2.1 The procedure search is a Pascal procedure declared as follows:function search(x : integer) : booleanIts declaration must �gure within the scopes of the declarations of an integer constant n(such that n � 1) and an array a of type array[1::n] of integer, which also is in the scope ofthe former. When calling the procedure, the elements of array a must be in non-decreasingorder. Let v be the actual value of the formal parameter x. If at least one of the elements ofa is equal to v, then the call returns the value true, otherwise it returns false. (The contentsof a will be unchanged.)The bulk of this speci�cation is dedicated to the statement of the representation conventions andto technical details. These details are tedious but unavoidable because the used programminglanguage is a formalism. They do not, however, render the speci�cation unusable because theproblem of knowing where to put the various declarations and how to write them can be solvedseparately as well as once and for all. When reasoning about it in the future, it su�ces to rememberhow to call the procedure, that it answers the question \does v belong to a?," and that the answeris given as a boolean value.However, it is important to note that the introduction of general representation conventionsthat are speci�c to a particular problem (i.e., that are chosen for an application and used for thespeci�cations of all the sub-programs of this application) can contribute to making much moremanageable the amount of representation details speci�c to each speci�cation.2.7 Requirements Speci�cations and the Theory of the Problem (Arethe Same Thing)The process of elaborating requirements speci�cations is nowadays considered by many computerscientists as the most crucial stage of software development. Requirements engineering is thusemerging as a new and major branch of the software engineering discipline. It is primarily concernedwith the identi�cation of the user's needs, i.e., the so-called requirements elicitation process. Assoon as the user's requirements are explicitly stated, they can (and must) be checked with respectto consistency and completeness. In fact, this is what we call \elaboration of the theory of theproblem." Thus, requirements speci�cations are not speci�cations (in our sense), but rather anexposition of the very theory making it possible to specify the software system.Formal speci�cation languages are advocated by many researchers as the distinguished method-ological tool for requirements engineers, because they allow them to make the user's informal state-ments precise, to check the requirements speci�cation for consistency and completeness, and toease the discussion with the user by means of prototyping, to name but a few advantages. In ouropinion, the mechanical treatment of (formal translations of) the user's requirements can indeedpossibly provide information that could not be easily inferred by hand. However, the formal trans-lation process is completely similar to the writing of a program in that it necessitates giving precisespeci�cations (in our sense) to most symbols and constructs of the formal text, in order to ensurethat the formalization captures exactly what the user meant. Thus, the writing of (so-called)formal requirements speci�cations presupposes the existence of an already fully understood theoryof the problem, in our sense. Finally, as seen in Section 2.5, even the elaboration of the theory ofthe problem may bene�t from the use of speci�cations in our sense, in order to make explicit therationales underlying the concepts introduced by means of de�nitions.3 Speci�cations Necessarily Are Informal3.1 Why Can't There Be Any Formal Speci�cations?A \formal speci�cation" is a statement in a formal speci�cation language.10 Such a statement isunintelligible \by itself," primarily because the concepts of the problem are not primitive concepts10Note that a statement in the \usual" mathematical language, such as ex = 1+ x+ x2=2!+ : : :+ xi=i! + : : :, isnot a formal statement, but an informal one because that language is not prede�ned, nor syntactically checkable,and, more importantly, because its meaning rests on general human knowledge, not on the (obscure) semantics ofa formal speci�cation language. Hence such a statement essentially is part of the folklore.17



of the used formal language. Therefore, a formula can only be \understood" as a representation ofan intuitive statement, according to explicitly given conventions. These conventions are in generalthat the formula is true, in the chosen interpretation of the language, if and only if the intuitivestatement is true. The enunciation of such conventions is precisely what we call a speci�cation, inthe sense that we discussed in Section 2, although not the speci�cation of a program but rather ofa formula. Its role is to give a meaning and thus a purpose to something (the formula in this case)that would otherwise not have one. Whether a formula is true or false is of no interest whatsoeverif this is the only thing we know about it. In general thus, a speci�cation is necessary each time onewants to represent a known property or concept by a text written in an arti�cial language. Thisalso shows that any \formal speci�cation" of a (formal) program is much closer to the programitself than to a speci�cation in our sense. A noticeable di�erence may be that it is not \executable"because it is written in a \non-executable" language. In our opinion, it is not important whetherthe chosen language is executable or not, but whether it allows us to say in the most direct waywhat the purpose of the program is. Such a condition cannot be ful�lled by any formal language,given the extremely low expressiveness of such languages. A formal language is always almost asbad as a programming language for communicating the purpose of a program. In other words:providing a formal speci�cation of a program amounts almost to considering that the text of theprogram (or of another program) allows one to understand its purpose.Some would now charge that our thesis is mainly de�nitional, and that we rede�ne the conceptof speci�cation in a way that rules out formality. However, we do not think that we actually rede�nethis concept, since it is generally agreed that the speci�cation of a program is the statement withrespect to which the correctness of the program becomes meaningful. Indeed, the crux of thequestion is not whether we have rede�ned the concept of speci�cation in a way that rules outformality, but whether our view of the concept correctly captures the notion and makes it useful.Here we believe that our de�nition puts a better emphasis on the role of this notion and thus makesit more useful. So the possible charge can|and actually should|be reversed: it is the formalistswho have incorrectly rede�ned the notion of speci�cation, namely in a way that justi�es the needfor formal methods!3.2 Seven Frequently Asked Questions about Formal Speci�cationsAre informal speci�cations and formal ones complementary? Many authors suggest thatit is necessary to add an \informal comment" to a program that helps communicate the purposeof the program and that corresponds to our notion of speci�cation. Similarly, many researchersargue that formal speci�cations ought to be complemented by informal statements [22, 34, 35].Nevertheless, such comments are considered insu�cient to ensure that the e�ect of the programhas been precisely de�ned. This corresponds to the frequent opposition of intuition and rigor, whichconsiders that a fruitful intellectual activity should be driven by intuition (which is comprehensiblebut vague) so as to produce rigorous results (which are formal but incomprehensible). In ouropinion, the correct usage of a program necessitates having understood intuitively and rigorouslyits purpose. There is no need to distinguish two notions of speci�cation, one comprehensible andvague, the other one precise and unintelligible. If a speci�cation features delicate issues that arelikely to be misunderstood, it is only necessary to give more details about them. There is no reasonto believe such di�culties are best resolved, in all cases, by using a formal language chosen onceand for all.If one thinks it is not safe to directly and simply explain the purpose of a program, i.e., in theway one understands it oneself, and that one had better de�ne with absolute precision the \e�ect"of the program, even under the risk of incomprehensibility, by giving the readers \indications"on how to reconstruct a comprehensible speci�cation for themselves, then one is confronted withthe following di�culties. It is almost as di�cult to write without errors a formal speci�cation asthe program itself, and it is barely easier to \decipher the message," in the opposite direction. Towrite a correct formal speci�cation, one has to make an explicit detailed reasoning that is verydi�erent from a vague informal comment. In order to convince oneself of having understood theformal speci�cation, another reasoning has to be done, which is extremely tedious if the formalspeci�cation is not accompanied by such comments. So, for a couple h formal speci�cation, informalspeci�cation i to suitably play its intended role, it would have to be accompanied by a detailed18



reasoning �xing their representation relationships. However, this is only meaningful if the informalspeci�cation has been explicitly and precisely stated. The role of the formal speci�cation and thereasoning is then reduced to lifting the last doubts and ambiguities. But this can be achievedat lower cost by other means, such as the inclusion of signi�cant examples, the provision of thereasoning process leading to the de�nitions in the speci�cation, etc.Are formal speci�cations a means of dividing the di�culty of programming? Otherpeople would rather say that the recourse to formal speci�cations is, if not a panacea, at leasta means of division of the di�culty. Indeed, it would allow, on the one hand, the formal andmechanical proof of correctness of programs, and, on the other hand, the intuitive justi�cationthat the formal speci�cations correctly represent the problem to be solved. One could thus givemuch more con�dence to programs, since everything reduces to the problem of validity of theformal speci�cations, formal correctness being established beyond all doubt.This viewpoint rests on two forms of exaggerated optimism on formal methods. First, it is ingeneral not signi�cantly easier or safer to prove intuitively the correctness of formal speci�cationsthan that of programs. Second, formal proofs of program correctness are almost always infeasiblein practice, whatever the available mechanical aid (proof veri�er or theorem prover). For example,note that a formal proof of program correctness amounts to proving a formula whose length is atleast the sum of the lengths of the formal speci�cation and the program. So what will be the lengthof the proof?! This also assumes a complete formalization of the semantics of the programminglanguage, which is already by itself an almost unrealizable task. If one considers that the timeand budget allocated to the veri�cation of program correctness is necessarily limited, it can beeasily seen that one had better spend a bit more time justifying intuitively the correctness of theprogram and carefully choosing test cases, rather than making use of such formal methods.More pragmatically and without aiming at complete correctness proofs, software tools couldbe used to check some \desirable" properties of programs. It is not our purpose to discuss thevalue and usefulness of such tools in this paper, since they are often more related to documentationand organizational issues than to correctness issues. The former issues are extremely important inpractice, but their discussion is completely out of the scope of this paper. Nevertheless, we thinkthat such tools can possibly become harmful, because the value of programs could be judged onlywith respect to the properties that are checkable. Hence we insist that correctness rests on largelyunformalizable issues and should thus be addressed by making explicit informal reasonings and bykeeping a record thereof.Remark. In spite of the previous argumentation, we do not dismiss current research on au-tomated program veri�cation, provided it is understood as very long term research whose �naloutcome is still largely unclear. In fact, both authors of this paper are doing research related toprogram veri�cation [9, 10, 27]. Existing techniques, such as model-checking or abstract interpre-tation, can be applied to verify speci�c properties of program and systems. It is however unclearat the time of writing how this research will a�ect future practice. Moreover, the authors of thispaper do think that their view on informal speci�cations remains of paramount importance tounderstand and master systems based on those emerging techniques [28].Is it necessary to formalize speci�cations to prove their consistency and completeness?Some people say that formal speci�cations allow systematic veri�cation of their consistency andcompleteness. This deserves several remarks.If it is desirable that a statement be consistent and complete, the precise meaning of thesenotions always strongly depends on the context of the statement, that is on a lot of things thatare known about the subject of the statement before even examining it. If a statement de�nesa problem that has no solution, it is sometimes judged inconsistent, but, at other times, it isconsidered a perfectly consistent statement of a problem that just happens to have no solution;similarly for completeness, when the problem has many solutions. Since a formal statement onlyis, in general, a representation of a non-formal statement, which is the only one to be comprehen-sible, the consistency and completeness of a formal statement can only receive a precise meaningthrough this representation relation. As this relation is always chosen ad hoc, it is impossible to19



satisfactorily de�ne (i.e., in a manner always corresponding to the intuitive concepts) consistencyand completeness of formal speci�cations. Since this relation is thus totally exterior to the usedformalism, consistency and completeness cannot be veri�ed mechanically.However, there is some belief and hope among many computer scientists that the \real-world"can be modeled in some canonical way, provided that an adequate formalism is used. Such beliefand hope rests on the assumption that such a formalism could reect the structure of reality.Hence, incompleteness or inconsistency of a description of the world written in this formalismwould be interpreted very naturally as incompleteness or inconsistency of our understanding of theworld. This view is related to Hilbert's program for proving the non-contradiction of mathematics.His intuition was that all mathematics could be embodied in a uniform formal system whosenon-contradiction could be proved by elementary arithmetic reasonings. G�odel's incompletenesstheorem has de�nitely ruined this program. Hence, there is no natural formal structure to all ofmathematics. A fortiori, there is no formalism allowing one to model the world in a natural way.Thus, consistency and completeness of speci�cations only are a by-product of the speci�er's correctunderstanding and there is no a priori way to check that her understanding is correct.Are formal speci�cations more concise than informal ones? A common argument is thatformal speci�cations are more concise than informal ones. However, some people argue to thecontrary. Strictly speaking, the raised question is meaningless for speci�cations in our sense, sincethey are only the way to link the (formal) program to its (informal) purpose. So the question infact only applies to requirements speci�cations, or, in other words, to the theory of the problem.During the elaboration of this theory, the usage and introduction of mathematical notationsis certainly useful, but, in our view, usual mathematics are part of the folklore and hence mathe-matical notations are part of the natural language. Indeed, mathematical notations mainly are away to make natural language more concise. Note however that an explanation of the link betweenthese mathematical concepts and the concepts of the problem is generally needed, and this partof the \theory of the problem" necessarily requires using plain natural language. (Thus, it cannotbe made concise by means of mathematical notations.)Finally, what can be done with usual mathematics can be done to some extent within a formalspeci�cation language. However, the notations available in such a language are extremely lessconvenient than the usual mathematical notations, notably because such languages are syntacticallycheckable and have (or should have) a �xed (and often complicated) semantics. As a consequence,many more explanations are needed to link a formal requirements speci�cation to what it standsfor in the real-world than to understand the \theory of the problem," in our sense.Are formal speci�cationsmore pragmatic than informal ones? Some advocates of formalmethods readily agree on the inevitability of informal speci�cations and informal veri�cation, butthey also point out that formal and informal speci�cations have di�erent purposes and qualities.Indeed, formal speci�cations, whether executable or not, would o�er a means of early feedback fromthe customer|through execution of the speci�cation (early prototyping) or through demonstrationof desired properties| and hence could allow signi�cant cost savings. Otherwise, discrepancies be-tween the speci�cation and the customer's intentions might only be detected when the customerruns (an increment of) the �nal software. Indeed, one may certainly construct intermediate formaldescriptions before constructing the �nal software, as they can help during the process of elaborat-ing the theory of the problem. But one cannot call such a description a \formal speci�cation" (andwriting it is more of a programming activity than a speci�cation activity), as it is not a speci�ca-tion at all (in our sense) and as it is incomprehensible by itself and must thus be explained to thecustomer (which explanation process provides the very part that is missing in the formalization),be it as a document or as an executable or demonstrable prototype.Can formal speci�cations be automatically generated from informal ones? Some re-searchers advocate writing informal speci�cations in so-called \semi-formal" notation (such asSA/SD) or in some form of \controlled natural language" (in the sense that the vocabulary andgrammar are restricted so as to give sentences a \clear" semantics), expecting that they can be(semi-)automatically translated into (executable) formal speci�cations. The problem with the for-mer approach is that these languages essentially are informal ones (because they do not feature a20



prede�ned syntax and semantics), and are thus subject to our comments above on the complemen-tarity of informal and formal speci�cation fragments. There are no such things as \semi-formallanguages." The problem with the latter approach is that these languages essentially are formalones, and thus subject to the comments in this entire paper. There are no such things as \informalcontrolled natural languages." Since the descriptions are thus actually formal, it is only obvi-ous that they can be automatically translated into some other formal languages. And, as formalstatements, they cannot possibly be speci�cations, in our sense. For such speci�cations (in oursense), there is of course no way that they can be automatically formalized, as the link betweenthe formal concepts and the real-life ones is not formalizable and as one would have to prove thatthe translation process is equivalent to the mechanisms of human knowledge acquisition.Are formal speci�cations necessary for safety-critical systems? It is often argued thatformal methods are necessary for the design of safety-critical systems, and some standards orga-nizations even start imposing/recommending their usage for such projects. The rationale is thatsystems satisfying \speci�cations" in the form of, say, �nite-state machines (that are deemed triv-ially correct after inspection) can be shown, say, to be free of deadlock and lifelock risks. Ourobjection to this formalist viewpoint is essentially the same as to the pragmatism issue above,because, once again, it is a delusion to believe that there can be \obviously correct formal speci�-cations."Note that we do support the idea that extra care and rigor are needed in the design of safety-critical systems: it can certainly be worthwhile to check via model-checking whether some hardwarecomponent complies with some formalized property. Nevertheless, the elaboration of such formal-ized properties requires substantial informal reasoning and speci�cations in our sense. We evenbelieve that, in most cases, making completely explicit the informal reasoning leading to the de-sign of a safety-critical system is more reliable than a formal veri�cation. Of course, the formalveri�cation can bring extra con�dence or detect shortcomings in the informal reasoning, but, inour opinion, such bene�ts have been too much overvalued in the literature on formal methods.4 Conclusion: Why are the Role and Nature of Speci�ca-tions so Often Misunderstood?We now explain why our notion of speci�cations is di�cult to understand and to admit by manypractitioners and theoreticians of computer science. But let us �rst summarize our viewpoint:1. A program is useful because its results can help to solve a problem. There is no limit tothe class of problems that we can imagine in the \real" world. Therefore, the understandingof the purpose of a program may necessitate the knowledge of notions as distant as desiredfrom programming concepts (or from concepts used in formal speci�cation languages).2. The speci�cation of a program essentially is the statement of its purpose.3. A speci�cation should not, nor can it provide all the knowledge necessary to the understand-ing of the purpose of the program. It must just try to state it in the most satisfactory possibleway, that is in the most simple and direct way. That is why a speci�cation is not meant foreverybody, but only for those who can understand it.4. For the speci�cation to be comprehensible by su�ciently many people, it is, in general,necessary to \construct" a theory that can be studied and understood by all. Such a theorycannot be constructed from nothing, but assumes a considerable preliminary knowledge thatis partly shared by all the considered people.Now, there are at least two reasons why our view of speci�cations is very uncommon nowadays.First, there is the inuence of the currently dominating ideas on the nature of mathematics.Mathematical theories are supposed to be founded on formal axiomatized theories. This meansthat every intuitive statement of the theory is supposed to be only an \abbreviation" of a formalstatement that is itself mechanically deducible from the axioms. From there to infer that everyinteresting result of a theory can be discovered relatively quickly as soon as the axioms of its theory21



are known is only a small step. And this is the \step" made, consciously or not, when assertingthat the speci�cation of a program should, above all, de�ne with absolute precision the e�ect ofthe executions of this program. Indeed, it is clear that from the input/output relation determinedby the executions of a program, one can theoretically deduce all other interesting properties of thisprogram. Therefrom, some conclude that a speci�cation reduces to such a de�nition, assumingthat every reader is su�ciently intelligent to derive from it all other \interesting" properties ofthe program. (This means the reader is assumed to be omniscient, because if a program outputsthe string \380,000", she would, for instance, have to derive from this observation that one of theproperties of the program is to give the distance between the Earth and the Moon, expressed as adecimal amount of kilometers.)Therefore, the idea that the speci�cation of a program must be and can only be the de�nitionof an input/output relation is a simple transposition of the idea that there is nothing more in amathematical theory than in its axioms. But, in order to understand the exact role of speci�cations,one should realize that, to the contrary, there is in�nitely more than that in an intuitive theory:every new concept, notation, or result adds value to it that is not at all contained in the statementof its axioms. The intuitive statement of an important theorem certainly is not a mechanicalconsequence of the axioms of a formal system, no more than the assertion of the \truth" equivalencebetween this statement and a formula. And this even holds for statements of the form \that formulais a theorem," because the meaning of the notions of formula and theorem is not derivable fromthe mechanical rules of the formal system.In conclusion, a correct understanding of the notion of speci�cation necessitates, in our opinion,a return to a more intuitive and \transcendent" perception of mathematics.Second, there is the opinion according to which the mastery of the programming problem canonly be achieved by recourse to e�ective and automatable methods. It seems (sadly) evident thatfew people are ready to admit that the mastery of programming will always depend, above all, onthe competence of the involved people. The manager wants e�ective criteria evaluating the qualityof the work done by the programmers. The programmer expects the \theoreticians" to providerules that can be followed blindly. Nobody wants to admit that the best way to realize whatevertask is to do one's best, by trying to stick to utmost intellectual honesty.If, regarding speci�cations, we say that the best thing to do is to understand the exact role ofthis notion so as to be able to \see," in most cases, how to state them best, it will be consideredthat we have not brought anything interesting to the debate, because we have not given any ruleor criterion for writing good speci�cations or for evaluating them. However, some people say that,as it is better to do something rather than nothing at all, it is better, all things considered, to giverules that are arbitrary but measurable.For us, it is certain that little progress can be expected in programming as long as the opinionis so widespread that the value of a criterion is determined by its being measurable and computerreadable. We think so because this idea can only prolong the illusions and avoid the real problems:thanks to such criteria, the manager can take decisions without having to get involved in theproject, and this changes nothing to the quality of the programmers' work, except that they haveto adjust themselves so as to respect these rules even when they do not bring any practical help,or, worse, when they complicate the construction of the program.These remarks apply not only to software project managers, but also to the managers of researchfunding agencies. Academicians are almost \forced" by them to claim that their formal methodsresearch will increase productivity and competitiveness.Finally, let us stress once again that formalmethods research is not sterile, especially in the longterm, because it will allow us to understand better how to design convenient computer languagesand systems. However, we do think that our view of informal reasoning and speci�cations willremain relevant in the long term, since no formal language can possibly refer to real-world conceptsas conveniently as natural language can.AcknowledgmentsThe authors are indebted to Prof. Henri Leroy for his spiritual patronage. The central ideas ofthis paper have been deeply inuenced by his teaching and the numerous nightly discussions withthe �rst author. We would also like to acknowledge valuable feedback from Prof. C.A.R. Hoare,22
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