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An Abstrat Formalisation of Corret Shemasfor Program SynthesisPIERRE FLENERy, KUNG-KIU LAUx, MARIO ORNAGHIz and JULIAN RICHARDSON{yDepartment of Information Siene, Uppsala University,Box 513, S-751 20 Uppsala, Swedenpierre.ener�dis.uu.sexDepartment of Computer Siene, University of Manhester,Manhester M13 9PL, U.K.kung-kiu�s.man.a.ukzDipartimento di Sienze dell'Informazione, Universita' degli studi di Milano,Via Comelio 39/41, 20135 Milano, Italyornaghi�dsi.unimi.it{Mathematial Reasoning Group, Division of InformatisThe University of Edinburgh, 80 South Bridge, Edinburgh EH1 1HN, U.K.julianr�dai.ed.a.uk(Reeived 15 September 1998)Program shemas should apture not only strutured program design priniples, butalso domain knowledge, both of whih are of ruial importane for hierarhial programsynthesis. However, most researhers represent shemas as purely syntati onstruts,whih an provide only a program template, but not the domain knowledge. In thispaper, we take a semanti approah and show that a shema S onsists of a syntatipart, viz. a template T , and a semanti part. Template T is formalised as an open (�rst-order) logi program in the ontext of the problem domain, haraterised as a �rst-orderaxiomatisation, alled a spei�ation framework F , whih is the semanti part. F endowsthe shema S with a formal semantis, and enables us to de�ne and reason about itsorretness. Naturally, orret shemas an be used to guide the synthesis of orretprograms.

1. IntrodutionIt an be argued that any systemati approah to software development must usesome kind of shema-based strategies. In (semi-)automated software development, pro-gram shemas beome indispensable, sine they apture not only strutured programdesign priniples, but also domain knowledge, both of whih are of ruial importanefor hierarhial program synthesis. This is amply borne out by user-guided program devel-opment systems that have been suessfully deployed in pratie, e.g., kids (Smith, 1990;Smith, 1993; Smith, 1994), DesignWare (Smith, 1996), PlanWare (Blaine et al.,1998).Informally, a program shema is an abstration (in a given problem domain) of a lassof atual programs, in the sense that it represents their data-ow and ontrol-ow, but0747{7171/90/000000 + 00 $03.00/0  1999 Aademi Press Limited



2 P. Flener, K.-K. Lau, M. Ornaghi and J. Rihardsondoes not ontain (all) their atual omputations or (all) their atual data strutures. Ata syntati level, a shema is an open program, or a template, whih an be instantiatedto any onrete program of whih it is an abstration. Thus, most researhers, with thenotable exeption of Smith (Smith, 1985; Smith, 1990), represent shemas as syntati(logi) expressions, sometimes augmented by extra-logial features, from whih atualprograms are obtained by some form of textual substitutions. However, in suh a purelysyntati approah, whih provides only a pattern of plae-holders, the knowledge thatis aptured by a shema is not formalised, suh as the semantis of the template, thesemantis of the programs it abstrats, or the interations between these plae-holders.So a template by itself has no guiding power for program synthesis, and the additionalknowledge somehow has to be hardwired into the system or person using the template.Therefore, we take a semanti approah and show that a shema S onsists of a syn-tati part, viz. a template T , and a semanti part. Template T is formalised as anopen (�rst-order) logi program in the ontext of the problem domain, haraterised asa �rst-order axiomatisation, alled a spei�ation framework F (Lau and Ornaghi, 1994;Lau and Ornaghi, 1997a), whih is the semanti part. F endows the shema S with aformal semantis, and enables us to de�ne and reason about its orretness. In parti-ular, we de�ne a speial kind of orretness for open programs suh as templates, thatwe all steadfastness. A steadfast (open) program is always orret (with respet to itsspei�ation) as long as its parameters are orretly omputed (with respet to theirspei�ations). This means that a steadfast (open) program, though only partially de-�ned, is always a priori orret when (re-)used in program omposition, in the sense thatits de�ned part is a priori orret (with respet to its spei�ation). A steadfast programis thus also a priori orretly reusable, and suh programs make ideal units in a libraryfrom whih orret programs an be omposed.Thus we de�ne a orret shema to be a spei�ation framework ontaining a steadfastopen program. Moreover, we show how to use orret shemas to guide the synthesis ofsteadfast open logi programs. The bene�t of suh guidane is a redued searh spae,beause the synthesiser, at any given moment, only tries to onstrut a program that �tsa hosen shema.On a wider issue, program shemas have been shown to be useful in a variety of ap-pliations, suh as proving properties of programs (Manna, 1974), teahing program-ming to novies (Gegg-Harrison, 1991), guiding manual synthesis (Barker-Plummer,1992; Dershowitz, 1983; Deville, 1990; Deville and Burnay, 1989), indutive synthe-sis (Flener and Deville, 1993; Flener, 1995; Flener, 1997; Hamfelt and Fisher Nils-son, 1997; Kodrato� and Jouannaud, 1984; Sterling and Kirshenbaum, 1993; Summers,1977), and dedutive (semi-)automati synthesis (Blaine et al., 1998; Flener et al., 1997;Flener et al., 1998a; Flener et al., 1998b; Flener and Rihardson, 1999; Johansson, 1994;Marakakis and Gallagher, 1994; Smith, 1990; Smith, 1993; Smith, 1994; Smith, 1996)of programs, debugging programs (Gegg-Harrison, 1994), transforming/optimising pro-grams (B�uy�uky�ld�z and Flener, 1998; Fuhs and Fromherz, 1992; Huet and Lang, 1978;Rihardson and Fuhs, 1998; Vasonelos and Fuhs, 1996), and so on. Further rep-resentation issues have been explored independently of appliations in (Chasseur andDeville, 1998; Gegg-Harrison, 1995; Gegg-Harrison, 1997), and surveys have been madein (Flener and Y�lmaz, 1999; Smith, 1984).Whilst we have presented some of the ideas elsewhere, most of the tehnial details(and examples) in this paper are new. This paper thus gives a omplete (though ompat)aount of our approah to formalising (orret) shemas.



An Abstrat Formalisation of Corret Shemas 3The paper is organised as follows. In Setion 2, we give the general piture and highlightthe novelty of our approah, by informally de�ning the syntax, semantis, and orretnessof shemas, and outlining how orret shemas an be used in program synthesis. InSetion 3, we formalise spei�ation frameworks, as well as their reuse through frameworkmorphisms and framework omposition. We do not de�ne a preise system of operationsfor working with frameworks (suh as omposing them, and so on), but we just givethe kind of semantis that suh a system should have in order to apply the theory ofsteadfastness, and we show some examples. In Setion 4, we onsider spei�ations andintrodue steadfast programs, i.e., orret programs in frameworks. Suh programs anbe orretly reused by omposing frameworks and thus provide a seond level of reuse. InSetion 5, we introdue the notion of orret shemas and sketh a proof theory assoiatedwith our model-theoreti formalisation, so that we an prove shema orretness and useshemas for program synthesis. Finally, in Setion 6, we onlude, disuss related work,and outline future work. 2. OverviewIn this setion, we give an overview of our approah to de�ning the syntax and seman-tis of shemas. We outline a notion of orretness for shemas, and briey explain howorret shemas an be used in a program synthesis proess. The material here will beinformal, and largely based on examples. The aim is to give a general but more or lessomplete piture, and to highlight the novelty, of our approah, at an intuitive level.2.1. defining shemasOur approah to de�ning shemas is based on a three-tier formalism (with model-theoreti semantis), illustrated in Figure 1.
Spei�ation of r

Program to ompute r

Framework:- F : �( �
Spei�ation of �Spei�ation:- Sr Spei�ation:- S�

Program:- Pr : r ( �Figure 1. A three-tier formalism for shemas.In this formalism, at the bottom level, we have programs , for omputing (spei�ed)relations. Programs are pure (standard or onstraint) logi programs. The relations om-puted by logi programs are alled (program) prediates. Some prediates may ouronly in the body of the lauses of a program. We all suh prediates open prediates,



4 P. Flener, K.-K. Lau, M. Ornaghi and J. Rihardsonand programs that ontain suh prediates open programs. In Figure 1, the program Promputes a spei�ed relation r in terms of open prediates �.In the middle, we have spei�ations for de�ning or speifying new relations (andfuntions). All program prediates are introdued by spei�ations. In Figure 1, Sr andS� are the respetive spei�ations of r and �.At the top, we have a spei�ation framework , or just framework for short, that em-bodies an axiomatisation of (all the relevant knowledge of) the problem domain. Theframework provides an unambiguous semanti underpinning for spei�ations and pro-grams, as well as the orretness relationship between them. A framework may also beopen or parametri. In Figure 1, the framework F has a signature that ontains a set �of de�ned symbols (axiomatised in F) and a set � of parameters.We de�ne a shema to onsist of a framework, an open program, alled a template,and a set of spei�ations for the prediates of the template.y In the shema in Figure 1,the program Pr is the template.We need to de�ne a shema as a triple beause all three ingredients are neessaryfor de�ning the semantis of a shema properly, in order that we an use a shemafor the purpose for whih it is intended, viz. synthesising programs that have the sameomputation pattern as the template. Suh a semanti haraterisation also providesguidelines for the synthesis proess. Furthermore, it enables us to de�ne, and reasonabout, the orretness of shemas and of their reuse.Example 2.1. Consider the simple templater(x; y) d(x; h; a); re(a; b); (h; b; y) (Td)for omputing r. On its own, we would say this template is meaningless. Nevertheless,our intention is to use it as a generi representation of the typial steps of a divide-and-onquer algorithm: deomposition d, a (possibly empty) sequene re of reursivealls, and omposition . For example, as we will show later in Example 2.2, Td an bespeialised into the following more familiar form of divide-and-onquer:r(x; y)  prim(x); solve(x; y)r(x; y)  :prim(x); de(x; h; x1; x2); r(x1; y1); r(x2; y2); omp(h; y1; y2; y)where prim(x) means that the input x is primitive, i.e. a base ase; de(x; h; x1; x2)means that x an be deomposed into h, x1 and x2; omp(h; y1; y2; y) means that h andthe `sub-solutions' y1 and y2 an be omposed into the `solution' y.However, by itself Td does not represent any pattern of omputation at all. To giveit the above intended meaning, we need spei�ations for the prediates r; d; re and .Spei�ations de�ne new spei�ed symbols in terms of other speifying symbols. Forexample, we ould speify r, as follows:r : [I;O℄;Sr : Ir(x)! (r(x; y) $ Or(x; y)):Here, the spei�ed symbol is r, with delaration r : [I;O℄,z while the sort symbols I andy In this setion, for simpliity but without loss of generality, we assume that a shema has only onetemplate.z This means that the arity of r is I�O.



An Abstrat Formalisation of Corret Shemas 5O, and the relation symbols Ir and Or are the speifying symbols. Ir and Or are alledrespetively the input ondition and output ondition of r.Sr is an example of a form of spei�ation alled a onditional spei�ation (Lau andOrnaghi, 1997a). Its meaning is the following: for every input x that satis�es the inputondition Ir(x), the spei�ed relation r(x; y) is to be true if and only if the outputondition Or(x; y) is true. (We will disuss onditional spei�ations in Setion 4.1.2.)The meaning of Sr is not ompletely de�ned, sine nothing is stated about the spei-fying symbols. Our intention is to use this to indiate that the template an be used forderiving programs for a generi, onditionally spei�ed relation. This an be done at theframework level. Sine our speifying symbols are generi, we de�ne them as frameworkparameters, i.e., we assume the following fragment of a framework:Framework DC(I;O; Ir ; Or);delarations:Ir : [I℄;Or : [I;O℄:The sort symbols I and O, as well as the input and output onditions Ir and Or, are opensymbols, i.e. they are parameters of the framework DC.Now sine the speifying symbols Ir and Or in Sr are parameters, Sr begins to turnTd into a omputation pattern, one for omputing a generi (onditionally spei�ed)relation r. Sr is also a guide for program synthesis, in the following sense. When we usethis shema to synthesise a (orret) divide-and-onquer program from a spei�ation S,S must be a onditional spei�ation, so that we an instantiate the parameter Ir by theinput ondition of S, and Or by the output ondition of S.We an further de�ne the omputation pattern that Td and Sr together represent,by speifying d. For example, we ould speify d (with input ondition Ir and outputondition Od) as follows:yd : [I;List(I);List(I)℄;Ssld : Ir(x)! (d(x; h; a)! Od(x; h; a));Ir(x)! 9h; a : d(x; h; a);by �rst expanding the above framework fragment DC to:Framework DC(I;O; Ir; Or; Od);import: LIST (I);delarations:Ir : [I℄;Or : [I;O℄;Od : [I;List(I);List(I)℄;in whih LIST (I) is imported to give meaning to the sort List(I).The spei�ation Ssld of d is an example of a seletor spei�ation (Lau and Ornaghi,1997a). Its meaning is: for every input x that satis�es the input ondition Ir(x), they Note that h and a are lists of elements of sort I.



6 P. Flener, K.-K. Lau, M. Ornaghi and J. Rihardsonspei�ed relation d(x; h; a) is to be true for at least one output (h; a), suh that the outputondition Od(x; h; a) holds. (We will disuss seletor spei�ations in Setion 4.1.4.)To ensure that this spei�ation is satis�ed, we need to add the following onstraintyto the framework DC: Ir(x)! 9h; a : Od(x; h; a):The input ondition for d oinides with that of r beause, to ompute r(x; y), we �rstdeompose (by d) the input x into two lists h; a : [List(I)℄ of input values. The idea isthat h (possibly) ontains values to be used in a non-reursive manner, while r will bereursively applied to the elements of a. So we need to impose that all the elementsof a satisfy the input ondition Ir. To ensure termination, we also require them to be`smaller than' x with respet to a well-founded ordering relation �. Therefore we addthe following onstraints to the framework DC:zIr(x) ^ Od(x; h; a)! (8y : mem(y; a)! Ir(y) ^ y � x);WellFounded(�);where mem is the usual list membership relation, together with the delaration �: [I; I℄.In general, onstraints are just axioms, but they play a spei� role: we use them torestrit the possible interpretations of the parameters of the framework, in suh a waythat the template is orret with respet to the spei�ations. More importantly, theyonstrain framework omposition and speialisation, so as to prevent unsound operations(see Setion 3.3).Now to ontinue de�ning the omputation pattern represented by the template Tdtogether with the spei�ations Sr and Ssld , we shall give Sre. To do so, we shall makeuse of a relation M (x; y), whih is introdued by the following expliit de�nition:M(a; b)$ l(a) = l(b) ^ 8x; y; i : elemi(a; i; x) ^ elemi(b; i; y)! Or(x; y);where the (overloaded) de�ning symbols l, elemi (a; i; x) and elemi(b; i; y) are de�nedin the omposite abstrat data type (ADT) LIST (I) + LIST (O).x The funtion l de-�nes list length, and elemi(a; i; x) means that element x ours at position i in the lista. Informally, M is similar to the map funtion of funtional languages. For example,M([x1; x2℄; b) holds if and only if b = [y1; y2℄, and Or(x1; y1) and Or(x2; y2) hold.Now we an speify re as follows:re : [List(I);List(O)℄;Sre : (8x : mem(x; a)! Ir(x))! (re(a; b)$M(a; b)):This spei�ation says that it is orret to reursively apply r, to ompute M(a; b). Forexample, if a = [x1; x2℄, we an orretly ompute b = [y1; y2℄ by the reursive allsr(x1; y1) and r(x2; y2).Finally, we speify omposition  as follows: : [List(I);List(O);O℄;Sg : Ir(x) ^ Od(x; h; a) ^M(a; b)! ((h; b; y)$ Or(x; y)):y We mean it in the ordinary sense, not that of onstraint programming.z WellFounded(�) is of ourse not �rst-order. It is the only kind of non-�rst-order axiom that we willuse, and as we will show in Setion 5.1, we do not have to prove suh axioms anyway.x We will disuss omposition of ADTs in Setion 3.3.



An Abstrat Formalisation of Corret Shemas 7The spei�ation Sg of  is a generalised onditional spei�ation. It says that (h; b; y)takes the lists h (omputed by d(x; h; a)) and b (omputed by re(a; b)) as inputs andomposes them into a �nal result y that satis�es the desired output ondition Or(x; y).(We will disuss generalised onditional spei�ations in Setion 4.1.3.)So, now we have a omplete semanti haraterisation of a divide-and-onquer shemain whih the template is Td. The omplete shema, made up of the framework DC, thespei�ations we have disussed above, and the template Td, is:Shema DC(I;O; Ir ; Or; Od;�);import: LIST (I);LIST (O);delarations:Ir : [I℄;Or : [I;O℄;Od : [I;List(I);List(I)℄;� : [I; I℄;M : [List(I);List(O)℄;axioms:A1 : M(a; b)$ l(a) = l(b) ^8x; y; i : elemi (a; i; x) ^ elemi (b; i; y)! Or(x; y);onstraints:C1 : Ir(x)! 9h; a : Od(x; h; a);C2 : Ir(x) ^ Od(x; h; a)! (8y : mem(y; a)! Ir(y) ^ y � x);C3 : WellFounded(�);C4 : Ir(x) ^ Od(x; h; a) ^ Or(x; y)! 9b : M(a; b);speifiations:r : [I;O℄;Sr : Ir(x) ! (r(x; y)$ Or(x; y));d : [I;List(I);List(I)℄;Ssld : Ir(x) ! (d(x; h; a)! Od(x; h; a));Ir(x) ! 9h; a : d(x; h; a);re : [List(I);List(O)℄;Sre : (8x : mem(x; a)! Ir(x))! (re(a; b)$M(a; b)); : [List(I);List(O);O℄;Sg : Ir(x) ^ Od(x; h; a) ^M(a; b)! ((h; b; y)$ Or(x; y));template:r(x; y)  d(x; h; a); re(a; b); (h; b; y):Constraints C1, C2 and C3 have been explained. C4 has been introdued to guaranteethe orretness of the template. Corretness analysis an be performed by the proofmethods introdued in (Flener et al., 1998a; Lau et al., 1999), and indeed in this aseit reveals that C4 is required (we omit the details here). The intuitive meaning of C4 isthe following: let x be an input that satis�es the input ondition and has been orretlydeomposed into h and a (i.e., Ir(x)^Od(x; h; a) holds); then whenever an output y thatsatis�es the output ondition Or(x; y) exists, the reursive map M(a; b) must hold for atleast one b, needed to ompute y by the �nal omposition (h; b; y).



8 P. Flener, K.-K. Lau, M. Ornaghi and J. RihardsonThis shema is a very generi one for divide-and-onquer. It an be speialised intodivide-and-onquer shemas with arbitrary numbers of base ases, step ases and reur-sive alls. We will illustrate this with two examples.A speialisation of DC is obtained by making some open symbols of the frameworkless generi, for instane Od. For eah speialisation, we need to supply a deompositionprogram for d, a reursion map for re, and a omposition program for . These pro-grams must be orret with respet to their speialised spei�ations in DC, so that theyorretly ompose with the template Td. Of ourse for eah speialisation of DC, thenew spei�ations will also provide a guide for the synthesis of programs that have thesame omputation pattern as the template.Example 2.2. Now we show a shema, whih is an instane of DC, with one base aseand one step ase.Suppose we speialise the spei�ation of deomposition d as follows:Od(x; h; a) $ (Oprim (x) ^ h = [x℄ ^ a = [ ℄) _(:Oprim (x) ^ a = [x1; x2℄ ^ Ode(x; h; x1; x2));where Oprim(x) and Ode(x; h; x1; x2) are the output onditions of prim(x) and de(x; h;x1; x2). Informally, prim(x) means that x is primitive, i.e. a base ase; de(x; h; x1; x2)means that x an be deomposed into h, x1 and x2.A program for d(x; h; a) orret with respet to this spei�ation is:d(x; [x℄; [ ℄)  prim(x)d(x; h; [x1; x2℄)  :prim(x); de(x; h; x1; x2)where prim is orret with respet to the onditional spei�ation:Ir(x)! (prim(x)$ Oprim (x));and de with respet to the seletor spei�ation:Ir(x) ^ :Oprim (x) ! (de(x; h; x1; x2)! Ode(x; h; x1; x2));Ir(x) ^ :Oprim (x) ! 9x1; x2; h : de(x; h; x1; x2):If we ompose this orret program for d with Td, we get:r(x; y)  prim(x); re([ ℄; b); ([x℄; b; y)r(x; y)  :prim(x); de(x; h; x1; x2); re([x1; x2℄; b); (h; b; y):Using the spei�ation for re this beomes:r(x; y)  prim(x); ([x℄; [ ℄; y)r(x; y)  :prim(x); de(x; h; x1; x2); r(x1; y1); r(x2; y2); (h; [y1; y2℄; y):It is easy to see that by using suitable spei�ations for solve and omp, we an transformthis program into the more familiar one for divide-and-onquer with one base ase andone step ase:r(x; y)  prim(x); solve(x; y)r(x; y)  :prim(x); de(x; h; x1; x2); r(x1; y1); r(x2; y2); omp(h; y1; y2; y)Note that in the step ase, there are two reursive alls to r.We an also get an instane of DC with one base ase and two step ases.



An Abstrat Formalisation of Corret Shemas 9Example 2.3. By speialising the template over the data type of natural numbers,y wean obtain the template:r(0; y; z)  1(y; z)r(s(x); y; z)  sum(v; v; s(x)); r(v; y; w); 2(0; y; w; z)r(s(x); y; z)  sum(v; v; x); r(v; y; w); 2(s(0); y; w; z):The derivation of this template is given later, in Example 5.5.As illustrated by Examples 2.2 and 2.3, the template Td is very generi. In its instanes,the number of reursive alls (to r) is arbitrary, a being a list and re being a map of therelation r. Equally, the number of base and step ases is arbitrary. This overomes therigidity normally assoiated with shemas that are purely syntati strutures, where thenumbers of reursive alls, as well as base and step ases, are pre-determined.Finally, it is worth reiterating that all three ingredients of a shema, viz. framework,spei�ations and template, are indispensable for de�ning the shema, as the above ex-amples have illustrated.2.2. orretness of shemas and their reuseIn our three-tier formalism for shemas, orretness is the adhesive that glues frame-work, spei�ations and template together. It is de�ned model-theoretially, using thenotion of steadfastness (Lau et al., 1999). Steadfastness is a orretness property of openprograms (e.g. templates) in lasses of interpretations (those of the spei�ations, in theontext of the framework) that an be both omposed and inherited. It is thus suitablefor de�ning the orretness of shema templates, and hene the orretness of shemas.Having a notion of orretness for shemas allows us to reuse shemas at the threelevels of frameworks, spei�ations and templates, and to reason about the orretnessof suh reuse.As Example 2.1 suggests, frameworks are our �rst level of reuse. We an reuse frame-works by (a) speialising them, by adding new axioms and/or new symbols; and (b)omposing them, aording to their onstraints. When the framework of a shema isspeialised into a new one, the axioms, theorems and orret template of the shema areinherited, and hene reused. The same happens when we ompose the frameworks of twoshemas: the omposed shema inherits from the omponent shemas.Thus, after we have speialised a shema or omposed it with another one, we geta shema with a new framework, ontaining new axioms and/or symbols. Using thisnew, riher framework, we an synthesise programs for some spei�ations of prediatesthat are open in the inherited template. In the synthesis proess, we an reuse both thespei�ations and the template. To see this, let p be a prediate, with spei�ation Sp,of a template T . There are two ases:(a) In the riher framework, we already have a orret program P for Sp. In this ase,we an orretly ompose T and P , i.e., we have orret reuse at the template level(and this synthesis sub-task stops suessfully).(b) If (a) does not hold, then we an try to transform Sp into a new spei�ation thatis more suited to the new riher knowledge, i.e., we have reuse at the spei�ationy Construted from 0 and the suessor funtion s.



10 P. Flener, K.-K. Lau, M. Ornaghi and J. Rihardsonlevel if we sueed in �nding suh a transformation. The spei�ation speialisationsused in Examples 2.2 and 2.3 are the kinds of spei�ation transformations thatwill be explained in Setion 5. One we have a satisfatory spei�ation we ontinuethe synthesis proess iteratively.Reuse at the framework level is based on operations on frameworks. At this level, ourapproah is similar to that of algebrai ADTs, and orretness is not meaningful, sinebuilding a framework is a modelling proess, whereby an abstrat model of a problemdomain or the abstrat data types involved in a omputation pattern are set up, typiallyusing prede�ned building bloks. In ontrast, orretness of reuse is a key requirement atthe spei�ation and template levels. We believe that orret reuse at these levels, madepossible by our notion of orret shemas, is new, and important, and yields a powerfulmehanism for deriving orret programs.2.3. using orret shemas for program synthesisCorret shemas an be used to synthesise orret programs for a given problem do-main. We view the program synthesis task as problem solving (where the problem domainis formalised as a framework) and the program synthesis proess as a problem redutionproess whereby the synthesis task is suessively sub-divided until the sub-tasks an besolved (the sub-solutions are then omposed into a solution for the top-level synthesistask).The program synthesis task is spei�ed in the problem domain by a spei�ation Srof a relation r to be omputed. The synthesis proess starts by hoosing a shema S 0that ontains a template Tr0 for omputing some relation r0, spei�ed by Sr0 , suh thatby renaming or speialisingy the shema S 0 into S we an `math' Sr and Sr0 (and thetemplate Tr0 beomes a template Tr for r). The synthesis proess then onsists of iterativeattempts to synthesise programs for the prediates in the body of the template Tr fromtheir spei�ations in S. As programs are synthesised, and as sub-tasks are generated,the template will be updated, so at any moment in time, there is a `urrent' templatethat has evolved from the original template Tr. We shall denote the `urrent' templatesimply by T , and the orresponding `urrent' shema S(T ).In eah iteration of the synthesis proess, for a prediate p in the body of the templateT , if we an �nd an existing program Q whih is orret with respet to a spei�ationSq , suh that Sq an be transformed into the spei�ation Sp of p (through the operationsexplained in Setion 5), then Q is also orret with respet to Sp, and we an (re)use theprogram Q for p, and the sub-task is solved.Otherwise, we look for a prede�ned shema S 00 with a template T 00 for omputinga prediate q with a spei�ation Sq . If Sq an be transformed into the spei�ationSp, then we import the shema S 00 into the `urrent' shema S(T ), and add to S(T ) thespei�ations of any prediates in the body of the template T 00. These new open prediatesorrespond to the sub-problems generated by the sub-solution that S 00 represents.Example 2.4. We an import into the basi shema DC the following shema for om-puting the map relation, after (possible) renamings and onstraint heking:y We will deal with suh framework morphisms in Setion 3.2.



An Abstrat Formalisation of Corret Shemas 11ShemaMAP(I;O; Ir : [I℄; Or : [I;O℄);import: LIST (I);LIST (O);axioms:A1 : M(a; b)$ l(a) = l(b) ^8x; y; i : elemi(a; i; x) ^ elemi(b; i; y)! Or(x; y);speifiations:r : [I;O℄;Sr : Ir(x) ! (r(x; y)$ Or(x; y));map : [List(I);List(O)℄;Smap : (8x : mem(x; a)! Ir(x))! (map(a; b)$M(a; b));template:map([ ℄; [ ℄)  map([xja℄; [yjb℄)  r(x; y);map(a; b):In this ase things are simple, sine we immediately reognise that it is suÆient torename map by re, to get a orret open program for re. The general ase will bedisussed in Setion 5, where we will also show that orretness is preserved by shemaomposition. This simple example shows how shemas an be reused, together with theirtemplates, by being imported into other shemas.If no shema an be found, or if we prefer to hoose a more spei� pattern, then wean try to speialise the urrent template, in the way we speialise the basi shema DC(in Example 2.1) in Examples 2.2 and 2.3 (and later in Example 5.5).The iterative synthesis proess stops suessfully if and when we have synthesisedprograms for all the prediates in the body of the template Tr, as well as suh prediatesin all templates imported during the sub-tasks. In the absene of suess, we have tobaktrak.Finally, it is worth noting that we an apply the same proess to transform a shemainto a family of more speialised shemas. In this ase we halt the proess whenever wehave reahed a satisfatory speialisation. In Examples 2.2 and 2.3 (and 5.5), we havestopped the speialisation proess after just one step. It may also happen that, duringsome synthesis proess, some new interesting speialisation gets onstruted. In this aseit an be saved as a new prede�ned shema for future use.3. Spei�ation FrameworksAs we have shown in the previous setion, a spei�ation framework is the ontextwhere the spei�ation language and the meaning of the speifying symbols are provided,together with the general laws for reasoning about spei�ations and program orretness.In this setion, we formalise spei�ation frameworks, as well as their reuse throughframework morphisms and framework omposition.3.1. a formalisation of speifiation frameworksIn our approah, the speifying symbols are symbols of a many-sorted �rst-order sig-nature �, formalised as a pair � = hS;Di that ontains a set S of sort symbols and a set



12 P. Flener, K.-K. Lau, M. Ornaghi and J. RihardsonD of funtion and relation delarations. A funtion delaration has the form f : a ! s,where f is the delared funtion symbol, a its arityy and s its sort; and a relation dela-ration has the form r : a, where r is the delared relation symbol and a its arity. Funtiondelarations with empty arity introdue onstants. Arbitrary overloading is allowed, sothat the union of two signatures an be de�ned as the signature ontaining the unionsof the sorts and of the delarations, and (sine we will work with �rst-order logi withidentity) overloaded identity = : [s; s℄ (for every sort s) will be always understood.Example 3.1. A signature for the domain of planar �gures and their areas an be builtby importing the signature of reals (whih we omit here for oniseness):Signature FIGURES ;import: REALS ;sorts: Figs ;dels: area : [Figs ℄! Reals;[ : [Figs ;Figs ℄! Figs ;separated : [Figs ;Figs ℄:Here, overloaded identities = : [Reals ;Reals ℄ and = : [Figs ;Figs ℄ are understood.The meaning of speifying symbols is given by a hosen lass I of �-interpretations. Asusual, a �-interpretation maps every sort symbol s into a set si, eah onstant delaration : [ ℄ ! s into an element ( : [ ℄ ! s)i 2 si, eah funtion delaration f : a ! s intoa funtion (f : a ! s)i : ai ! si,y and eah relation delaration r : a into a relation(r : a)i � ai. We interpret delarations instead of symbols, beause overloading is allowed.Example 3.2. We will onsider the following interpretation �g of the signature FIG-URES :Figs�g : regions of the plane delimited by losed lines;or �nite unions of suh regions;(area : [Figs ℄! Reals)�g : area of a �gure;([ : [Figs ;Figs ℄! Figs)�g : union of two �gures;(separated : [Figs ;Figs ℄)�g : separated(x; y) holds if the (possible) ommon pointsof �gures x and y belong to their borders:The interpretation of the imported reals is the usual one, and the (understood) overloaded= is interpreted as the standard identity.From the signature �, we generate the (�rst-order) spei�ation language L�. �-formulas are built and interpreted (in a �-interpretation) in the standard way. Someare is needed though, due to arbitrary overloading. If an overloaded funtion symbolhas two delarations f : a ! s1 and f : a ! s2 with the same arity and di�erent sorts,then to avoid onfusion, we will use fs1 to refer to the �rst delaration, and fs2 to referto the seond one. In this way, we an assoiate one delaration with eah ourrene ofy An arity a is a list [s1; : : : ; sn℄ of sort symbols.y If a = [s1; : : : ; sn℄, then ai is si1 � : : :� sin.



An Abstrat Formalisation of Corret Shemas 13a funtion or relation symbol in a formula, and interpret it aording to that delaration,in an unambiguous way.Finally, in a spei�ation framework, the laws for reasoning about spei�ations andprogram orretness are given by a �-axiomatisation Ax , i.e., a set of �-sentenes, suhthat the hosen interpretations I are models of Ax , or I j= Ax . In general I will be asubset of all the models of Ax . We all I the intended interpretations of the framework.Example 3.3. We will onsider the following axioms Ax (FIGURES ) for FIGURES :idempotene : 8x : Figs : x [ x = x;ommutativity : 8x; y : Figs : x [ y = y [ x;assoiativity : 8x; y; z : Figs : (x [ y) [ z = x [ (y [ z);additivity : 8x; y : Figs : separated(x; y)! area(x [ y) = area(x) + area(y):The intended interpretation is �g, whih indeed is a model of the axioms, but there areother models that are ompletely unrelated to �g. For example, if we interpret Figs as anydomain ontaining sets of reals and losed under union, [ as set union, separated(x; y)as empty intersetion, and area as the sum of the elements of a set, then we get anothermodel of the axioms. In other words, we have a loose axiomatisation of the intendedinterpretations.Now we an de�ne spei�ation frameworks formally as follows:yDefinition 3.1. (Speifiation Frameworks) A spei�ation framework F = h�;I; Axi is omposed of a signature �, a set I of intended �-interpretations, and a set Axof axioms, suh that I j= Ax . F is losed if I ontains just one interpretation; it is openif I ontains many interpretations.An example of a losed framework (with a loose axiomatisation) is FIG = hFIGURES;�g; Ax (FIGURES )i, where the signature FIGURES, the intended interpretation �g, andthe axioms Ax (FIGURES ) are those in Examples 3.1, 3.2 and 3.3.A partiular kind of losed spei�ation frameworks are losed ADT -frameworks,for axiomatising Abstrat Data Types. The intended interpretation of a losed ADT-framework is a reahable isoinitial model (Bertoni et al., 1983), or more preisely a(unique) isoinitial term-model.Example 3.4. The ADT-framework for natural numbers isNAT = hNAT ;N ;Ax (NAT )i,where NAT is the following signature:Signature NAT ;sorts: Nat ;dels: 0 : [ ℄! Nat ;s : [Nat ℄! Nat ;+; � : [Nat ;Nat ℄! Nat ;y For oniseness, after this de�nition we shall refer to spei�ation frameworks simply as frameworks.



14 P. Flener, K.-K. Lau, M. Ornaghi and J. Rihardsonand the axioms Ax (NAT ) are:sax : :s(x) = 0;s(x) = s(y)! x = y;+ax : x+ 0 = x;x+ s(y) = s(x+ y);�ax : x � 0 = 0;x � s(y) = (x � y) + x:The standard struture of natural numbers is an isoinitial model reahable by 0 and s,and we hoose the isoinitial term-model of NAT generated by 0 and s to be the intendedinterpretation N .Reahable isoinitial models are similar to the more popular initial models (Goguenand Meseguer, 1987; Goguen et al., 1978), used in algebrai spei�ations (Sannella andTarleki, 1997; Wirsing, 1990). A di�erene is that, while initial models behave as anyother model for positive ground quanti�er-free formulas only, isoinitial models do so forany ground quanti�er-free formulas, inluding negation. We hoose isoinitial models asintended models, beause negation is important for reasoning about spei�ation andorretness.As for open frameworks, we fous our attention on those that are parametri:Definition 3.2. (Parametri Frameworks) A parametri framework is an openframework F(�) = h�; I;Axi, where (i) � is a set of symbols in �, alled parameters ; (ii)I is a lass of �-interpretations, suh that, for every pair i1 and i2 of interpretations (inI), if the interpretation of the parameters � is the same for both i1 and i2, then i1 = i2.That is, the parameters an be interpreted in many ways, but any hosen interpretationof the parameters ompletely determines the interpretation of all the other symbols. Forthis reason, we all the latter de�ned symbols .For example, onsider the signature FIGURES in Example 3.1 enrihed by a prediatebasi : [Figs ℄, indiating some lass of basi �gures, for whih we an ompute the area.Now, for every interpretation of the parameter basi, we interpret the sort Figs as thesubset of the �gures that an be generated by �nite unions of basi �gures, and [, areaand separated as before. By varying the interpretation of basi, we get a parametriframework FIG(basi) with a loose axiomatisation.ADT-frameworks an also be parametri. For suh frameworks, the intended interpre-tations are j-reahable j-isoinitial models (Lau and Ornaghi, 1999), where j is a (pre-)interpretation of the parameters �.Example 3.5. The ADT-framework for pairs is PAIR(X;Y ) = hPAIR;P ;Ax (PAIR)i,where PAIR is the following signature:Signature PAIR;sorts: Pair (X;Y ); X; Y ;dels: h i : [X;Y ℄! Pair(X ;Y ):



An Abstrat Formalisation of Corret Shemas 15For larity we use the notation hx; yi (instead of h i(x; y)). The axioms Ax (PAIR) are:ypair : 8x : X; y : Y : hx; yi = hx0; y0i ! x = x0 ^ y = y0;indutivepair : (8x : X : 8y : Y : H(hx; yi))! (8p : Pair (X;Y ) : H(p)):For every interpretation j of the parameters X and Y , the j-models of Ax (PAIR) are themodels of Ax (PAIR) that oinide with j overX and Y . The intended (j-isoinitial) j-modelorresponding to j is the interpretation Pj where Pair(X;Y ) is the artesian produtX j � Y j, and h i is the usual pairing funtion. The lass P of intended interpretations isthe lass of Pj's.Finally, as we mentioned in Setion 2.2, frameworks are our �rst level of reuse. Thekey to their reuse are framework morphisms and framework omposition.3.2. framework morphismsFramework morphisms are based on signature morphisms, whih we briey reall here.For two signatures � and �, a signature morphism h : � ! � maps sorts of �into sorts of �, and delarations of � into delarations of �, while preserving aritiesand (for funtion delarations) sorts. Morphism h indues a translation h : L� ! L�yand a redut operation jh : �-interpretations ! �-interpretations. Translation h has astraightforward reursive de�nition, while the redut j jh of a �-interpretation j interpretseah �-sort s as h(s)j and eah �-delaration d as h(d)j. If j = i j h, then j is alled anh-expansion of i. In general, there are many h-expansions.Injetive signature morphisms are alled signature expansions , and bijetive signaturemorphisms are alled signature renamings . If a signature expansion h : � ! � is suhthat, for every sort symbol or delaration � of �, h(�) = �, then � � �. In this ase, h isleft impliit, the h-redut of a �-interpretation j is alled a �-redut, and the h-expansionof a �-interpretation i is alled a �-expansion. The �-redut of a �-interpretation j justforgets the (interpretation of the) new symbols, and is indiated by j j�.Finally, for every �-sentene F and �-interpretation i, the following satisfation prop-erty holds (Goguen and Burstall, 1992):i j= h(F ) i� i jh j= F: (3.1)Now we an de�ne framework morphisms as follows:Definition 3.3. (Framework Morphisms) Let F = h�; I;Ax i and G = h�; I 0;Ax 0ibe two frameworks. A signature morphism h : �! � is a framework morphism from Fto G if and only if (i) for every j 2 I 0, the redut j jh belongs to I; (ii) for every axiomA 2 Ax , we have that Ax 0 ` h(A).By (i), the h-redut is a map from the intended interpretations of G to those of F . By(3.1), (i) entails that, for every �-sentene F , if I j= F , then I 0 j= h(F ). In partiular,I 0 j= h(A), for every A 2 Ax , i.e., Ax are inherited (under translation). By (ii), we mayy Note that H is �rst-order beause it represents a shema of �rst-order formulae.y We use an overloaded h.



16 P. Flener, K.-K. Lau, M. Ornaghi and J. Rihardsonhange axiomatisations, on ondition that the inherited axioms are inluded or beometheorems.We distinguish three important ases of frameworks morphisms: re�nement, expansionand speialisation.3.2.1. framework refinementIn a re�nement , h is injetive and every interpretation i 2 I has at least one h-expansion.Example 3.6. The ADT-framework PAIR(X;Y ) an be re�ned into the ADT-frame-work T OPAIR(X;Y;� : [X;X ℄;� : [Y; Y ℄) of totally ordered pairs by adding to thesignature the delarations � : [X;X ℄;� : [Y; Y ℄;� : [Pair (X;Y );Pair (X;Y )℄;and to Ax (PAIR) the total ordering axioms for � : [X;X ℄ and � : [Y; Y ℄, and:8a; b : X : 8; d : Y : ha; i � hb; di $ (:a = b ^ a � b) _ (a = b ^  � d):3.2.2. framework expansionIn an expansion, h is injetive and jh bijetive. By the bijetivity of jh, every inter-pretation i 2 I has one h-expansion j 2 I 0, i.e., h-expansion beomes the inverse funtionof j h. In general, the expansion of a framework is de�ned through the orrespondingh-expansion funtion.Renaming is a speial ase of expansion, where h is a signature renaming, and Ax 0 =h(Ax ), i.e., nothing is hanged, but the symbols. We an easily see that:I 0 = I jh�1: (3.2)Example 3.7. Consider the ADT-framework PAIR(X;Y ). We have that PAIR(A;B)is obtained by the signature renaming �, where:�(X) = A�(Y ) = B�(Pair (X;Y )) = Pair (A;B)�(h i) = h i :For every fX;Y g-interpretation i, the interpretation Pi is mapped (by j ��1) into theinterpretation P 0 suh that:AP0 = X iBP0 = Y iPair (A;B)P0 = X i � Y i = AP0 �BP0h iP0 = pairingi.e., we have just hanged the alphabet of the signature.



An Abstrat Formalisation of Corret Shemas 17Expansion by expliit de�nitions (Lau and Ornaghi, 1997a) of new relation and fun-tion delarations is an important ingredient in our approah.An expliit �-de�nition of a relation r : a, where a ontains only sorts from �, is a(� [ fr : ag)-sentene of the form: 8x : r(x) $ R(x) (3.3)where x is a tuple of distint variables with sorts a, and R(x) is a �-formula with freevariables x.yFor every �-interpretation i, there is one (� [ fr : ag)-expansion i0 of i, suh thati0 j= Dr:a. We all i0 the Dr:a-expansion of i.An expliit �-de�nition of a funtion f : a! s, where a and s ontain only sorts from�, is a (� [ ff : a! sg)-sentene of the form:8x : F (x; f(x)) (3.4)where x is a tuple of distint variables with sorts a, and F (x; y) is a �-formula with freevariables x and y.Let i be a �-interpretation that satis�es the obligation:zi j= 8x : 9!y : F (x; y): (3.5)Then there is one (� [ f : a ! s)-expansion i0 of i suh that i0 j= Df :a!s. We all i0 theDf :a!s-expansion of i.An expliit �-de�nition Dd of a funtion or relation delaration d an be used toexpand a framework F = h�; I;Axi into the framework G = h� [ fdg; I 0;Ax [ fDdgi,suh that I 0 is the set of Dd-expansions of the interpretations of I. Of ourse, if d is afuntion delaration, we require that the orresponding obligation (3.5) is satis�ed byI. G will be alled the Dd-expansion of F , and suh an expansion will be denoted byFxp(F ; Dd).Example 3.8. The following relations and funtions an be expliitly de�ned in NAT :D�:[Nat;Nat ℄ : x � y $ 9z : x+ z = y;D<:[Nat;Nat ℄ : x < y $ x � y ^ :x = y;Dsqrt:[Nat ℄!Nat : sqrt(x) � sqrt(x) � x ^ x < s(sqrt(x)) � s(sqrt(x)):Similarly, in the parametri framework PAIR(X;Y ), we an expliitly de�ne projetionsas follows: D�1:Pair(X;Y )!X : 8p : Pair (X;Y ) : 9v : Y : p = h�1(p); vi;D�2:Pair(X;Y )!X : 8p : Pair (X;Y ) : 9u : X : p = hu; �2(p)i:3.2.3. framework speialisationFinally, in the third kind of framework morphism, a speialisation, h is surjetive andj h injetive. In this ase we an also de�ne an expansion operator, but it is a partialfuntion, i.e., some �-interpretations may not have h-expansions. For this reason, we saythat we have a speialisation.y Thus expliit de�nitions are non-reursive.z We omit sorts whenever no onfusion an arise.



18 P. Flener, K.-K. Lau, M. Ornaghi and J. RihardsonExample 3.9. Consider the ADT-framework PAIR(X;Y ). We de�ne PAIR(A;A) asthe target of the framework speialisation based on the following signature morphism h:h(X) = Ah(Y ) = Ah(Pair (X;Y )) = Pair (A;A)h(h i) = h i :For every fX;Y g-interpretation i, if X i 6= Y i, then i has no expansion. Otherwise, theinterpretation Pi is mapped into the interpretation P 0 suh that:AP0 = X i = Y iPair (A;A)P0 = X i � Y i = AP0 �AP0h iP0 = pairingi.e., we have a speialisation to the ase where X and Y are (interpreted as) the samedomain. 3.3. framework ompositionFramework omposition is performed through two separate operations, namely unionand internalisation.Definition 3.4. (Framework Union) The union of two frameworks F = h�; I;Ax iand G = h�;J ;Ax 0i is the framework F + G = h� [�; I � J ;Ax [Ax 0i where I � J isthe set of (� [�)-interpretations i suh that i j� 2 I and i j� 2 J .If the two signatures have ommon symbols, then I � J may be empty. In this ase,we say that the union is inonsistent. We an easily see that, if the union is onsistent,then I � J j= Ax [ Ax 0, as required in a framework.By union and renaming or speialisation, we an ompose frameworks.Example 3.10. If we have a losed framework INT for integers, with the sort Intof integers, we an introdue pairs of integers by the speialisation PAIR(Int ; Int) ofPAIR(X;Y ) and by the union INT + PAIR(Int ; Int).It is important to give onditions for the onsisteny of union. To this end, we introdueonstraints.Definition 3.5. (Constraints) Let F(�) = h�; I;Ax i be a framework, and let � bea subsignature of � ontaining �. A �-onstraint for I is any set Constrs of �-sentenes,suh that I j � are the models of Constrs . A �-onstrained framework is a frameworkF(�) = h�; I;Ax [ Constrsi, ontaining, as a distinguished subset of the axioms, a�-onstraint Constrs for I.Example 3.11. T OPAIR(X;Y;� : [X;X ℄;� : [Y; Y ℄) an be given in the form of a(X;Y;� : [X;X ℄;� : [Y; Y ℄)-onstrained framework, by putting the total ordering axiomsfor � : [X;X ℄ and � : [Y; Y ℄ into the onstraint.



An Abstrat Formalisation of Corret Shemas 19To monitor onstraint satisfation, we perform framework omposition through inter-nalisation and union.Let F(�) = h�; I;Ax [ Constrsi be a �-onstrained framework, and G = h�;J ;Ax 0ibe a (possibly losed) framework, suh that the ommon symbols of the two frameworksare only the sort symbols that our in �.y Then we an perform internalisation of thedelarations of � by G, as follows:(i) Let r : a be a relation delaration of �. Its internalisation in G is an expliit �-de�nition 8x : r(x) $ R(x).(ii) Let f : a ! s be an open funtion delaration of �. Its internalisation in G is anexpliit �-de�nition 8x : F (x; f(x)), where J j= 8x : 9!y : F (x; y).Definition 3.6. (Internalisation) Let F(�) = h�; I;Ax [Constrsi and G = h�; J ;Ax 0i be de�ned as before. If a set D of expliit de�nitions internalises all the funtionand relation delarations of �, then it is alled a �-internalisation.A �-internalisation D de�nes one D-expansion Fxp(G; D) of G. We have the followingonsisteny de�nition and result:Definition 3.7. (Consistent �-internalisations) Let F(�) = h�; I;Ax[Constrsiand G = h�;J ;Ax 0i be de�ned as before. A �-internalisation D is onsistent with re-spet to F(�) if and only if every interpretation of the D-expansion Fxp(G; D) of G is amodel of Constrs.Theorem 3.1. (Consisteny Result) Let F(�) = h�; I;Ax [ Constrsi and G =h�;J ;Ax 0i be de�ned as before, and D be a �-internalisation. If D is onsistent withrespet to F(�), then Fxp(G; D) + F(�) is an expansion of G, as well as one of F(�).Proof. Consider an interpretation j 2 J . Sine (by the onsisteny of D) j is a model ofConstrs , � ontains �, and F(�) is parametri, there is one �-interpretation i 2 I thatoinides with j over the symbols of �. Therefore, the union ontains the interpretationi � j, whih is the unique expansion (in the union) of i, as well as of j. 2The advantage of performing internalisation before doing union is that, after the in-ternalisation steps, we an hek onstraint satisfation in G, sine we have an expansionof the language of G ontaining all the symbols involved in the onstraints.Example 3.12. We an ompose T OPAIR(X;Y;� : [X;X ℄;� : [Y; Y ℄) and the frame-work INT , whih formalises the standard integer type Int , by the following algorithm:(1) Rename or speialise T OPAIR(X;Y;� : [X;X ℄;� : [Y; Y ℄), in suh a way that theonly ommon symbols are the (possibly renamed) sort symbols of the onstraintsignature X;Y;� : [X;X ℄;� : [Y; Y ℄. Here, this is obtained by the speialisationT OPAIR(Int ;� : [Int ; Int ℄). Note that Int is open, i.e., we have only renamed(speialised) X and Y by Int . The translation of the onstraint ontains the totalordering axioms for � : [Int ; Int ℄.y If this ondition does not hold, then we rename F(�) as appropriate.



20 P. Flener, K.-K. Lau, M. Ornaghi and J. Rihardson(2) Internalise � : [Int ; Int ℄ in INT , in suh a way that the (translated) onstraint,i.e. total ordering axioms for �, beomes a theorem. We an obtain this by theinternalisation D� : 8x; y : x� y $ x � y:(3) Perform the union T OPAIR(Int ;� : [Int ; Int ℄) + Fxp(INT ; D�).Looking at this example, we an see that we an use omposition based on inter-nalisation and union, to implement parameter passing. The example orresponds to theparameter passing where X and Y are replaed by Int , and � : [X;X ℄ and � : [Y; Y ℄ by� : [Int ; Int ℄. The di�erene is that, to internalise properly, we have introdued an alias� of �. By the eliminability of expliit de�nitions, we ould uniformly replae it by �, ifwe wished. On the other hand, internalisation an be used in a more exible way, and, aswe will see, the hoie of the internalising de�nitions will also impinge on the synthesisproess. 4. Spei�ations and CorretnessIn this setion, we onsider spei�ations. They allow us to introdue steadfast pro-grams, i.e., orret programs in frameworks. Suh programs an be orretly reused byomposing frameworks, as illustrated in Setion 2, and thus they provide us with a seondlevel of reuse. 4.1. speifiationsDefinition 4.1. (Speifiations) Let F = h�; I;Ax i be a framework and Æ be a setof relation symbols not in �. A �-spei�ation SÆ of Æ is a set of (� [ Æ)-formulas.A spei�ation SÆ is interpreted as an expansion operator, in the following way:Definition 4.2. (SÆ-expansions of Interpretations) Let � be a signature, and SÆbe a �-spei�ation of Æ. A SÆ-expansion of a lass I of �-interpretations is a lass I 0 of(�[Æ)-interpretations suh that I 0 j= SÆ , and, for every interpretation i 2 I, there is one(� [ Æ)-expansion i 0 2 I 0. The set of SÆ-expansions of I will be denoted by Ixp(I; SÆ).If Ixp(I; SÆ) is empty, then SÆ is inonsistent with respet to the framework. IfIxp(I; SÆ) ontains just one expansion, then SÆ is strit with respet to the framework.If Ixp(I; SÆ) ontains more than one expansion, then SÆ is non-strit.Spei�ation symbols have the sole purpose of speifying programs, whih are to besynthesised in a framework. To avoid onfusion, we will all framework symbols thesymbols that are de�ned in a framework and an be used to write down spei�ations,and spei�ation symbols those that are used to speify programs. Thus, spei�ationsymbols will be onsidered to be disjoint from the framework language, and will bedesignated as s-symbols.There are many kinds of spei�ations (see e.g. (Lau and Ornaghi, 1997a; Lau andOrnaghi, 1997b)). Here we briey disuss the more important ones: expliit de�nitions,super-sub spei�ations, onditional spei�ations and seletor spei�ations.Expliit de�nitions have already been explained in Setion 3.2 (see Example 3.8). Inmany ases, they an be used as spei�ations as well.



An Abstrat Formalisation of Corret Shemas 214.1.1. super-sub speifiationsIn a framework F(�) = h�; I;Ax i, a super-sub spei�ation Sssr of a new relationdelaration r : a is a �-de�nition of the form8x : (Rsub(x)! r(x)) ^ (r(x) ! Rsuper(x))where Rsub(x) and Rsuper (x) are �-formulas. It is onsistent if the obligationI j= 8x : Rsub(x)! Rsuper (x)holds. Its meaning is the following. Let i be a �-interpretation of I. Let isub be the8x : r(x) $ Rsub(x)-expansion of i and isuper be the 8x : r(x) $ Rsuper (x)-expansion ofi. Clearly, every (� [ fr : ag)-expansion j of i suh thatrisub � rj � risuper (4.1)is a model of Sssr .Super-sub spei�ations are very useful, beause they have a proof theory (see (Lauand Ornaghi, 1997a)) and many ases an be redued to them. For example, onditionaland generalised onditional spei�ations are a partiular ase of super-sub spei�ations.4.1.2. onditional speifiationsA onditional spei�ation Sr of a new relation delaration r : a, in a frameworkF(�) = h�; I;Axi, is a �-de�nition of the formy8(I ! (r(x) $ R))where I and R are �-formulas and x is the union of the free variables of I and R. I isalled the input ondition, whereas R is alled the output ondition of the spei�ation.Sr is equivalent to the super-sub spei�ation:8((I ^ R! r(x)) ^ (r(x) ! :I _ R)):Therefore it is always onsistent, but, in general, it is non-strit.In Example 2.1, Sr and Sre are examples of onditional spei�ations.4.1.3. generalised onditional speifiationsA generalised onditional spei�ation Sgr of a new relation delaration r : a is of theform 8(I ! (r(x) $ R))where I and R are formulas in the language of F(�) and their free variables are x [ y,with y non-empty. Sgr is equivalent to the following super-sub spei�ation:8(((9y : I ^ R)! r(x)) ^ (r(x) ! (8y : I ! R))):Therefore, it is onsistent if the following obligation holds:I j= 8x : (9y : I ^ R)! (8y : I ! R):In Example 2.1, Sg is an example of a generalised onditional spei�ation.y 8(F ) is the universal losure of F .



22 P. Flener, K.-K. Lau, M. Ornaghi and J. Rihardson4.1.4. seletor speifiationsA seletor spei�ation Sslr of a new relation delaration r : a ontains two formulas,of the form 8(I(x)! (r(x; z)! R));8(I(x)! 9z : r(x; z));where x and z are tuples of sorted variables, and the free variables of R belong to x andz. Seletor spei�ations are onsistent under the obligationI j= 8(I ! 9z : R):In general, seletor spei�ations are non-strit. For every input x, there may be many(but more than one) outputs y suh that r(x; y) holds.In Example 2.1, Ssld is an example of a seletor spei�ation.Now we an de�ne program orretness with respet to spei�ations. We shall use amodel-theoreti de�nition of orretness, based on steadfastness.4.2. steadfastness and reusable orret programsIf a prediate appears in the head of a lause of a program P , then we say that it isde�ned by P . If it is not de�ned by P , i.e. it appears only in the body of P 's lauses,then we say that it is open (in P ). The meaning of an open prediate in P is left open byP , along with the meaning of the sort, onstant and funtion symbols in P . In ontrast,the meaning of the de�ned prediates is determined by P in terms of that of the opensymbols. To express this dependene more preisely, we introdue the type of a program,in the ontext of a framework F(�), as follows:Definition 4.3. (Type) A program P has type Æ ( �, written P : Æ ( �, if Æ are thede�ned prediates of P , and � is a signature ontaining the open prediates � and thesort and (onstant and) funtion symbols of P .Apart from the open prediates, i.e. the (program) parameters � of P (as well as thesort and onstant and funtion symbols of P ), � may also ontain symbols that do notour in P itself, that is, we onsider P in the ontext of the framework F(�).y Forsimpliity, the symbols of � will be alled parameters, and a �-interpretation j will bealled a pre-interpretation. For every pre-interpretation j, program P : Æ ( � has a lassof j-models, de�ned as follows:Definition 4.4. (j-models) Let P : Æ ( � be an open program, and j be a pre-interpretation. A j-model of P is a model m of P suh that m j� = j.j-models have the omplete partial ordering �Æ de�ned as follows:Definition 4.5. Let P : Æ ( � be an open program, and i1 and i2 be two j-models.Then i1 �Æ i2 if and only if, for every de�ned prediate r 2 Æ, we have that ri1 � ri2 .y For lari�ation, the reader may wish to refer to Figure 1 in Setion 2.



An Abstrat Formalisation of Corret Shemas 23An open program P : Æ ( � has, for every pre-interpretation j, a orrespondingintended j-model, written jP+ , de�ned as follows:Definition 4.6. (Minimum j-models) Let P : Æ ( � be a program, and j be a �-interpretation. The minimum j-model of P is the model jP+ suh that jP+ �Æ m, forevery j-model m of P .Now, onsider a program P : Æ ( �, in the ontext of a lass I of (� [ Æ)-interpre-tations. Any interpretation i 2 I ontains a pre-interpretation i j � of the parameters�, i.e., i j� ats as parameter passing. Thus the minimum (i j�)-model of P representsthe interpretation of Æ de�ned by P with parameter passing i j�. If this interpretationoinides with i, then we an say that P is orret with respet to i. If this happens forevery i 2 I, then we an say that P is orret with respet to I. Steadfastness is justthis kind of model-theoreti orretness in a lass of interpretations.Definition 4.7. (Steadfast Logi Programs) Let P : Æ ( � be an open program,and I be a lass of (� [ Æ)-interpretations. Then:(i) P is steadfast in a (�[Æ)-interpretation i if the minimum (i j�)-model of P oinideswith i, i.e. (i j�)P+ = i.(ii) P is steadfast in I i� it is steadfast in every interpretation i 2 I.Now we show how orretness with respet to a spei�ation in a framework an beformalised in terms of steadfastness.yIn a frameworkF(�) = h�; I;Ax i, programs always satisfy the following requirements:(i) The sort, onstant and funtion symbols of P are symbols of the signature �.(ii) The prediate symbols of a program P are s-symbols, i.e., they have been introduedby spei�ations and do not belong to �. We will distinguish the spei�ations S�of the open prediates of P , and SÆ of the de�ned ones. Thus, a spei�ation of P inF(�) will be a pair (SÆ; S�), and the type of P in this ontext will be Æ ( (�[ �).Thus the type of P is determined by its spei�ation, and so we need not state itexpliitly.If the spei�ations SÆ and S� are strit, then the de�nition of orretness oinideswith that of steadfastness in the unique (SÆ; S�)-expansion of F(�). For non-strit spe-i�ations, orretness is de�ned as follows:Definition 4.8. (Corretness) Let F(�) = h�; I;Axi be a framework. Let P bean open program with spei�ation (SÆ; S�). Then P is orret in F(�) with respet to(SÆ ; S�) if and only if, for every S�-expansion I� of I there is an SÆ-expansion I�;Æ ofI� suh that P is steadfast in I�;Æ .Intuitively, the meaning of the de�nition is the following. P : Æ ( (�[�) is a programto be ompleted by programs Q for omputing the open prediates �. Sine we arey In (Lau and Ornaghi, 1997b; Lau et al., 1999), it is shown that this formalisation is very similar tothat in (Deville, 1990).



24 P. Flener, K.-K. Lau, M. Ornaghi and J. Rihardsonin an open framework, we may have di�erent Qi's, for di�erent interpretations i 2 I.Eah Qi must be orret with respet to S�, therefore it `omputes' an S�-expansion i.Considering all the interpretations i 2 I and the orresponding expansions omputed bythe orresponding Qi, we get an S�-expansion I�. If P is steadfast in an SÆ-expansionIÆ;� of I� , then it orretly omposes with every Qi, i.e., it an be orretly reused in thevarious interpretations of the framework. Corretness requires that this holds for everyS�-expansion I�, to get orret omposition with any orret Qi. The following theoreman be proven (Lau et al., 1999):Theorem 4.1. (Compositionality of Corretness) Let F = h�; I;Axi be a frame-work. Let P be orret in F with respet to (SÆ1 ; S�1[SÆ2), and Q in F orret with respetto (SÆ2 ; S�2). Then P [Q is orret in F with respet to (SÆ1 [ SÆ2 ; S�1 [ S�2).Proof. (Outline.) Let i be an interpretation of I, and j be a (S�1 [S�2)-expansion of i.Sine Q is orret, there is a SÆ2 -expansion jÆ2 of j, suh that Q is steadfast in jÆ2 . SineP is orret, there is a SÆ1 -expansion jÆ1;Æ2 of jÆ2 , suh that P is steadfast in jÆ1;Æ2 . Qremains steadfast in the expansion jÆ1;Æ2 and, by Lemma 4.1 of (Lau et al., 1999), P [Qis steadfast in jÆ1;Æ2 . Sine the above reasoning holds for a generi (S�1 [ S�2)-expansionj of a generi i 2 I, we have proved the ompositionality of orretness. 2This theorem is the basis of (orret) reusability at the level of spei�ations and (or-ret) programs. We an also prove the following theorem, whih guarantees inheritaneof orret programs at the level of framework omposition:Theorem 4.2. (Inheritane of Corretness) Corretness is preserved by frame-work morphisms and union.Proof. (Outline.) We prove our theorem for framework morphisms. The ase of unionfollows as a orollary. Let F1 = h�1; I1;Ax1i and F2 = h�2; I2;Ax2i be two frameworks,h : �1 ! �2 be a framework morphism, and P be a program orret with respet to(Sr:a; S�) in F1.yWe have to prove that h(P ) is orret with respet to (h(Sr:a); h(S�)) in F2. Let j bea h(S�)-expansion of an i 2 I2. Then j jh j= S�, i.e., it is a S�-expansion of i jh. Sine his a framework morphism, we get i jh 2 I1 and, by the orretness of P , there is a Sr:a-expansion (j jh)r:a of j jh, suh that P is steadfast in it. By interpreting h(r : a) as r : a in(j jh)r:a, we get an expansion jr:a of j, suh that jr:a jh = (j jh)r:a. Thus jr:a is a h(Sr:a)-expansion of j and a j-model of h(P ). We an see that it is also the minimum j-model,i.e., h(P ) is steadfast in it. Sine the above reasoning holds for a generi h(S�)-expansionj of a generi i 2 I2, we obtain the inheritane of orretness. 2Sine the operations we have onsidered in Setion 3 an be redued to suitable ombi-nations of framework morphisms and to framework union, we an expand, re�ne, rename,speialise and ompose frameworks, while inheriting orret programs. This holds for anysystem of framework operations that an be explained in terms of morphisms and unions.y We onsider just one single de�ned prediate r : a. The extension to the general ase isstraightforward.



An Abstrat Formalisation of Corret Shemas 25Inheritane, together with orret reusability at the level of spei�ations and pro-grams, is the basis of our use of orret shemas, as disussed in the next setion.5. Corret Shemas for Program SynthesisUsing the results of the previous two setions, we now introdue orret shemas, asopen frameworks ontaining a set of spei�ations together with (open) programs that areorret with respet to these spei�ations. These programs are alled the templates ofthe shema, and orrespond to syntati strutures often referred to as program shemasin the literature (see Setion 1 for referenes). Our (orret) shemas are therefore moreabstrat than suh program shemas, and yet they are also more suitable for synthesising(orret) programs.Sine our haraterisation of shemas is based on our model-theoreti formalisations offrameworks and orretness, we shall sketh an assoiated proof theory (whih is soundwith respet to our shema semantis) in order that we an prove shema orretness,and more importantly, in order that we an use our shemas for program synthesis (whihmust be based on formal proofs).5.1. Corret ShemasDefinition 5.1. (Corret Shemas) A shema S = hF(�); Spe; T i is omposed ofan open onstrained framework F(�), a set Spe of spei�ations, and a set T of logiprograms P : Æ ( � with spei�ations (SÆ ; S�) in Spe. The programs of T are alledthe templates of the shema. A template P : Æ ( � is orret in S if it is orret in F(�)with respet to its spei�ation (SÆ ; S�). The shema S = hF(�); Spe; T i is orret ifall the templates of T are orret in S.We have already shown examples of orret shemas in Setion 2 (see Examples 2.1and 2.2), and we will onsider others later (see Example 5.5).The semantis of orret shemas given by De�nition 5.1 is useful, beause it allows usto devise suitable assoiated proof methods. Although these methods are not the mainonern of this paper, we need to outline the main underlying ideas in order that wean deal with shema orretness and speialisation. Speialisation onsists in derivingnew shemas from a orret shema, by suitable transformations that preserve shemaorretness. This generalises the idea of program transformation to shemas and is thebasis for shema reuse: one we have a shema that has been proved orret, we anspeialise it into a family of shemas, while preserving orretness. In the limiting ase,speialisation an yield a orret losed program, i.e., we an apply the same methods toshema speialisation and program synthesis.Furthermore, templates ompose orretly, aording to Theorem 4.1, and so we anonsider the de�nition of a single relation in a omposite template as a single omponent,whose orretness an be dealt with independently from the other omponents. Therefore,in a shema, eah template is a omponent with type P : (r : a) ( �, i.e., it ontainsone de�ned prediate r : a. This view is not restritive, unless we have mutual reursion,whih is not onsidered in Theorem 4.1. For lak of spae, we will not deal with mutuallyreursive templates. They have essentially the same proof theory, but they require adeeper termination analysis.Our orretness proofs are based on open ompletion and open termination (Lau et



26 P. Flener, K.-K. Lau, M. Ornaghi and J. Rihardsonal., 1999). The open ompletion of a program P : (r : a)( � is the ompleted de�nition(Lloyd, 1987) of r in P . The if -part of the ompleted de�nition will be alled the positiveopen ompletion of P , and denoted by Oomp+(P ). The only-if -part will be alled thenegative open ompletion of P , and denoted by Oomp�(P ).Open termination is a property of P : (r : a)( � in a lass J of pre-interpretations. Ithas been de�ned in (Lau et al., 1999), using SLDE-derivations and SLDE-failed trees.Intuitively, given a pre-interpretation j 2 J , an SLDE-derivation in j is a omputationof an idealised j-interpreter that knows j.Our orretness proofs for shemas will be based on the following theorems (whih areorollaries of the results in (Lau et al., 1999)):Theorem 5.1. Let S = hF = h�; I;Axi; Spe; T i be a shema, and P : (r : a)( � be atemplate with spei�ation (Sssr ; S�), where Sssr is the super-sub spei�ation:8x : (Rsub(x)! r(x)) ^ (r(x) ! Rsuper (x)):If (a) Ax [ S� [ f8x : r(x) $ Rsuper (x)g ` Oomp+(P );(b) Ax [ S� [ f8x : r(x) $ Rsub(x)g ` Oomp�(P );and P existentially terminatesy in every S�-expansion of I, then P is orret in S.Proof. (Outline.) Sine P existentially terminates (in every S�-expansion of I), it de-ides r : a (see Theorem 5.7 of (Lau et al., 1999)). Then, by Theorem 6.4 of (Lau etal., 1999), we get the orretness result. 2Theorem 5.2. Let S = hF = h�; I;Axi; Spe; T i be a shema, and P : (r : a)( � be atemplate with spei�ation (Sslr ; S�), where Sslr is the seletor spei�ation(sel1) 8(I(x)! (r(x; z)! R(x; z)));(sel2) 8(I(x)! 9z : r(x; z)):If (a) Ax [ S� [ f8x; z : r(x; z)$ (:I(x) _ R(x; z))g ` Oomp+(P )(b) Ax [ S� [Oomp+(P ) ` 8x : I(x)! 9z : r(x; z)then P is orret in S.Proof. (Outline.) Let j be a S�-expansion of an interpretation i 2 I, jr be the (8x; z : r(x; z)$:I(x) _ R(x; z))-expansion of j, and jP be the minimum j-model of P . By (a), jP �r jr.Sine r(x; y)! (:I(x)_R(x; y) is logially equivalent to (sel1), we get that jP j= (sel1).By (b), jP j= (sel2). Sine this holds for a generi S�-expansion j of a generi i 2 I, wehave proved the theorem. 2Thus, in our orretness proofs, we are interested in existential termination in a lassof pre-interpretations. Here we give a suÆient ondition for existential termination, thatworks for a large lass of interesting shemas.y In an interpretation, P existentially terminates if for every assignment a of x, either r(x) is suessful,or r(x) is �nitely failed for a.



An Abstrat Formalisation of Corret Shemas 27In order to simplify the de�nition, we onsider program lauses where the argumentsof prediates (exept the equality prediate) are variables only. All lauses an be trans-formed into this form, by using equality. For example, r(f(x); y) r(x; g(y)); h(x; u(y))an be written as r(a; y) a = f(x); b = g(y);  = u(y); r(x; b); h(x; ).Definition 5.2. Let P : (r : a) ( � be an open program with lauses already trans-formed in the above manner. We say that P is dereasing in a pre-interpretation j withrespet to argument positions i1; : : : ; in in r if, for every reursive lause r(x)  B of rin P , every assignment a of the variables of the lause suh that j j=a B n r, where B n ris the set of the equations and open prediates of B, and every reursive all r(y) in thebody B, ha(yi1 ); : : : ; a(yin)i � ha(xi1 ); : : : ; a(xin)i, where � is well-founded in j. We saythat P is dereasing in a lass J of pre-interpretations with respet to (the argumentpositions) i1; : : : ; in if it is dereasing with respet to i1; : : : ; in in every j 2 J .Example 5.1. The program:r(x; a; x)  a = 0r(x; a; b)  a = s(y); b = s(z); r(x; y; z)is dereasing with respet to (the argument position) 2 in every interpretation where therelation expliitly de�ned by y � a$ a = s(y) is well founded. In these interpretations,it is also dereasing with respet to 3.The existene of the well-founded relation � allows us to state the following suÆientondition:Theorem 5.3. If a program P : (r : a)( � is dereasing in a lass J of pre-interpretationswith respet to at least one (non-empty) set of argument positions, then it existentiallyterminates in J .To get dereasing templates, we assoiate with eah reursive template P : (r : a)( �a relation� suh that P is dereasing with respet to some set of argument positions in allthe pre-interpretations where � is well-founded. If neessary, we fore well-foundednessby the onstraintWellFounded(�). Suh onstraints will be the only non-�rst-order state-ments that we will use in the onstraints. However, we will not have to prove them. Aswe will see, either WellFounded(�) is inherited, or � is internalised by a relation thatis known to be well-founded. In the former ase no proof is needed, sine the statementbelongs to the axioms. In the latter ase, WellFounded(�) is guaranteed by the internal-isation. Finally, when a well-founded relation is delared in a framework, we an assumethat the �rst-order instanes of the orresponding indution and desending hain prini-ples impliitly belong to the axioms. This allows, in partiular, indutive reasoning overthe reursive struture of templates.By introduing well-founded relations as required in frameworks, we have that existen-tial termination is always guaranteed, either by the onstraints, or by their internalisation.Therefore, orretness proofs will be based on the provability of the open ompletion,aording to Theorems 5.1 and 5.2.Example 5.2. We an prove the orretness of the shema DC in Example 2.1. TheonstraintWellFounded(�) is not stritly needed here, sine the template is not reursive.



28 P. Flener, K.-K. Lau, M. Ornaghi and J. RihardsonHowever, WellFounded(�) will be neessary for the existential termination of reursivespeialisations. If we do not have this onstraint here, we will have to introdue it whenwe use reursive lauses.The other onstraints are needed to prove the ompletion. In this ase, Oomp+(Td)is (logially equivalent to):8x; y; h; a; b : r(x; y) d(x; h; a) ^ re(a; b) ^ (h; b; y)and Oomp�(Td) is:8x; y : r(x; y) ! 9h; a; b : d(x; h; a) ^ re(a; b) ^ (h; b; y):Oomp+(Td) is to be proved using the axioms, the onstraints, the spei�ations of theprediates in the body, and the de�nition:8x; y : r(x; y)$ (:Ir(x) _ Or(x; y)):This de�nition is to be replaed by:8x; y : r(x; y) $ (Ir(x) ^ Or(x; y))to prove Oomp�(Td).Finally, we onsider speialisation methods that preserve orretness. To prove orret-ness preservation, we use our results so far, together with unfolding or orret folding.Of ourse, the idea is to give general transformation rules that have been proved orretone and for all. Here, we ite just two of them.Example 5.3. The �rst transformation rule allows us to replae single alls by sequenesof alls, in the body of a template. The rule is:Let q(t) be a all ourring in the body of a template P : (r : a) ( �, and letIq ! (q(x) $ Oq(x)). If the internalisation Oq(x) $ A(x) ^ B(x) satis�es theonstraints for Oq, then the all q(t) an be replaed by alls to a(t) and b(t),where a and b are two new prediates spei�ed as follows:Ir ! (a(x)$ A(x));Ir ^ A(x) ! (b(x)$ B(x)):For the orretness of the transformation, we use Theorem 5.1 to prove that the (non-reursive) lause r(x)  a(x); b(x) is orret with respet to its spei�ations. Then,the result follows from orret omposability of orret templates and from the fat thatunfolding preserves the minimum model semantis.A similar result holds if r has a seletor spei�ation.Example 5.4. The seond transformation rule allows us to replae variables with opensorts by tuples, if suitable onditions are satis�ed. The de�nition of the rule requires adetailed reursive de�nition of a suitable translation, so we omit it here for lak of spaeand just give an example that shows how the translation works and how it an be provedorret, in a partiular ase.Assume that we want to replae x by u and v in the prediate r(x; y) of the DC shema.To this end, we rename I by Pair(U; V ) and we onsider the union of the renamed frame-work with PAIR(U; V ). Then we introdue a new delaration r0 : [U; V;O℄ and the



An Abstrat Formalisation of Corret Shemas 29spei�ation Ir(hu; vi)! (r0(u; v; y)$ Or(hu; vi; y)). We an easily prove that the tem-plate r0(u; v; y)  x = hu; vi; r(x; y) is orret. By template omposition and unfolding,we get r0(u; v; y)  x = hu; vi; d(x; h; a); re(a; b); (h; b; y). By a similar transformationon d(x; h; a), we get the template:r0(u; v; y) d0(u; v; h; a); re(a; b); (h; b; y):Of ourse, the steps that have been performed here manually, should be performed au-tomatially by the rule. When applied to a variable of sort s, the rule heks that s anbe onsistently instantiated by Pair(U; V ), with U and V new sorts. This is guaranteedfor any open sort s,y like I in the example.5.2. using orret shemas for program synthesisIn this setion we briey explain how shemas an be (re)used in program derivation.As we mentioned earlier, we an use the same methods for speialising a shema toa spei� ADT and for deriving a program for solving a given task. In the �rst ase,the result is another, more spei� orret shema, whilst in the latter it is a (losed)program.As we said in Setion 2.3, we view the program synthesis proess as problem solvingby suessive problem redution until the sub-tasks an be solved. Therefore, in programsynthesis, we start with a (problem) spei�ation Sprobr of r : a, in the ontext of a frame-work G representing an ADT or a problem domain. Suppose S is a shema ontaining atemplate P : (r : a) ( � with spei�ation (Sr; S�), and a framework F(�). We shallassume that r : a is the same in Sr and in Sprobr , and the sort symbols in the arity aare the only ommon symbols of G and S. If this does not hold, then we have to �rstperform a suitable renaming and (possible) speialisation of the shema. We also assume,for oniseness, that Sr is a onditional spei�ation with input ondition Ir and outputondition Or. A program derivation step then has the following form:(i) We internalise Ir, Or and the other open symbols of the shema, in the omposedframework F(�) + G. The internalisation should allow us to prove that (Sr; S�)redues to (Sprobr ; S�), that is, orretness (in F(�) + G) with respet to (Sr; S�)entails orretness with respet to (Sprobr ; S�). A suÆient ondition is that Sr $Sprobr an be proved, but there are other useful suÆient onditions (see (Flener etal., 1997)).(ii) We try to prove the onstraints involving Ir and Or. The result is that either we anprove a onstraint, or we (possibly) simplify some parts of it. In the �rst ase, wean delete the onstraint, whilst in the latter, we inherit the simpli�ed onstraint.(iii) We (possibly) transform the template P : (r : a) ( Æ, to get a better speialisedtemplate. The transformation may involve the internalisation of other open symbols,as well as the analysis of appropriate onstraints.Program synthesis may halt with a speialised shema, or with a losed program, i.e.,a set of templates where the prediates in the body of a template our in the head ofsome other lause. For the latter ase, we require that eah onstraint has been proved.y For an open sort, any interpretation is allowed, while onstrained sorts are open sorts that an beinterpreted in a onstrained way.



30 P. Flener, K.-K. Lau, M. Ornaghi and J. RihardsonThe whole synthesis proess is suh that, if at eah step the framework union F(�)+Gis onsistent (i.e., it has a non-empty lass of intended interpretations), then the �nalframework is onsistent, and the program ontained in it is orret with respet to thespei�ations.Now we lose this setion with two examples. The �rst one shows a speialisation ofthe DC shema (in Example 2.1) in the ADT of natural numbers, while the seond oneuses this speialisation to synthesise a losed program.Example 5.5. We an get a speialisation of DC to natural numbers as follows. Werename I by Nat , and then we build the union NAT + DC(Nat ;O; Ir; Or; Od;�). Sinewe are using natural numbers, we replae the spei�ation of the deomposition prediateOd(x; h; a) by:Oprobd (x; h; a) : x = 0 ^ h = [0℄ ^ a = [ ℄) _(9y; i; v : x = s(y) ^ h = [i℄ ^ a = [v℄ ^ i � s(0) ^ i+ v + v = x):For example, Oprobd (9; [1℄; [4℄) holds, beause 1+4+4=9. The deomposition impliit inthe spei�ation is to ompute the integer half of x, and then to apply reursion to it.Now we proeed to the internalisation phase. To redue the spei�ation ontainingOd to the one ontaining Oprobd , it suÆes to internalise Od by:Od(x; h; a)$ Oprobd (x; h; a):Also we internalise � by: x � y $ (x+ x � y ^ :y = 0):This relation is known to be well-founded, and the length of a hain starting from y islogarithmi in y. Therefore, onstraint C3: WellFounded(�) is satis�ed.We also have to prove onstraints involving Od. We an easily see that C1 is satis�ed,for every interpretation of Ir, i.e., with Ir open. We an simplify C2 to:Ir(s(x)) ^ i � s(0) ^ i+ v + v = s(x)! Ir(v);and C4 to:Ir(s(x)) ^ i � s(0) ^ i+ v + v = s(x) ^ Or(s(x); y)! 9w : Or(v; w);and then inherit these simpli�ed onstraints.Now we speialise our templates. We an synthesise in the framework for naturalnumbers the following orret deomposition program:d(0; [0℄; [ ℄)  d(s(y); [0℄; [v℄)  sum(v; v; s(y))d(s(y); [s(0)℄; [v℄)  sum(v; v; y)where the prediate sum is spei�ed by:ysum(x; y; z)$ z = x+ y:So, 0 is the primitive ase, and s(x) the non-primitive one. The latter is deomposedy This is a onditional spei�ation with no input ondition.



An Abstrat Formalisation of Corret Shemas 31into a list of one simpler value, to whih the reursor re is to be applied. Using thespei�ation of re, we an get:r(0; y)  ([0℄; [ ℄; y)r(s(x); y)  sum(v; v; s(x)); r(v; w); ([0℄; [w℄; y)r(s(x); y)  sum(v; v; x); r(v; w); ([s(0)℄; [w℄; y):Now, if we introdue the spei�ations:1(y)$ Or(0; y);Ir(x) ^ :x = 0 ^ i+ v + v = x ^ i � s(0) ^ Or(v; w)! (2(i; w; y)$ Or(x; y));we an derive the orret program:([0℄; [ ℄; y)  1(y)([i℄; [w℄; y)  2(i; w; y)and we get our �nal speialised template:r(0; y)  1(y)r(s(x); y)  sum(v; v; s(x)); r(v; w); 2(0; w; y)r(s(x); y)  sum(v; v; x); r(v; w); 2(s(0); w; y):In this template, lists have disappeared, and we have obtained a shema for divide-and-onquer for the struture of natural numbers.Now, the reusability of the shema obtained in this example has the limitation thatthe input variable x : Nat annot be replaed by tuples, beause the speialisation usedin Example 5.4 annot be applied to the losed sort Nat . To get a more general shema,we an speialise DC, by replaing I by a pair (Nat ; I), and then apply the speialisationused in Example 5.5. Thus we get the shema:Shema DCNAT (I;O; Ir; Or);import: NAT ;delarations:Ir : [Nat ; I℄;Or : [Nat ; I;O℄;onstraints:C1 : Ir(s(x); y) ^ i � s(0) ^ i+ v + v = s(x)! Ir(v; y);C2 : Ir(s(x); y) ^ i � s(0) ^ i+ v + v = s(x) ^ Or(s(x); y; z)! 9w : Or(v; y; w);speifiations:r : [Nat ; I;O℄;Sr : Ir(x; y)! (r(x; y; z)$ Or(x; y; z));sum : [Nat ;Nat ;Nat ℄;Ssum : sum(x; y; z)$ z = x+ y;1 : [I;O℄;S1 : 1(y; z)$ Or(0; y; z);2 : [Nat ; I;O;O℄;Sg2 : Ir(x; y) ^ :x = 0 ^ i+ v + v = x ^ i � s(0) ^ Or(v; y; w)!(2(i; y; w; z)$ Or(x; y; z));



32 P. Flener, K.-K. Lau, M. Ornaghi and J. Rihardsontemplate:r(0; y; z)  1(y; z)r(s(x); y; z)  sum(v; v; s(x)); r(v; y; w); 2(0; y; w; z)r(s(x); y; z)  sum(v; v; x); r(v; y; w); 2(s(0); y; w; z):Finally, as an example of a synthesis of a losed program, we use this shema tosynthesise a program for the produt of natural numbers.Example 5.6. We start from the following problem spei�ation:prod(x; y; z)$ z = x � y:To apply the shema DCNAT , we replae I and O by Nat , and we rename r by prod , Irby Iprod , and Or by Oprod . Then we internalise Oprod by Oprod (x; y; z) $ z = x � y andIprod by Iprod (x; y)$ true. In this way, the problem spei�ation beomes equivalent tothat in the shema.Now we have to hek the onstraints. They are satis�ed, as we an easily see.As a �nal step, we eliminate the expliit de�nition of Oprod in the spei�ations of 1and 2. We get1(y; z)$ z = 0 � y;:x = 0 ^ i+ v + v = x ^ i � s(0) ^ w = v � y ! (2(i; y; w; z)$ z = x � y);that is, 1(y; z)$ z = 0 and 2(i; y; w; z)$ (i = 0^z = w+w)_(i = s(0)^z = w+w+y).From the spei�ations, we an get the �nal template:prod(0; y; 0)  prod(s(x); y; z)  sum(v; v; s(x)); prod (v; y; w); sum(w;w; z)prod(s(x); y; z)  sum(v; v; x); prod (v; y; w); sum(w;w; u); sum(y; u; z):To get a �nal losed program, we need to synthesise a program for sum. We ouldalso transform the program, by speifying the prediate half (w; x) $ w + w = x, andsynthesising a program for half. 6. ConlusionIn our work, we use spei�ation frameworks (i.e. open �rst-order axiomatisations) toformalise program shemas (ontaining templates) in order to ensure that the templates(and the programs that are instanes thereof) do indeed have the behaviour we intendthem to have. In this paper, we have shown an abstrat formalisation of a orret pro-gram shema as a spei�ation framework ontaining spei�ations (of prediates), andtemplates whih are open logi programs (ontaining the spei�ed prediates) that areorret with respet to the spei�ations. We have also outlined how we an use suhorret shemas to synthesise orret logi programs. Our work is very strongly inu-ened by Smith's pioneering work (Smith, 1985; Smith, 1990; Smith, 1996) in appliativeprogramming sine the mid 1980s.In ontrast to most approahes (with the exeption of Smith's) to shemas in theliterature, whih regard shemas as purely syntati onstruts (whih therefore do notapture domain knowledge), our approah de�nes shemas as semanti entities with botha model theory and a proof theory. The model theory allows us to de�ne a suitable notionof shema orretness, whih in turn provides a formalisation of orret shema reuse.



An Abstrat Formalisation of Corret Shemas 33The proof theory enables us not only to prove shema orretness for any given shemabut, more importantly, also to use shemas to guide program synthesis (whih must bebased on formal proofs).Shema orretness is based on the onsisteny of frameworks and the orretness ofthe templates with respet to the spei�ations of the prediates in the templates. Thisorretness leads to orret shema reuse at all three levels of frameworks, spei�ationsand templates. Framework reuse ours via framework operations suh as speialisationand omposition. Spei�ation reuse mainly takes the form of spei�ation transforma-tion. Template reuse an be e�eted by importing shemas into other shemas. It is theorret reuse at these three levels that makes our semanti haraterisation of shemasunique. More importantly, it de�nes orret shema reuse (for program synthesis).Spei�ations also play an important role in guiding program synthesis. Di�erent formsof spei�ations have di�erent assoiated proof methods, and these methods provideguidane on how to proeed at various stages during synthesis.For frameworks, we have shown examples of losed and open parametri frameworks,with loose axiomatisations (with many diverse models) and ADT-axiomatisations (withunique isoinitial term-models). However, we have not explained the details of isoinitialmodels, whih are their intended models, beause this is not the entral issue of thispaper (although we have explained that we use these models in order to deal with nega-tion). Indeed, orretness an be based on any lass of intended interpretations. This isimportant, sine it allows the use of loose axiomatisations, whih in our opinion annotbe avoided if we want to deal with real programs.Sine we onentrate on the semantis of shemas, we do not de�ne a preise systemof operations on frameworks, but we just give the kind of semantis needed to applythe theory of orretness (based on steadfastness). Any suh system for frameworks (i.e.theories) that an be interpreted aording to this semantis (in partiular, by frameworkmorphisms) will work. In partiular, we an apply the metatheory developed in the �eldof algebrai ADTs (Marti-Oliet and Meseguer, 1996).So far we have only the basis for a proof theory, and our future work will inlude thedevelopment of a speialised proof theory for shema orretness and shema speialisa-tion. This will in turn provide the foundations for implementing a system based on ourideas.Another important future objetive is to identify templates and onstraints for otherdesign methodologies than divide-and-onquer. One again, Smith (Smith, 1990) hasshown the way, namely by apturing a vast lass of searh methodologies in a global-searh shema. This was adapted to onstraint logi programming in (Flener et al.,1998b).Finally, a few words about the onsisteny of frameworks. We use onsisteny preserv-ing operations and formal orretness proofs, starting from prede�ned and well under-stood ADT frameworks and shemas. This guarantees onsisteny and formal orretness.Of ourse, the orretness of formal spei�ations with respet to informal requirementsannot be guaranteed. To partially remedy this, we allow frameworks with loose ax-iomatisations of their intended interpretations. Although we annot automatially hekmistakes and inonsistenies, we an have some partial heks, and this is surely a betteralternative than any ompletely informal approah of translating (informal) requirementsinto (formal) spei�ation by ADT frameworks and shemas.



34 P. Flener, K.-K. Lau, M. Ornaghi and J. RihardsonaknowledgementsWe wish to thank the referees and the editor in harge of the reviews, for their helpfulomments and suggestions. ReferenesD. Barker-Plummer (1992). Clih�e programming in Prolog. In M. Bruynooghe, editor, Pro. META'90,pages 246{256.A. Bertoni, G. Mauri, and P. Miglioli (1983). On the power of model theory in speifying abstrat datatypes and in apturing their reursiveness. Fundamenta Informatiae VI(2), 127{170.L. Blaine, L. Gilham, J. Liu, D.R. Smith, and S. Westfold (1998). PlanWare: Domain-spei� synthesisof high-performane shedulers. In D.F. Redmiles and B. Nuseibeh, editors, Pro. ASE'98, pages270{279. IEEE Computer Soiety Press.H. B�uy�uky�ld�z and P. Flener (1998). Generalised logi program transformation shemas. In N.E. Fuhs,editor, Pro. LOPSTR'97, LNCS 1463, 46{65. Springer-Verlag.E. Chasseur and Y. Deville (1998). Logi program shemas, semi-uni�ation and onstraints. InN.E. Fuhs, editor, Pro. LOPSTR'97, LNCS 1463, 69{89. Springer-Verlag.N. Dershowitz (1983). The Evolution of Programs. Birkh�auser.Y. Deville (1990). Logi Programming: Systemati Program Development. Addison-Wesley.Y. Deville and J. Burnay (1989). Generalization and program shemata: A step towards omputer-aidedonstrution of logi programs. In E.L. Lusk and R.A. Overbeek, editors, Pro. NACLP'89, pages409{425. MIT Press.P. Flener (1995). Logi Program Synthesis from Inomplete Information. Kluwer.P. Flener (1997). Indutive logi program synthesis with Dialogs. In S. Muggleton, editor, Pro. ILP'96,LNAI 1314, 175{198. Springer-Verlag.P. Flener and Y. Deville (1993). Logi program synthesis from inomplete spei�ations. J. SymboliComputation 15(5{6), 775{805.P. Flener, K.-K. Lau, and M. Ornaghi (1997). Corret-shema-guided synthesis of steadfast programs.In Y. Ledru and M. Lowry, editors, Pro. ASE'97, pages 153{160. IEEE Computer Soiety Press.P. Flener, K.-K. Lau, and M. Ornaghi (1998a). On orret program shemas. In N.E. Fuhs, editor, Pro.LOPSTR'97, LNCS 1463, 124{143. Springer-Verlag.P. Flener, H. Zidoum, and B. Hnih (1998b). Shema-guided synthesis of onstraint logi programs. InD.F. Redmiles and B. Nuseibeh, editors, Pro. ASE'98, pages 168{176. IEEE Computer SoietyPress.P. Flener and J. Rihardson (1999). A uni�ed view of programming shemas and proof methods. InA. Bossi, editor, Pre-Pro. LOPSTR'99. TR, University of Venie.P. Flener and S. Y�lmaz (1999). Indutive synthesis of reursive logi programs: Ahievements andprospets. J. Logi Programming 41(2{3), 141{195.N.E. Fuhs and M.P.J. Fromherz (1992). Shema-based transformation of logi programs. In T. Clementand K.-K. Lau, editors, Pro. LOPSTR'91, pages 111{125. Springer-Verlag.T.S. Gegg-Harrison (1991). Learning Prolog in a shema-based environment. Instrutional Siene 20,173{190.T.S. Gegg-Harrison (1994). Exploiting program shemata in an automated program debugger. J. Arti-�ial Intelligene in Eduation 5, 255{278.T.S. Gegg-Harrison (1995). Representing logi program shemata in �-Prolog. In L. Sterling, editor,Pro. ICLP'95, pages 467{481. MIT Press.T.S. Gegg-Harrison (1997). Extensible logi program shemata. In J. Gallagher, editor, Pro. LOP-STR'96, LNCS 1207, 256{274. Springer-Verlag.J.A. Goguen and R.M. Burstall (1992). Institutions: Abstrat model theory for spei�ation and pro-gramming. J. ACM 39(1), 95{146.J.A. Goguen and J. Meseguer (1987). Unifying funtional, objet-oriented and relational programmingwith logial semantis. In B. Shriver and P. Wegner, editors, Researh Diretions in Objet-OrientedProgramming, pages 417{477. MIT Press.J.A. Goguen, J.W. Thather, and E. Wagner (1978). An initial algebra approah to spei�ation, or-retness and implementation. In R. Yeh, editor, Current Trends in Programming Methodology, IV,pages 80{149. Prentie-Hall.A. Hamfelt and J. Fisher Nilsson (1997). Towards a logi programming methodology based on higher-order prediates. New Generation Computing 15(4), 421{448.G. Huet and B. Lang (1978). Proving and applying program transformations expressed with seond-orderpatterns. Ata Informatia 11, 31{55.



An Abstrat Formalisation of Corret Shemas 35A.-L. Johansson (1994). Interative program derivation using program shemata and inrementally gen-erated strategies. In Y. Deville, editor, Pro. LOPSTR'93, pages 100{112. Springer-Verlag.Y. Kodrato� and J.-P. Jouannaud (1984). Synthesizing LISP programs working on the list level of em-bedding. In A.W. Biermann, G. Guiho, and Y. Kodrato�, editors, Automati Program ConstrutionTehniques, pages 325{374. Mamillan.K.-K. Lau and M. Ornaghi (1994). On spei�ation frameworks and dedutive synthesis of logi programs.In L. Fribourg and F. Turini, editors, Pro. LOPSTR/META'94, LNCS 883, 104{121. Springer-Verlag.K.-K. Lau and M. Ornaghi (1997a). Forms of logi spei�ations: A preliminary study. In J. Gallagher,editor, Pro. LOPSTR'96, LNCS 1207, 295{312. Springer-Verlag.K.-K. Lau and M. Ornaghi (1997b). The relationship between logi programs and spei�ations: Thesubset example revisited. J. Logi Programming 30(3), 239{257.K.-K. Lau and M. Ornaghi. OOD frameworks in omponent-based software development in ompu-tational logi. In P. Flener, editor, Pro. LOPSTR'98, LNCS 1559, 101{123, Springer-Verlag,1999.K.-K. Lau, M. Ornaghi, and S.-�A. T�arnlund (1994). The halting problem for dedutive synthesis of logiprograms. In P. van Hentenryk, editor, Pro. ICLP'94, pages 665{683. MIT Press.K.-K. Lau, M. Ornaghi, and S.-�A. T�arnlund (1999). Steadfast logi programs. J. Logi Programming38(3), 259{294, 1999.J.W. Lloyd (1987). Foundations of Logi Programming. Springer-Verlag, 2nd edition.Z. Manna (1974). Mathematial Theory of Computation. MGraw-Hill.E. Marakakis and J.P. Gallagher (1994). Shema-based top-down design of logi programs using abstratdata types. In L. Fribourg and F. Turini, editors, Pro. LOPSTR/META'94, LNCS 883, 138{153.Springer-Verlag.N. Marti-Oliet and J. Meseguer (1996). Inlusions and subtypes II: Higher-order ase. J. Logi Comput.6(4), 541{572.J. Rihardson and N.E. Fuhs (1998). Development of orret transformational shemata for Prologprograms. In N.E. Fuhs, editor, Pro. LOPSTR'97 , LNCS 1463, 263{281. Springer-Verlag.D. Sannella and A. Tarleki (1997). Essential onepts of algebrai spei�ation and program develop-ment. Formal Aspets of Computing 9, 229{269.D.R. Smith (1984). The synthesis of LISP programs from examples: A survey. In A.W. Biermann,G. Guiho, and Y. Kodrato�, editors, Automati Program Constrution Tehniques, pages 307{324.Mamillan.D.R. Smith (1985). Top-down synthesis of divide-and-onquer algorithms. Arti�ial Intelligene 27(1),43{96.D.R. Smith (1990). Kids: A semiautomati program development system. IEEE Trans. Software Engi-neering 16(9), 1024{1043.D.R. Smith (1993). Construting spei�ation morphisms. J. Symboli Computation 15(5{6), 571{606.D.R. Smith (1994). Towards the synthesis of onstraint propagation algorithms. In Y. Deville, editor,Pro. LOPSTR'93, pages 1{9. Springer-Verlag.D.R. Smith (1996). Toward a lassi�ation approah to design. Pro. AMAST'96, LNCS 1101, 62{84.Springer-Verlag.L.S. Sterling and M. Kirshenbaum (1993). Applying tehniques to skeletons. In J.-M. Jaquet, editor,Construting Logi Programs, pages 127{140. John Wiley.P.D. Summers (1977). A methodology for LISP program onstrution from examples. J. ACM 24(1),161{175.W.W. Vasonelos and N.E. Fuhs (1996). An opportunisti approah for logi program analysis and op-timisation using enhaned shema-based transformations. In M. Proietti, editor, Pro. LOPSTR'95,LNCS 1048, 174{188. Springer-Verlag.M. Wirsing (1990). Algebrai spei�ation. In J. Van Leeuwen, editor, Handbook of Theoretial ComputerSiene, pages 675{788. Elsevier.


