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Abstract

The inductive synthesis of recursive logic programs from incomplete information, such as input/output examples, is a
challenging subfield both of ILP (Inductive Logic Programming) and of the synthesis (in general) of logic programs
from formal specifications. We first overview past and present achievements, focusing on the techniques that were de-
signed specifically for the inductive synthesis of recursive logic programs, but also discussing a few general ILP tech-
niques that can also induce non-recursive hypotheses. Then we analyse the prospects of these techniques in this task,
investigating their applicability to software engineering as well as to knowledge acquisition and discovery.
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1 Introduction

Examples are better than precepts; let me get down to examples—
I much prefer examples to general talk.

— George Polya

In a quite general first formulation, the task of Inductive Logic Programming (ILP) is to infer a hypothesisH from
assumed-to-be-incomplete information (or: evidence)E and background knowledgeB such thatB ∧ H |==E, where
H, E, andB are logic programs. We then say thatH coversE (in B). In practice,B andH are often restricted to
definite logic programs. EvidenceE is often further refined into positive evidenceE+ (which is to be covered by
the hypothesis) and negative evidenceE− (which is not to be covered by the hypothesis) (sometimes, it is labelled
as negative, rather than explicitly negated). Often, the elements ofE+ are restricted to ground positive literals (or:
atoms) and are called positive examples, whereas those ofE− are restricted to ground negative literals and are called
negative examples: this yields an extensional description, whereas the hypothesis is an intensional description. In
a more traditional machine learning terminology, we would say that a concept descriptionH is to be learned from
descriptionsE of instances and counter-examples of concepts, whose features are represented by predicate sym-
bols. In general thus, nothing restricts the evidence to be about a single concept, so that multiple (possibly related)
concepts may have to be learned at the same time.

For instance, given the positive examples (in the left column) and negative examples (in the right column):

subset([],[]) ¬subset([k],[])
subset([],[a,b]) ¬subset([n,m,m],[m,n])
subset([d,c],[c,e,d])
subset([h,f,g],[f,i,g,h,j])

and given as background knowledge (among others) the logic program:



2

select(X,[X|Xs],Xs) ←
select(X,[H|Ys],[H|Zs]) ← select(X,Ys,Zs)

thena possible hypothesis1 is the logic program:

subset([],Xs) ←
subset([X|Xs],Ys) ← select(X,Ys,Zs), subset(Xs,Zs)

though at this point we do not wonder how this could be feasible. The main issue is that we human beings can per-
form this kind of task, so that the question arises whether a machine can be designed to also do it. The usefulness
of such a machine is undeniable as it would be a step towards a form of human/machine communication that more
closely models inter-human communication, which usually features a lot of incomplete (and hence ambiguous) in-
formation, of course in the presence of background knowledge, and even noisy information (although we will not
address this latter issue here).

General surveys of the achievements of ILP exist [7] [49] [59] [78], as well as proceedings of ILP workshops
and edited collections of reports on landmark ILP research. In this paper, we more closely and almost exclusively
overview the achievements of ILP techniques that have been specifically designed for the induction ofrecursively
expressed hypotheses (or simply: recursive hypotheses), such as thesubset program above. To be precise, we
mean the class of logic programs where at least one clause is recursive (i.e., it has at least one body atom with the
same predicate symbol as its head atom). The induction of this class of hypotheses is much harder than the one of
non-recursive hypotheses. The fact that one does not in general know in advance whether a recursive hypothesis
exists or not seems to speak in favour of only using more general-purpose ILP techniques, i.e., techniques that can
induce both recursive and non-recursive hypotheses. However, the study of recursion induction is worthwhile in its
own right, and it gives rise to important applications.

Recursive programs actuallycompute something, in the traditional understanding of what a program is and does,
but such is not the case with all non-recursive programs, which might for instanceclassify data as belonging to one
concept or another [32]. Inferring recursive programs from assumed-to-be-complete information such as the axi-
omatisation

subset(S,L) ⇔ ∀X (member(X,S) ⇒ member(X,L))

wheremember is a known predicate (with the usual meaning), is calledprogram synthesis, and features two main
approaches, namely deductive synthesis and constructive synthesis.2 We adopt the synthesis terminology here, and
talk of inductive synthesis (of recursive programs) from incomplete specifications whenever we want to focus on
this sub-field, and ofILP when we mean the whole field.

The achievements in the synthesis of (recursive) logic programs, whether by deductive, constructive, inductive,
mixed, or even manual techniques, have been surveyed [25], but with only marginal detail on inductive techniques.
One purpose of our paper is thus to complement that survey and to specialise the already mentioned general surveys
of ILP. Our other purpose is to discuss the prospects of this important sub-field. Although nobody denies its intrin-
sic interest, there has been considerable debate on its industrial applications. We summarise the existing opinions,
debunk or support them when necessary, and bring in a few possibly new considerations.

The rest of this paper is thus organised as follows. First, in Section 2, we introduce some additional terminology
and some theoretical results regarding the inductive synthesis of recursive programs, laying the groundwork for a
classification of such techniques. Next, in Section 3, we overview the achievements of inductive synthesis, and in
Section 4, we discuss its application prospects. Finally, in Section 5, we conclude.

2 Terminology and Theoretical Results

We now introduce some additional terminology (in Section 2.1 and Section 2.2) and mention some theoretical re-
sults (in Section 2.3 and Section 2.4) concerning the induction of recursive clauses. This allows us to have classi-
fication features for the techniques overviewed in the third section.

1. Note that, contrary to common practice, we donot talk about “the target hypothesis,” as there may bemany possible hypotheses for a given
predicate, especially when, as advocated later, background knowledge, bias, and evidence do not encode (part of) a possible hypothesis.

2. It should be noted that non-recursive (or non-looping) procedures constitute the vast majority of the code of a software application. However,
not much research is needed to (semi-)automatically infer non-recursive programs from assumed-to-be-complete formal specifications, as
the latter usually already come in non-recursive form. The situation is not quite the same for known-to-be-incomplete formal specifications,
and we discuss this issue at the beginning of Section 4.2.1.
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2.1 Approaches to ILP (and Inductive Synthesis)

Whether for ILP in general or synthesis in particular, there is additional terminology due to different approaches,
and there are extensions to the ILP task, all of which we now discuss in a loosely connected fashion.

2.1.1 Agents

Often, the agent that provides the inputs to an ILP technique is called the teacher, whereas the ILP technique is
called the learner and is said to perform learning. For reasons to be discussed in Section 4.2.1, such a machine
learning terminology is sometimes misleading, and we shall use the more general terminology ofsource, induction
technique, andinduction instead.

2.1.2 Evidence

An intended relation is the entire (possibly infinite) relation represented by a predicate symbol. In an ILP task, only
incomplete information (called evidence) is available, i.e., it does not describe supersets of the intended relations.
We here assume that the evidence hascorrect information, i.e., that it describes subsets of the intended relations.
In this case, one also says that there is nonoise. Often, the actually described subsets are finite. An extreme case
of incomplete but correct information is complete (i.e., not incomplete) and correct information, though this can
often only be achieved through some finite axiomatisation in the hypothesis language, but not in the evidence lan-
guage (e.g., because the latter does not feature recursion).

We partition relations intosemantic manipulation relations andsyntactic manipulation relations, depending on
whether the actual constants occurring in a ground tuple are relevant or not for deciding whether that tuple belongs
to a relation. For instance,subset andselect above are syntactic manipulation relations, because they treat differ-
ent constants like different variables: the atomsubset([d,c],[c,e,d]) basically represents the atomsub-
set([D,C],[C,E,D]), whereC, D, E are different variables. So the (predefined) equality and inequality predicates
suffice to express hypotheses for such relations. However, relationsort embodies a semantic manipulation: the
atomsort([2,1],[1,2]) does not represent the atomsort([X,Y],[Y,X]), because otherwise the atomsort([3,4],[4,3])
would be erroneously covered as well. So comparison predicates are needed to express hypotheses for such rela-
tions. This raises the question of the discovery of these comparison predicates, and indicates why the induction of
hypotheses for semantic manipulation relations is much harder than for syntactic manipulation relations.

We distinguish evidence that can be trulyarbitrary from evidence that has to be carefullycrafted. In the latter
case, there is a further distinction according to whether the evidence is crafted independently of all possible hy-
potheses or is made with a possible hypothesis in mind. The same distinction holds for additional input information
(see Section 2.2 below) and background knowledge. Obviously, this last category is impractical in most application
settings, because then no new knowledge is actually discovered.

Clausal evidence, if not restricted to (positive and negative) examples, is sometimes calledintegrity constraints
[22] [43] or properties [28] [31], as it constrains hypotheses to satisfy them. This does not affect the statement of
the ILP task above, as the most common setting with examples is just a particular case thereof.

2.1.3 Background Knowledge

The background knowledge, although clausal in general, is sometimes restricted to a finite set of ground literals.
Such an extensional representation seriously affects practicality in some application settings, such as when the
background knowledge must be provided manually for each session. Sometimes, such literals are generated from
an intensional clausal representation of the background knowledge before the induction starts. In any case, this ex-
tensional representation is used when the verification of the coverage of the evidence by a hypothesis is not based
on some form of execution of the hypothesis, or when there are some theoretical limitations.

2.1.4 Induction

Induction (in the sense of ILP, see the introduction) can be viewed assearch through a graph (or: search space)
where the nodes correspond to hypotheses and the arcs correspond to hypothesis-transforming induction operators
(or: inductive inference rules). The challenge is to efficiently navigate through such a search space, via intelligent
control (e.g., by organising the search space according to a partial order and using pruning techniques).
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Induction may beinteractive orpassive, depending on whether the technique asksquestions (or:queries) to some
oracle (or: informant) or not. The oracle may or may not be the source. The questions may be requests for classi-
fication of an invented example as a positive or negative one (classification queries), requests for instantiation of a
variable in an atom so that the atom is a positive example (instantiation queries), etc.

Induction may beincremental or non-incremental, depending on whether evidence is input one-at-a-time with
occasional output of external intermediate hypotheses, or input all-at-once with output of a unique final hypothesis
(though there may be internal intermediate approximations, which are however not considered as hypotheses).

Incremental induction may bebottom-up or top-down, depending on whether the hypotheses (whether internal
or external) monotonically evolve from the maximally specific one (namely the empty logic program, which fails
on all possible goals) or from the maximally general one (namely a logic program succeeding on all possible goals).

An identification criterion defines the moment where an incremental induction technique has been successful in
correctly identifying the intended relations, whether it “knows” this or not. Sample criteria are finite identification,
identification-in-the-limit, probably-approximately-correct (PAC) identification (see [19] [20] for algorithms and
negative results on PAC-inducing recursive logic programs), and so on (see [59]). There are limiting theorems stat-
ing what hypothesis languages are inducable from what evidence languages under what identification criteria [3].

2.1.5 Hypotheses

In the hypothesis, some predicate symbols may be recursively defined: the corresponding clauses are then parti-
tioned intobase clauses andrecursive clauses.

Once a hypothesis is accepted (for whatever reasons), one may want to validate it. Since there is no complete
description of the intended relations, one can only test the hypothesis, rather than somehow mathematically veri-
fying it. Ideally, a hypothesis covers all the given evidence. One may thus test the hypothesis by measuring its ac-
curacy (expressed in percents) in covering other evidence. The given evidence is thus also called thetraining set,
whereas the additional evidence is called thetest set. We here assume that the test set also has no noise. If evidence
is divided into positive and negative evidence, then a hypothesis iscomplete w.r.t. the evidence if it covers all the
positive evidence; it isconsistent w.r.t. the evidence if it does not cover any of the negative evidence; it iscorrect
w.r.t. the evidence if it is both complete and consistent. We also use this terminology when comparing to a single
piece of evidence. Under an appropriate coverage notion, the same terminology also applies to single clauses rather
than hypotheses (which are clause sets). Finally, the same terminology also applies when considering the intended
relations instead of the positive evidence, and their complements instead of the negative evidence.

It seems desirable to achieve some separation of concerns regarding the logic and control components of hypoth-
eses when they are logic programs: some techniques just induce thelogic component, assuming that the control
can be added later. Addingcontrol (such as by clause re-ordering inside programs and literal re-ordering inside
clauses so as to ensure safety of negation-by-failure, to ensure termination, etc.) is something specific to the idio-
syncrasies of the execution mechanism of the target language, as well as specific to the desired ways of using the
induced program (which are then mentioned in additional inputs, see below). If an interpreter of the target language
is actually used during the induction (say, to verify the coverage of the evidence), then such control aspects cannot
be entirely ignored while constructing the logic component.

2.2 Extended ILP Settings

It is possible to augment the statement of the ILP task by adding parameters other than the evidenceE, the back-
ground knowledgeB, and the hypothesisH.

One generalisation of the ILP task is known astheory-guided induction, or inductive theory revision, or declar-
ative debugging: an additional input is provided, namely an initial hypothesis (or: theory)Hi, under the constraint
that the final hypothesisH should be as close a variation thereof as possible, in the sense that only the “bugs” ofHi
w.r.t. E should be (incrementally) detected, located, and corrected (or: “debugged”) in order to produceH. This
generalised scheme reduces to the normal one in its extreme cases, that is whenHi is maximally specific or general,
depending on whether induction proceeds bottom-up or top-down. This is also known asmodel-driven or approx-
imation-driven induction, as opposed todata-driven induction, where there is no initial theory.
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Another generalisation of the ILP task involves augmenting the inputs withdeclarative bias, which is any form
of additional input information that restricts the search space [60]. There are three complementary approaches to
this, namelysearch bias, language bias, andvalidation bias (which gives an acceptance criterion for an incremental
induction process, telling when a hypothesis is acceptable; this is related to identification criteria, and may for in-
stance be an accuracy threshold for the test set). We further discuss only the former two here, in the next sections.

2.2.1 Search Bias

A specification of a program contains (i) a description of what problem is (to be) solved by the program, and (ii ) a
description of how to use the program.

• Description (i) should define the intended relation as declaratively as possible, i.e., without saying how it could
possibly be identified. Whether it should be informal or formal is an on-going debate [51], but we do not have
a choice here, since we want it to be processed by a machine. Ideally, it should even be as complete as possible,
but, as mentioned earlier, this is rarely achieved in practice. The problem descriptions investigated here (name-
ly the evidence) are actually evenassumed to be incomplete. If restricted to examples, evidence is furthermore
a very declarative (formal) description, because it is then impossible to bias towards a possible program.

• Description (ii ) should give the predicate symbol representing the intended relation, the sequence of names and
types of its formal parameters,pre-conditions (if any) on these parameters, as well as the representation con-
ventions of the formal parameters so that one knows how to interpret their actual values. In logic programming,
where we are concerned with relations rather than functions, there should also be an enumeration of the in-
put/outputmodes in which the program may be called (since full reversibility is rarely required or rarely even
achieved in practice), as well as optionaldeterminism (or: multiplicity) information for each mode (stating the
minimum and maximum number of correct answers to a query in that mode).

Since such information is part of a (useful) specification anyway [24] [71], it is only natural to provide (some of)
it as an additional input to an ILP task, especially for a synthesis task. Such information is thus part of what is called
search bias (a kind of bias that determines which part of the hypothesis space is searched, and how it is searched).
Of course, such information should ideally also be known for all the predicates defined in the background knowl-
edge. We do not discuss other forms of search bias here, and refer the reader to a survey [60].

Type and mode information are the most commonly used, and, not surprisingly, they reduce search spaces dras-
tically. Some techniques efficiently exploit a particular case of determinism information, namely that the intended
relation is a total function in a given mode (i.e., its multiplicity is 1–1). This has a good influence on the amount of
negative evidence that has to be explicitly given: if a relation is known to be functional from some parameters to
the other parameters, then every atom obtained from a positive example by changing the values of those other pa-
rameters is an implicitly given negative example.

2.2.2 Language Bias

Language bias determines the language of hypotheses. One particularly useful and common approach is to bias
induction by a schema. Informally, aprogram schema [33] contains a template program and a set of axioms. The
template abstracts a class of actual programs (calledinstances), in the sense that it represents their dataflow and
control-flow by means ofplace-holders, but does not contain (all) their actual computations nor (all) their actual
data structures. Theaxioms restrict the possible instances of the place-holders and define their interrelationships.
Note that a schema is thus problem-independent. A formal definition of program schemas, and the corresponding
representation issues, are beyond the scope of this paper, but they are fully discussed elsewhere [33]. An overview
of approaches to program schemas would also take too much space here, so we refer to existing overviews, namely
[28] in general, and [60] for ILP approaches only. Let us here take a first-order approach, and consider templates
asopen programs (programs where some predicates — the place-holders — are left undefined, oropen; a program
with no open predicates is said to beclosed), and axioms as first-order specifications of these open predicates.

Example 1: Let us design a template capturing the class of divide-and-conquer programs, or a sub-class thereof,
e.g., those featuring two parameters, with division of the first parameter into two components that are somehow
smaller than it:

r(X,Y) ← primitive(X), solve(X,Y)
r(X,Y) ← nonPrimitive(X), decompose(X,H,X1,X2), r(X1,Y1), r(X2,Y2), compose(H,Y1,Y2,Y)
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The intended semantics of this template can be informally described as follows. For an arbitrary relationr over for-
mal parametersX andY, an instance is to determine the values ofY corresponding to a given value ofX. Two cases
arise: eitherX has a value (when theprimitive test succeeds) for whichY can be easily directly computed (through
solve), or X has a value (when thenonPrimitive test succeeds) for whichY cannot be so easily directly
computed. In the latter case, the divide-and-conquer principle is applied by:

(1) division (throughdecompose) of X into a termH and two termsX1 andX2 that are both of the same type
asX but smaller thanX according to some well-founded relation;

(2) conquering (throughr) to determine the value(s) ofY1 andY2 corresponding toX1 andX2, respectively;
(3) combining (throughcompose) termsH, Y1, Y2 in order to buildY.

Enforcing this intended semantics must be done manually, as the template by itself has no semantics, in the sense
that any program is an instance of it (it suffices to instantiateprimitive by a program that always succeeds, and
solve by the given program). One way to do this is to attach to the template some axioms (omitted here, see [33]),
namely the set of specifications of its open predicates: these specifications refer to each other, including the one of
r, and are thus generic (because even the specification ofr is unknown), but can be abduced once and for all accord-
ing to the informal semantics of the schema [33]. Such a schema (i.e., template plus axiom set) constitutes an ex-
tremely powerful language bias, because it encodes algorithm design knowledge that would otherwise have to be
hardwired or rediscovered the hard way during each synthesis.♦

The issues in the design and expression of divide-and-conquer logic program schemas are discussed elsewhere
in great detail by the first author [28]. Let us here just point out the sub-class ofincomplete traversal programs,
where the induction parameterX need not be entirely traversed before being able to buildY. Programs of this class
include the ones forselect (as in Section 1) andmember. This sub-class seems particularly hard to synthesise:
when researchers report pathological relations that elude their synthesisers or require synthesis times dispropor-
tionately larger than for other relations that are seemingly of the same level of difficulty, then they are quite often
of this sub-class. The reason therefore is the complexsemantic interplay betweenprimitive andnonPrimitive (note
that it is not¬primitive), as it is then not just asyntactic distinction of whether the induction parameter is, say, the
empty list or a non-empty list, but asemantic distinction based on thevalues in the list.

Other approaches to language bias are the clause description language of [5], antecedent description grammars
[17], argument dependency graphs [79], etc., and they are surveyed in [7] [60] [76].

2.3 Generality

Given the formulaG |==S, we say thatG is more general thanS, and thatS is more specificthanG. In our initial
formulation of ILP, the objective is to compute a hypothesisH given background knowledgeB and (positive) evi-
denceE, such thatB ∧ H |==E. The generality relation|== is a partial order, but does not induce a lattice on the set
of formulas. Indeed, there is not always a unique least generalisation under implication of an arbitrary pair of claus-
es. For instance, the clausesp(f(X)) ← p(X) andp(f(f(X))) ← p(X) have bothp(f(f(X))) ← p(X) andp(f(X)) ←
p(Y) as least generalisations. In [61], the existence and computability of a least generalisation under implication
for any finite set of clauses that contains at least one non-tautologous function-free clause is proven. Since impli-
cation between Horn clauses is undecidable [53], different models of generality have been proposed. We here main-
ly discuss the generality models that are actually used in the overviewed special-purpose techniques that are
dedicated to the inductive synthesis of recursive logic programs, even though they are the weaker models.

2.3.1 θ-subsumption

In the model calledθ-subsumption [62] [63], the background knowledgeB is empty. The model is defined for
clauses, which are here viewed as sets of literals.

Definition 1 (θ-subsumption,θ-subsumption-equivalence, reduced clause)
A clauseg θ-subsumes a clauses if there exists a substitutionσ such thatgσ ⊆ s.
Two clauses areθ-subsumption-equivalent if they θ-subsume each other.
A clause is said to bereduced if it is not θ-subsumption-equivalent to any proper subset of itself.

Example 2: The clausep(X,Y) ← q(X,Y), r(X) θ-subsumesp(V,Z) ← q(V,Z), q(V,T), r(V), s(Z) with substitution
{X/V, Y/Z}. The clausep(V,Z) ← q(V,Z), r(V) is a reduced version ofp(V,Z) ← q(V,Z), q(V,T), r(V). ♦
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If a clauseg θ-subsumes a clauses, then g|==s, but the converse is not true for recursive clauses and tautological
clauses [63]. For instance, for the recursive clausesp(f(X)) ← p(X) andp(f(f(X))) ← p(X) (calledg ands respec-
tively), althoughg |==s (note thats is simplyg self-resolved),g does notθ-subsumes. Therefore,θ-subsumption
is not equivalent to implication among clauses. Hence, it is not adequate for handling recursive clauses.

θ-subsumption induces a lattice on the set of reduced clauses: any two clauses have a unique least upper bound
(lub) and a unique greatest lower bound (glb). Theleast generalisation underθ-subsumption (abbreviated by lgθ)
of two clausesc andd, denoted bylgθ(c,d), is the lub ofc andd in theθ-subsumption lattice. A more constructive
definition of this operator emerges as a property:

Definition 2 (Least generalisation underθ-subsumption)
The lgθ of two termsf(s1,…,sn) and f(t1,…,tn), denoted bylgθ(f(s1,…,sn),f(t1,…,tn)), is f(lgθ(s1,t1),…,lgθ(sn,tn)),
whereas the lgθ of the termsf(s1,…,sn) andg(t1,…, tm), where f ≠ g or n≠ m,is a new variableV, whereV represents
this pair of terms throughout.
The lgθ of two positive literals p(s1,…,sn) and p(t1,…,tn), denoted by lgθ(p(s1,…,sn),p(t1,…,tn)), is
p(lgθ(s1,t1),…,lgθ(sn,tn)), the lgθ being undefined when the predicate symbols or the arities are different.
(Similarly for two negative literals.)
The lgθ of two clausesc andd, denoted bylgθ(c,d), is {lgθ(l1,l2) | l1 ∈ c andl2 ∈ d}.

Example 3: The lgθ of the clausesp(V,W) ← q(V,W), r(V), s(W) andp(T,N) ← q(T,N), r(T), r(N) is the clause
p(X,Y) ← q(X,Y), r(X), r(Z). This clause is reduced. In general, the lgθ of two clauses is not reduced.♦

2.3.2 Relativeθ-subsumption

A first extension ofθ-subsumption that uses background knowledgeB is called relative subsumption [62].

Definition 3 (Relativeθ-subsumption)
If the background knowledgeB consists of a finite conjunction (or set) of ground facts, then therelative least gen-
eralisation underθ-subsumption (abbreviated by rlgθ) of two ground atomsE1 andE2 relative to background
knowledgeB is lgθ((E1 ← B),(E2 ← B)).

Example 4: Given the positive examplese1 = son(o,a) ande2 = son(j,t) and the background knowledgeB = {par-
ent(a,o), parent(a,t), parent(t,j), parent(t,k), female(a), male(j), male(o)}, the rlgθ of e1 ande2 relative toB is:

son(X,Y) ← parent(a,o), parent(a,t), parent(t,j), parent(t,k), female(a), male(j), male(o),
parent(a,Z), parent(Y,V), parent(Y,W), parent(Y,U), parent(t,T), male(X). ♦

The rlgθ of two clauses is not necessarily finite. However, it is possible [59] to construct finite rlgθs under the
language bias of ij-determinacy [58]:

Definition 4 (Determinacy)
If Li is a literal in the ordered Horn clauseA ← L1,…,Ln, then theinput variables of Li are those appearing inLi
that also appear in the clauseA ← L1,…,Li−1; all other variables in Li are calledoutput variables.
A literal isdeterminate if its output variables may have at most one binding, given a binding of its input variables.
If a variableV appears in the head of a clause, then thedepth of V is zero; otherwise, ifF is the first literal containing
the variableV andd is the maximal depth of the input variables ofF, then the depth ofV is d+1.
A clause isdeterminate if all literals in its body are determinate.
A determinate clause isij -determinate if all literals in its body contain only variables of depth at mosti as well as
predicate symbols that have arity at mostj.

Example 5: The clausep(X,W) ← q(X,W), r(W,Z), p(W,Z) is 32-determinate, provided all literals in its body are
determinate. ♦

This model of relative subsumption is restricted to ground background knowledge, but was generalised later to
any kind of Horn clausal knowledge [15]. Such generalised subsumption is however not used by any of the tech-
niques overviewed here.

2.3.3 Inverse Resolution

Another model of generality is inverse resolution, based on inverting one or two resolution steps so as to induce
some of its/their antecedent(s) from the other antecedent(s) and the consequent(s). There are four inductive infer-



8

ence rules of inverse resolution, namelyabsorption, identification, intra-construction, and inter-construction,
given here for propositional logic, but also available for first-order logic [57]:

Lower-case letters represent atoms, upper-case letters represent conjunctions of atoms. The absorption and identi-
fication rules (also known as theV rules) invert only one resolution step. The intra-construction and inter-construc-
tion rules (also known as theW rules) invent new predicate symbols (predicate invention, see the next subsection).
Absorption being incomplete, most-specificV rules have been introduced [55], as well as asaturation rule [67].

2.3.4 Inverse Implication (⇒) and Inverse Entailment (|==)

Recently, a lot of research was undertaken to explore even more powerful models of generality, based on inverting
implication [40] or inverting entailment. Since only two of the techniques described here employ this, we do not
go into more details here and refer the interested reader to overviews [59] [56].

2.4 Predicate Invention

Nothing is more important than to see the sources of invention,
which are, in my opinion, more interesting than the inventions themselves.

— Gottfried Wilhelm Leibnitz

Predicate invention is the process of introducing into the hypothesis some predicates that are not in the evidence,
nor in the background knowledge (this is called shifting the bias by extending the hypothesis language [72]), and
then inducing hypotheses for these new predicates. This requires the usage ofconstructive rules of inductive infer-
ence (where the inductive consequent may involve predicate symbols that are not in the antecedent), as opposed to
selective ones (where the inductive consequent can only involve predicate symbols that are in the antecedent). Such
constructive induction does not assume that the preliminary tasks of representation choice and vocabulary choice
have already been solved, and represents thus a crucial field in induction.

One can distinguish two types of predicate invention:necessary predicate invention andnon-necessary predicate
invention, as discussed next.

2.4.1 Necessary Predicate Invention

We first define necessary predicate invention, and then give an example for it.

Definition 5 (Necessary predicate invention)
Predicate invention isnecessary if there is no finite hypothesis (satisfying the current bias) for the predicates in the
evidence that uses only the predicate symbols in the evidence and in the background knowledge.

Example 6: Assume we want to induce a logic program for thesort predicate (wheresort(L,S) holds iff S is a
non-decreasingly ordered permutation of integer-listL) from some positive and negative examples, and this in the
absence of background knowledge. If, at some moment during induction, the current hypothesis is the following
over-general program:

sort([],[]) ←
sort([H|T],S) ← sort(T,Y)

then the insert predicate (whereinsert(E,L,R) holds iffR is non-decreasingly ordered integer-listL with integer
E inserted at the “right” place) must necessarily be invented, because there is no other way to complete that hy-
pothesis into a program that covers all the positive examples but none of the negative ones. The resulting overall
program could then be the following

sort([],[]) ←
sort([H|T],S) ← sort(T,Y), insert(H,Y,S)

q A←( ) p A B,←( )
q A←( ) p q B,←( )

------------------------------------------------- p A B,←( ) p A q,←( )
q B←( ) p A q,←( )

-------------------------------------------------------

p A B,←( ) p A C,←( )
q B←( ) p A q,←( ) q C←( )

--------------------------------------------------------------------- p A B,←( ) q A C,←( )
p r B,←( ) r A←( ) q r C,←( )

-------------------------------------------------------------------------
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insert(E,[],[E]) ←
insert(E,[H|T],[E,H|T]) ← E≤H
insert(E,[H|T],[H|R]) ← ¬(E≤H), insert(E,T,R)

Note that the invention ofinsert necessitated in turn the invention of the≤ predicate (whose obvious specification
and program are omitted here). Also note that the program forinsert is recursive: it can thus not be eliminated by
unfolding inside the recursive clause forsort. If another recursive clause had been in the over-general hypothesis,
then another predicate would have been necessarily invented. Otherwise, the background knowledge being empty,
sort would have had to be implemented at most in terms of itself only, which is impossible without generating the
non-terminating programsort(L,S) ← sort(L,S), or without generating an infinite program (that extensionally en-
codes the model ofsort). Now, even if the background knowledge contained the classicalmember, length, and
append predicates, the invention ofinsert would still be necessary, becauseinsert cannot be implemented in
terms of these background predicates either.♦

2.4.2 Non-necessary Predicate Invention

We distinguish two types of non-necessary predicate invention, namelyuseful predicate invention andpragmatic
predicate invention [29].

Definition 6 (Useful and pragmatic predicate invention)
Non-necessary predicate invention isuseful if the hypothesis for the invented predicate is recursive. Otherwise, it
is pragmatic.

Example 7: If there werepermutation andordered predicates in the background knowledge of Example 6, then,
at the considered moment during induction, the invention ofinsert such that it is recursively defined (e.g., as above)
is useful. But it is not necessary, becauseinsert could then be defined (non-recursively) as follows:

insert(E,L,R) ← permutation([E|L],R), ordered(R)

This hypothesis forinsert could however be eliminated by unfolding inside the recursive clause forsort, which is
why the invention was non-necessary. Moreover, this hypothesis forinsert would have a complexity of O(n!),
wheren is the length of the list L, and would thus be very inefficient compared to the recursiveinsert hypothesis
in Example 6, which is O(n). Hence, the induction of that recursiveinsert hypothesis decreases the complexity of
the overall inducedsort program, which is why the invention is considered useful, although non-necessary.♦
Example 8: Given evidence of thegrandDaughter relation (wheregrandDaughter(G,P) holds iff personG is
a grand-daughter of personP), and given as background knowledge theparent, female, andmale predicates
(whereparent(P,Q) holds iff personP is a parent of personQ), the induction of the following hypothesis:

grandDaughter(G,P) ← parent(P,Q), daughter(G,Q)
daughter(D,P) ← parent(P,D), female(D)

involved the invention of thedaughter predicate (wheredaughter(D,P) holds iff personD is a daughter of person
P). This invention is non-necessary, since thedaughter hypothesis can be eliminated by unfolding into the grand-
Daughter hypothesis, but it also is pragmatic, since it causes thegrandDaughter hypothesis to become more
compact, and since thedaughter concept has now been defined and can be reused in the future.♦

The reader may wonder whether our non-standard distinction of useful and pragmatic predicate invention is itself
a useful invention! At this point, we can already argue that useful predicate invention potentially makes hypotheses
much more efficient (as shown in Example 7). Later, in Section 4.2.1, we will argue that the ability of performing
useful predicate invention is a major step towards avoiding the background knowledge usage bottleneck (which is
basically a state where an induction technique is getting confused by too much background knowledge), and is thus
a very desirable feature of induction techniques.

2.4.3 Theoretical Results about Predicate Invention

The task of inductive inference amounts in the limit to finding a finite axiomatisation for a given model. If the in-
tended model cannot be finitely axiomatised within a languageL , then inductive inference will never succeed.
However, detecting this is undecidable. This follows from Rice’s theorem (as initially proven in [72]):

Theorem 1: Given a recursively enumerable, deductively closed setC of formulas, and the first-order language
L defined from the symbols occurring inC, it is undecidable whetherC is finitely axiomatisable inL or not.
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Therefore, either a heuristic has to be used to conjecture the necessity of predicate invention, or the hypothesis
language has to be reduced so that the detection of necessary predicate invention is decidable [73]. Fortunately,
introducing new predicate symbols always allows finding a finite axiomatisation, as proved by Kleene (see [72]):

Theorem 2: Any recursively enumerable, deductively closed setC of formulas in a first-order languageL is
finitely axiomatisable using additional predicate symbols not inL.

In other words, Kleene’s theorem states that inductive inference will always succeed provided the technique in-
vents the appropriate new predicates. Since only necessary predicates need to be invented, it turns out that neces-
sary predicate invention is crucial in inductive inference. Depending on the hypothesis language, predicate
invention is however not always appropriate, because it may be unable to help make the induction succeed [73].

The difficulties of predicate invention are as follows. First, adequate formalparameters for the new predicate
have to be identified among all the variables in the clause calling that new predicate. This can be done by lengthy
computations based on notions such as active (or: discriminating) variables [54], or it can be done instantaneously
by using pre-computations done once and for all at the template level [28]. Second,evidence of the new predicate
has to be abduced from the current hypothesis using the evidence of the old predicate (note that a recursion syn-
thesiser may invoke itself from such abduced evidence). This usually requires an oracle for the old predicate, whose
hypothesis is still unfinished at that moment and can thus not be used. Third, the abduced evidence usually is less
numerous than for the old predicate (if the new predicate is in the recursive clause, then no new evidence is abduced
from the old evidence that is covered by the base clause) and can be quitesparse, so that the new synthesis is more
difficult. The sparseness problem can be illustrated by an example. Given the positive examplesfactorial(0,1),
factorial(1,1), factorial(2,2), factorial(3,6), andfactorial(4,24), and given the hypothesis:

factorial(0,1) ←
factorial(N,F) ← N=s(M), factorial(M,G), product(N,G,F)

whereproduct was just invented (and named so only for the reader’s convenience), then the abduced examples are
product(1,1,1), product(2,1,2), product(3,2,6), andproduct(4,6,24), which is hardly enough (note that there is
one less example than forfactorial) for inducing a recursive hypothesis forproduct. Indeed, examples such as
product(3,6,18), product(2,6,12), product(1,6,6), etc., are missing, which puts the given examples more than
one resolution step apart, if not on different resolution paths. This is aggravated by the absence of an oracle for
product, becauseproduct is not necessarily a concept known to the source of evidence offactorial (remember that
it is only calledproduct for convenience, but that, in practice, it has an non-suggestive name). For those techniques
that can perform necessary/useful predicate invention, we will discuss how they tackle these difficulties.

3 Achievements of Inductive Synthesis

This section first overviews the achievements of special-purpose techniques that were designed specifically for the
inductive synthesis of recursive logic programs. We then overview some representative general-purpose techniques
that can induce both recursive and non-recursive logic programs, and explain how they can introduce recursion into
a hypothesis. The firstoverview might be incomplete, but it discusses (most of) the landmark techniques in this
field. Furthermore, we here only present the techniques (but not their implementations as systems, as the latter may
be incomplete) as well as their inputs and outputs, but refrain from judging them in terms of, say, the realism of
providing these inputs, as it all depends on the application setting. Any criticism is thus delayed to Section 4.

Our primary classification criterion for the special-purpose synthesis techniques is whether the technique is bi-
ased by a program schema or not, which gives rise to Sections 3.1 and 3.2, respectively. In each of these sections,
the order of presentation of the techniques is not necessarily chronological, because, other than between the tech-
niques developed at the same institution, there is unfortunately very little influence of techniques on each other.
Although the discipline of inductive synthesis of (any kind of) recursive programs is quite old (see [8]), this may
be seen as a symptom that a very difficult topic is being tackled here and that very few standard concepts and so-
lutions have appeared yet. It is thus very difficult — if not impossible — to identify a useful generic algorithm cov-
ering most of the special-purpose synthesis techniques, and thus to lift this overview to an actualsurvey. Indeed,
other than saying that such a generic algorithm would consist of two steps, namely somehow inducing base clauses
and somehow inducing recursive clauses, and this in any sequence or even in parallel, there is very little in common
to all techniques. This paper is an attempt to bring some order into this state of affairs. Some general-purpose tech-
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niques are overviewed in Section 3.3. Finally, in Section 3.4, we point out cross-fertilisation opportunities and
identify directions for future work. The comparison chart (Table 1) at the end of this section will be helpful towards
this aim, and it may be a good idea for the reader to briefly study it right now.

Techniques that are somehow related to some others, or representative thereof, and techniques that are somehow
more sophisticated and powerful (in an absolute, application-independent sense) than others will obviously get
more coverage here than those that are completely different from all others, or that feature highly specialised
(sub-)machinery that is impossible to explain in the allotted space, or whose power is quite limited. So, and in any
case, we refer the reader to the original papers for more details, but we try to keep our assessments independent of
unmentioned details.

3.1 Schema-biased Synthesis

There are two ways of biasing synthesis by a schema.Schema-based synthesis infers a program guaranteed to fit
the template of a pre-determined schema and to satisfy its axiom set, but the schema itself is to a certain degree
hardwired into the technique. A useful generalisation isschema-guidedsynthesis, where the schema is either cho-
sen (among already available ones) by the schema-independent technique or provided to it by the source; the sche-
ma thus actively guides the synthesis.

A Generic Schema-biased Inductive Synthesis Algorithm.Fortunately, most techniques of schema-biased in-
ductive synthesisare amenable to a generic algorithm, which we present next. The templates of the considered
schemas are all of the following generic template, which is thus a template template (sic):

r(X,Y,Z) ← c(X,Y,Z), p(X,Y,Z)
r(X,Y,Z) ← d(X,H,X1,…,Xt,Y1,…,Yt,Z), r(X1,Y1,Z), …, r(Xt,Yt,Z), q(X,H,X1,…,Xt,Y1,…,Yt,Z)

wherep andq are two open predicates, whereasc andd summarise the effect of possibly empty sequences of open
predicates (whose joint dataflow here is only indicative). Also,X is a non-empty sequence of terms, whereasY and
Z are possibly empty sequences of terms. Note that the actual sequence of body atoms in the clauses is irrelevant,
and that there are thus possibly several ways of obtaining the template of Example 1, say (for instance,q could be
eithernonPrimitive, or decompose, or compose). Finally, this covers more than just divide-and-conquer pro-
grams, so that other design methodologies can be captured in other templates fitting this generic template; for in-
stance, the classical non-naive program forreverse (with an accumulator, thus) is covered, although it is not a
divide-and-conquer program.

Now we can introduce our generic algorithm. It is restricted to single-predicate evidence, but it can handle clausal
evidence (rather than just examples), and has necessary/useful predicate invention built into it:

Generic Algorithm SchemaBiasedInductiveSynthesis (abbreviatedsbis)
Inputs:
• a clausal evidence setEr for some predicater
• an oracleOr for r (this may or may not beEr)
• a context programC in which onlyr is undefined (this may be the empty program)
Outputs:
• a closed programPr (containingC) for r that coversEr in the available background knowledge
Algorithm:

sbis(Er,Or,C,Pr) ←
selectSchema(S), % S is (a suitable renaming for r of) some schema
close-cd(S,C,V), % V = C ∪ T ∪ CD, whereT is the template of S, andCD definesc andd
abduce(V,Er,Or,Ep,Eq), % Ep (resp. Eq) is a clausal evidence set ofp (resp. q) abduced by

% attempting to prove, using Or, that V covers Er
induce(Ep,Eq,Pp,Pq), % Pp (resp. Pq) is a non-recursive program for p (resp. q)
acceptable(Pq) → % (heuristically) decide whether predicate invention is necessary/useful

Pr = V ∪ Pp ∪ Pq % no need for predicate invention: assemble and return Pr
; recurse(Er,Ep,Eq,Or,V,Pp,Pq,Pr) % perform necessary/useful predicate invention by using sbis

This generic algorithmsbis is meant to be called whenever there are good reasons to believe that a new predicate
r (used in some possibly empty context programC) admits a recursive logic program. It works as follows. After
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selecting (a suitable renaming forr of) a schemaS (with recursive open templateT), its open predicatesc andd
are somehowclosed by means of a closed programCD (say through reuse of suitable programs stored in reposi-
tories), and the current hypothesis programV is set to the union of the context programC, the templateT, and the
programCD. Note thatV is still open, because predicatesp andq remain open. This openness preventsV from
covering any element of the clausal evidence setEr, but the failed proof attempts, for each such piece of evidence,
of that coverage may be used toabduce clausal evidence setsEp andEq for p andq, respectively, using the oracle
Or if necessary. Non-recursive closed programsPp andPq for p andq are theninduced from Ep andEq, respec-
tively, which induction thus cannot be done through a recursive call tosbis. If the programPq is consideredac-
ceptable according to some heuristic criterion, then the closed output programPr is assembled by closing the open
programV with the programsPp andPq. Otherwise, the algorithmsbis conjectures thatq had better be imple-
mented by a recursive program (i.e., it conjectures necessary/useful predicate invention), and it should of course
call itself for this task. The parameters of that self-call are technique-dependent (see below for sample approaches).
However, the parameters of the invented predicate are dictated by the template of the chosen schema. The closed
output programPr is assembled either through the recursive call tosbis itself (using the context program facility)
or through some operations after that call tosbis.

Instantiating this generic algorithm (which is itself an open program) can be done by providing clauses for its
open predicates. This is done differently by the various techniques, as shown next.

Historical Flashback. Many schema-biased synthesisers result from a more or less direct transposition and ex-
tension to logic (or rather: relational) programming of the best inductive synthesisers of recursive functional pro-
grams, namely the pioneering THESYS [75] and its subsequent generalisation, calledBMWk [44] [46]. Detailed
surveys of the field of inductive synthesis of functional programs exist [8] [28] [70]. There seems to have been some
disillusion in that community in the late 1970s, witness the dearth of papers published ever since.

In the early 1980s, MIS [68] [69] (see Section 3.3) and other pioneering techniques of the logic programming and
machine learning communities brought a new elan, due to a more powerful theory (logic and relational program-
ming) and a wealth of new ideas through their cross-fertilisation, eventually giving rise to a new branch of artificial
intelligence called Inductive Logic Programming (ILP). The added value was in the concepts of background knowl-
edge and declarative bias, in extended evidence languages, in more powerful induction operators, in the inducabil-
ity of programs for semantic manipulation relations, and in the inducability of both non-recursive and recursive
logic programs with the same technique. Curiously, program schemas were a lost value, and were only “rediscov-
ered” in the late 1980s.

Recently, there was a correction and even further generalisation ofBMWk resulting from a reformulation and for-
malisation in a term rewriting framework [50]. However, this proposal has not been further pursued (yet), and it
still features many of the drawbacks of the original technique, namely absence (and hence no use) of background
knowledge, inability to perform necessary/useful predicate invention,3 and inability to induce programs for se-
mantic manipulation relations.

Similarly, there also was a reformulation and formalisation ofBMWk in the simply-typedλ-calculus with
higher-order unification [35] [36]. However, it also inherits the disadvantages of the original technique.

CRUSTACEAN and CILP . The first two techniques are closely related and were designed by overlapping teams.

The evidence language of theCRUSTACEAN technique [1] [2] is ground literals (positive and negative examples),
and the evidence may be arbitrarily chosen. No bias is used, other than that the hypothesis language is definite pro-
grams of the following template:

r(…) ←
r(…) ← r(…)

Synthesis is data-driven and passive. There is no usage of background knowledge and no possibility of any kind of
predicate invention because of the template. The technique can handle only one relation at a time, and it must be a
syntactic manipulation relation. The assumption is thus that a program to be induced consists of one unit base
clauseB and one purely recursive clauseR (containing only predicate symbolr).

3. It actually tries toavoid necessary predicate invention, namely by transformation of the evidence through generalisation (accumulator in-
troduction). However, this avoidance method is not guaranteed to always be successful [29].
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The technique does not fit the generic algorithm. It first makes a structural analysis (see [2]) of the positive ex-
amples, based on the following observation: a positive examplePi can be proven by resolvingBi andR repeatedly,
whereBi is an instance ofB. Therefore, the parameters ofBi are sub-terms of the parameters ofPi. For instance,
for Pi = last(a,[c,a]), Bi = last(a,[a]), andR = last(A,[B,C|T]) ← last(A,[C|T]), this is the case (wherelast(E,L)
holds iff termE is the last element of listL). As a result of this analysis, the technique produces annotations of the
positive examples. These annotations are then used to findB andR, as follows.

The base clauseB is computed by taking the lgθ of a set of candidatesBi that are extracted from these annota-
tions. If the lgθ of one such set is an over-general base clause (i.e., which covers negative examples), then back-
tracking occurs to an alternative set. For instance, an inadequate set extracted from the annotations of the positive
exampleslast(a,[c,a]) and last(b,[e,d,b]) is {last(a,c), last(b,d)}, because its lgθ would yield the base clause
last(A,B) ←, which covers all negative examples (not listed here). An adequate set is {last(a,[a]), last(b,[b])}, as
its lgθ yields the base clause last(A,[A]) ← , which covers no negative examples.

The recursive clauseR is computed in the following way. Its head is the lgθ of all theiterative decompositions
(see [2]) of all the examples from which the chosen adequate set was obtained. For instance, the iterative decom-
positions of the two positive examples above are:

last(a,[c,a]) last(b,[e,d,b])
last(b,[d,b])

The lgθ of these atoms islast (A,[B,C|T]), and is taken as the head of the recursive clause. The recursive call is
constructed by again using the annotations obtained by the structural analysis (see [2]). This here yields
last(A,[C|T]), so that the final program is:

last(A,[A]) ←
last(A,[B,C|T]) ← last(A,[C|T])

When the schema is inadequate, the technique requires that the specifier already has an idea of what a possible pro-
gram could look like. For instance, a positive example ofreverse(L,R) may then be given as follows:

reverse([1,2],append(append([],[2]),[1]))

where the specifier hardwires an idea of how to revert a list by usingappend (note that the idea isrepresented by
agiven functor namedappend, rather thancomputed by means of aninvented predicate).

The technique does not need to be given any examples covered by the base clause, as it constructs its own such
examples from those covered by the recursive clause. The technique is a generalisation of the LOPSTER technique
[47], which requires the positive examples to be on the same resolution path, and hence carefully crafted. However,
the latter can also induce programs with left-recursive clauses and is thus biased by a more general template.

TheCILP (Constructive Inductive Logic Programming) technique [48] interactively induces programs for syn-
tactic manipulation relations, and makes no usage of background knowledge. The technique fits the generic algo-
rithm as follows:

• the evidenceEr is ground literals (positive and negative examples), and may be arbitrarily chosen;
• the oracleOr is the specifier;
• the context programC is the empty program■;
• selectSchema always amounts to selecting the following (divide-and-conquer) schema:

r(…) ←
r(…) ← r(…), q(…)

hence featuring a priori noc, d, p predicates; this means that most computations are performed through unifi-
cation and the recursive call, which may be considered as if there weresolve (asp) anddecompose (asd)
open predicates in the template, as in the template of Example 1, but with the restriction that their instances
must be implemented in terms of equality atoms only, so that they can be unfolded so as to yield a program of
the template above; the technique is thus schema-based;

• close-cd, abduce, andinduce are intricately merged into one step, as briefly illustrated here by means of the
length predicate, wherelength(L,N) holds iff integerN is the length of the listL:
– therecursive clause is first computed, by a method calledsub-unification(see [47]), which is based on the

structural differences of the parameters of a pair of selected positive examples, and which determines a re-
cursive clause that inverts the largest number of resolution steps between these examples; from the examples
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length([a,b],s2(0)) and length([a,b,c,d],s4(0)), it is found to be length([H|T],s(N)) ← length(T,N); an
alternative clause, but that inverts fewer resolution steps and covers fewer test examples, is
length([G,H|T],s2(N)) ← length(T,N); this is a remarkable feature, since the technique can thus work from
fewer examples, which is especially useful when performing necessary predicate invention, as the abduced
examples of the invented predicate are sometimes sparsely distributed over its intended relation;

– thebase clause is then computed using the following observation: the base clause is a unit clause used by a
recursive program in the last step of a refutation; it is thus found by taking the lgθ of the unresolved facts;
for instance, the first example can be resolved twice (using the recursive clause) to obtain the unresolvable
fact length([],0), whereas resolving the second example four times yields again the same factlength([],0).
The base clause is thuslength([],0) ← ; the technique thus does not need to be given any examples covered
by the base clause, as it constructs its own such examples from those covered by the recursive clause;

– the parameters ofq initially are all the variables of the recursive clause; then,harmful variables are heuris-
tically eliminated (see [48]) anduseful variables are kept (their elimination by projection would provoke the
abduction of the same example ofq from a positive and a negative example ofr, hence making it undecid-
able whether that example ofq is positive or negative); such abduction is made by SLD execution, using the
oracle if necessary;

• acceptable conjectures necessary predicate invention if every program induced for every selected pair of pos-
itive examples covers some negative example;

• recurse amounts to the following conjunction:sbis(Eq,■,■,Q), Pr = V ∪ Pp ∪ Q; for the self-call, there is
thus no oracle, and no use is again made of the context program facility: the new synthesis is thus independent
of the old one, and their resulting programs are then joined; note that the new evidence is less numerous than
the old one, so that there is a limitation to how many predicate inventions can be performed in a chain; fortu-
nately, the technique handles sparse evidence sets quite well.

FORCE2. The evidence for the FORCE2 technique [18] may consist of arbitrarily chosen ground literals (positive
and negative examples). The technique also requires adepth complexity of the program to be induced, and a func-
tion for determining whether an atom is an (instance of the) base case of the recursion. For instance, for theappend
predicate, the source could give the following:

maxdepth(append(X,Y,Z)) = length(X) + 1
basecase(append(X,Y,Z)) = if X=[] thentrue elsefalse

The source need only supply an upper bound on the depth complexity (not a precise bound), and a sufficient (not
both necessary and sufficient) condition for membership in the base case.

The hypothesis language is two-clause linear and closed recursive ij-determinate definite programs. A clause is
linear and closed recursive if its body has a single recursive atom with no output variables. Thus, the template is:

r(…) ← c(…)
r(…) ← d(…), r(…)

where each atom inc andd is anij -determinate literal that is defined in the background knowledge, and the recur-
sive atomr(…) has no output variables. The technique can handle only one (syntactic or semantic manipulation)
relation at a time and cannot do any kind of predicate invention. It requires background knowledge that includes
only predicates of arityj or less, and of a depth boundi. The technique is passive, data-driven, but not fully imple-
mented. The identification criterion is PAC-identification.

The technique first splits the positive examples into two subsets by using thebasecase function, thus obtaining
examples of the base clause and of the recursive clause. Then, the rlgθsB andRof these two example sets relative
to the background knowledge are used as initial guesses for the base clause and recursive clause, respectively. For
instance, the rlgθs of the positive examplesappend([],[1],[1]), append([],[2,3],[2,3]), append([1],[],[1]), and
append([1,2],[3],[1,2,3]) are:

append(X,Y,Z) ← Y=[W|V], X=[], Z=Y (B)
append(X,Y,Z) ← X=[W|V], Z=[T|U], W=T (R)

Next, for each possible recursive atom L over the variables inR, the technique proceeds to the following simulta-
neous refinement of thebase clause and therecursive clause:

• Suppose the chosen (and adequate) recursive atom isappend(V,Y,U). For each positive examplee, if it is a
base case (which is determined using thebasecase function), thenB is replaced with its lgθ with e; otherwise,
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R is replaced with its lgθ with e. For instance, fore= append([1,2],[3],[1,2,3]), it is found thate is not a base
case, thereforeR is generalised such that it coverse. Here,R remains unchanged, because it already coverse.
Next, the corresponding instancei of the recursive atom is computed; ifi is a base case, thenB is replaced with
its lgθ with i; otherwise,R is replaced with its lgθ with i. Here, the corresponding instance ofappend(V,Y,U)
is append([2],[3],[2,3]), which is not a base case, soR is replaced with its lgθ with append([2],[3],[2,3]),
which again does not changeR. This instantiation process continues until a base case is obtained. Here, the
atomappend([ ],[ ],[ ]) is now obtained, and determined to be a base case. So,B is generalised to its lgθ with
append([ ],[ ],[ ]), yielding: append(A,B,C) ← A=[], C=B. After doing this with all positive examples, the
chosen recursive atom is added to the end ofR to obtain the recursive clause of the final program. Next, it is
checked whether the program covers any negative examples. If it covers some, then it is rejected and another
possible recursive atom is tried.

• Now, suppose that the recursive atom was chosen incorrectly: how can this be detected? For instance, letL be
append(X,X,Z). Then, for the exampleappend([1,2],[3],[1,2,3]), the same calls would be generated repeat-
edly. This is detected by means of themaxdepth function when the depth bound is exceeded, and an error is
signalled to indicate that there is no valid generalisation of the program that covers the example. For incorrect
recursive atoms that do not provoke looping beyond the depth-bound, the synthesis might end up with an
over-general hypothesis. However, this can be detected by using sufficient negative examples.

Note that there are polynomially many possible recursive atoms to be tested.

SIERES. The SIERES technique [79] is passive, data-driven, and can handle one (syntactic or semantic manipula-
tion) relation at a time. Mode declarations are used as search bias. The hypothesis language is definite programs.
The background knowledge consists of definite clauses. The technique makes use of schemas calledargument de-
pendency graphs (ADG), which specify the number of literals within a clause and the argument dependencies be-
tween them. For instance, such a graph isr([H|T],R) ← r(T,Q), q(H,Q,R). A literal L1 depends on a literalL2 if
they share a variable that is an output variable ofL1 and an input variable ofL2 (as indicated in the mode declara-
tions). The technique fits the generic algorithm as follows:

• the evidenceEr is ground literals (positive and negative examples), which may be arbitrarily chosen;
• there is no oracleOr;
• the context programC is the empty program■;
• selectSchema selects an ADG from a set of ADGs; the technique is thus schema-guided;
• close-cd, abduce, andinduce are intricately merged into one step:

– there is no indication how thebase clause is discovered, but it seems done before finding the recursive
clause;

– therecursive clause is computed as follows: the technique first computes the lgθ of the positive examples,
and uses it as the head for the recursive clause; if this lgθ is over-general (i.e., if it covers any negative ex-
amples), then it is specialised, using the mode declarations and the selected ADG; the parameters of possible
body literals (using predicates from the background knowledge or the top-level predicate) are restricted to
critical terms (unused input and unused output terms); new variables and/or uncritical terms are used as pa-
rameters only when there are more parameters of the predicate than critical terms;

• acceptable conjectures necessary predicate invention if none of the existing predicates yields a correct spe-
cialisation of the recursive clause; the parameters of the invented predicate are selected so that the resulting
clause contains no more critical terms;

• recurse amounts to the following conjunction:sbis(Eq,■,■,Q), Pr = V ∪ Pp ∪ Q; for the self-call, there is
thus again no oracle and no context program: the new synthesis is thus independent of the old one, and their
resulting programs are then joined; note that the new evidence is less numerous than the old one, so that there
is a limitation to how many predicate inventions can be performed in a chain; unfortunately, the technique can-
not handle the sparseness problem.

Example 9: Given the positive examplessort([1],[1]), sort([3,1],[1,3]), andsort([2,4,1],[1,2,4]), suppose the
over-general clause induced (using the mode declarations and the ADG given above) issort([H|T],S) ← sort(T,Y).
Let the background knowledge include only a program for the≤ predicate. Then, none of the existing predicates
yields a correct specialisation of the clause conforming to the ADG. This initiates necessary predicate invention.
The critical terms of the over-general clause areH, Y, S. Thus, the new literal isq(H,Y,S), and the abduced positive
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examples areq(1,[],[1]), q(3,[1],[1,3]), andq(2,[1,4],[1,2,4]). This denotes an example set of the insertion of a
number into a sorted list of numbers. For space reasons, we omit the details of the self-call.♦

TIM . The evidence for TIM  (The Induction Machine) [40] may consist of arbitrarily chosen ground atoms (positive
examples). The hypothesis language is definite programs that fit a template with exactly one base clause and one
recursive clause, where the unique recursive call is the last body atom. The background knowledge is composed of
definite clauses. Mode declarations are provided as a search bias. The technique can handle only one (syntactic or
semantic manipulation) relation at a time.

The basic idea is to construct explanations of the examples in terms of the background knowledge, and then to
analyse these explanations in order to induce a program. The technique first computes saturations of the examples.
A clauseF is asaturation of an example E relative to background knowledgeB if F is the most specific reformu-
lation (under implication) of E relative toB. A clauseF is areformulation of a clause E relative to background
knowledgeB if B ∧ F ≡ B ∧ E. For instance, for the examplesE1, E2, the mode declarationsM1, M2, and the back-
ground knowledge clausesB1, B2 below:

E1: member(b,[a,b]) E2: member(e,[c,d,e,f])
M1: dec(+,−,−) M2: equal(+,+)
B1: dec([H|T],H,T) ← B2: equal(X,X) ←

the following clausesF1 and F2 are the saturations ofE1 andE2 relative toB:

F1: member(b,[a,b]) ← dec([a,b],a,[b]), dec([b],b,[]), equal(b,b)
F2: member(e,[c,d,e,f]) ← dec([c,d,e,f],c,[d,e,f]), dec([d,e,f],d,[e,f]), dec([e,f],e,[f]), equal(e,e)

First, therecursive clause is computed as follows. The technique analyses (see [40]) the saturations so as to find
commonstructural regularities in pairs of saturations. On finding such pairs, the technique adds a ground recursive
atom (suggested by the analysis) to the end of the body of each saturation. The recursive clause is then the lgθ of
these augmented saturations.

Then, thebase clause is constructed as follows. Instances of the head of the base clause are computed by again
exploiting the structural regularity information found in the saturations computed earlier. The base clause is then
the lgθ of the saturations of these instances.

For our problem, the technique uses the saturationsF1 andF2 to infer the following program:

member(X,Y) ← dec(Y,X,Z)
member(X,Y) ← dec(Y,Z,W), member(X,W)

The technique is passive, and is not able to perform any kind of predicate invention.

SYNAPSE, DIALOGS , and META INDUCE. The next three techniques are very similar to each other, so that we can
discuss them together. They all target programming assistance applications, so that the source is a specifier.

The SYNAPSE (SYNthesis of Algorithms from PropertieS and Examples) technique [28] [31] is based on a
divide-and-conquer schema that subsumes the one of Example 1, in the sense that the arity ofr and the number of
recursive calls are parameterised, hence providing more flexibility. Also, theprimitive andnonPrimitive checks
are each divided into a syntactic check (calledminimal andnonMinimal, respectively) and a semantic check
(calleddiscriminate). Multiple base clauses and multiple recursive clauses are possible, through multiple clauses
for solve andcompose, respectively.

The evidence language is (non-recursive) Horn clauses describing a single intended relation. Ground unit clauses
are called (positive)examples and data-drive the synthesis; all other clauses are calledproperties and are used to
find the instances ofsolve, compose, anddiscriminate. No other bias is given, though types are inferred from
the examples. Mode and determinism information are not required, because the focus is on synthesising the logic
component of logic programs.

Here is some evidence fordelOdds(L,R), which holds iffR is integer-listL without its odd elements:

delOdds([],[]) ←
delOdds([1],[]) ← delOdds([A],[]) ← odd(A)
delOdds([2],[2]) ← delOdds([B],[B]) ← ¬odd(B)
delOdds([3,4],[4]) ←
delOdds([6,8],[6,8]) ←
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The rationale behind properties becomes apparent now: since examples alone cannot express everything the spec-
ifier must know aboutdelOdds, namely theodd concept, a way had to be found to overcome this limitation. Prop-
erties thus allow the synthesis of programs for semantic manipulation relations without a background knowledge
usage miracle (see Section 4.2.3). Nothing prevents giving too complete properties, such as a correct recursive pro-
gram, but the technique works from as little evidence as given above.

The hypothesis language is normal logic programs, where negation is restricted to the discriminants and appears
there by extraction from the properties (i.e., it can only be applied to primitive predicates and could thus be avoided
by using the complementary primitives in the properties).

Synthesis is passive, although there is anexpert mode where the technique asks for a preference among the pos-
sible instances of theminimal, nonMinimal, anddecompose place-holders, rather than non-deterministically
choosing each from a repository. These problem-independent repositories form the (partitioned) background
knowledge. The technique fits the generic algorithm as follows:

• the evidenceEr is partitioned into an example setExr and a property setPropr, as described above;
• the oracleOr always isEr;
• the context programC always is the empty program■;
• selectSchema always amounts to selecting the abovementioned divide-and-conquer schema, but withoutdis-

criminate (see below), and takingsolve asp andcompose asq; the technique is thus schema-based;
• close-cd closes theminimal, nonMinimal, anddecompose predicates by reuse of suitable programs from

the repositories;
• abduce computes example (not evidence) sets ofp andq as follows:

Exp ∪ Exq = {e' | ∃ e ∈ Exr . (V ∪ {e'}) ⊕ (Or \ {e}) |— SLDNF e}

whereT ⊕ S |— SLDNFG denotes that, for proving goalG with SLDNF resolution, the theoryT is used for all
predicates defined inT, except for those predicates that are also defined inS, for which theoryS is used instead;
note that the currently proved examplee has to be deleted from the oracle, because otherwise there would be
a trivial proof;

• induce worksseparately onp andq; for each of them, it divides the example set into maximal subsets such
that their lgθs are not too general according to what is called aconstruction mode [27] (see Example 10 below);
this division is not necessarily a partition and can be performed by a clique cover algorithm [27]; each of these
lgθs constitutes one (unit) clause ofPp or Pq; note that there can thus be several clauses forp andq, so that
there can essentially be, after unfolding ofp andq, several base clauses and several recursive clauses forr;

• acceptable conjectures necessary or useful predicate invention ifPq has more clauses than there are proper-
ties inPropr, because otherwise there would not have been any compression in the number of clauses between
the evidence and the program; this obviously requires the properties to be carefully crafted;

• recurse amounts to the following conjunction:sbis(Eq,Eq,■,Q), Pr = V ∪ Pp ∪ Q; for the self-call, the or-
acle is thus again the provided evidence, and no use is again made of the context program facility: the new
synthesis is thus independent of the old one, and their resulting programs are then joined; note that the new
evidence is less numerous than the old one, so that there is a limitation to how many predicate inventions can
be performed in a chain; nothing is foreseen to detect and handle the sparseness problem, if it occurs;

• all calls tosbis must be followed by a call to anaddDisc step, which adds calls todiscriminate and abduces
clauses for it, usingPropr (see [28]).

Let us now analyse the behaviour of this instance of the generic algorithm on an example.

Example 10: For delOdds, supposeclose-cd produces the intermediate program (after some unfolding):

delOdds(L,R) ← L=[], solve(L,R)
delOdds(L,R) ← L=[HL|TL], delOdds(TL,TR), compose(HL,TR,R)

Then,abduce finds the following examples ofsolve andcompose from the examples ofdelOdds:

solve([],[]) ←
compose(1,[],[]) ←
compose(2,[],[2]) ←
compose(3,[4],[4]) ←
compose(6,[8],[6,8]) ←

Next, induce works as follows. The lgθ of all the examples ofcompose would becompose(P,Q,R) ← , which
is over-general according to the construction mode forcompose. The latter is a problem-independent pre-comput-
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ed constraint stating that the third parametermust somehow be constructed using the second parameter andmay
possibly even be constructed using the first parameter. To satisfy this mode, the evidence is divided into subsets:
the first and third clauses havecompose(H,T,T) ← as lgθ, whereas the second and fourth clauses have
compose(H,T,[H|T]) ← as lgθ. These lgθs satisfy the mode, and there is no such division into less than two sub-
sets. The lgθ of the evidence ofsolve is its only element, which satisfies the construction mode forsolve.

Since there are two clauses now forcompose and two properties fordelOdds, theacceptable heuristic accepts
this result, and the program now is assembled as follows (after some unfolding):

delOdds(L,R) ← L=[], R=[]
delOdds(L,R) ← L=[HL|TL], delOdds(TL,TR), R=TR
delOdds(L,R) ← L=[HL|TL], delOdds(TL,TR), R=[HL|TR]

The discriminants are then abduced byaddDisc, and the final program is:

delOdds(L,R) ← L=[], R=[]
delOdds(L,R) ← L=[HL|TL], odd(HL), delOdds(TL,TR), R=TR
delOdds(L,R) ← L=[HL|TL], ¬odd(HL), delOdds(TL,TR), R=[HL|TR]

This program is correct w.r.t. the intended relation, hence has a 100% accuracy against any test set.♦
Another sample run, featuring necessary or useful predicate invention, is not given here. We will illustrate this

by showing it on the successor technique DIALOGS (see below). The overall technique is much more powerful than
explained here, a lot of its additional sophistication going into the detection and handling of constant parameters
(which do not change through recursive calls, such as variableZ in the template template (sic) or integerE in in-
sert, see Example 6) and of useless recursive calls (when the induction parameter is only traversed partially, such
asL in insert).

Unfortunately, for time reasons, the technique was never implemented up to its full power, as it is described in
[28]. However, insights gained during its design and experimentation led to the design of the DIALOGS technique,
described hereafter. But let us first discuss METAINDUCE, because it is very close to SYNAPSE.

TheMETA INDUCE technique [37] is almost exactly a particular case of SYNAPSE. The main contribution is an
extremely elegant implementation based on a meta-programming approach, which is a big step towards actual
schema guidance. The hardwired schema is an instance of the SYNAPSE one, namely for ternary relations, with the
induction parameter of type list, with exactly one base clause (when the list is empty), with exactly one recursive
clause (when the list is non-empty), with head-tail decomposition of the list (i.e., exactly one recursive call), and
without discriminants. The evidence language is positive and negative examples, and there is no background
knowledge nor properties, hence a restriction to syntactic manipulation relations. The hypothesis language is def-
inite logic programs. Theclose-cd andaddDisc steps do nothing (asc andd are empty and as there are no dis-
criminants), and SLD execution suffices forabduce. There is no oracle, so the abduced evidence ofq is initially
made of conjunctions ofq atoms that share some variables (see [37] for details on how to derive actual examples
from such evidence). Theinduce step computes the lgθs of theentire example sets, due to the absence of construc-
tion modes, and thus produces a unique (unit) clause, which may be over-general (as seen in Example 10). The
acceptable heuristic conjectures necessary predicate invention upon coverage of some abduced negativeq exam-
ple by theq clause. The technique and its implementation are only considered proof-of-concept prototypes by their
designers.

The DIALOGS  (Dialogue-based Inductive/Abductive LOGic program Synthesiser) technique [30] [80] results
from an effort at building a fully interactive version of SYNAPSE, and at extending its power while at the same time
simplifying its machinery. The main objective was to take all burden from the specifier by having the technique ask
for exactly and only the information it needs. As a result, no evidence needs to be prepared in advance, as the tech-
nique invents its own evidence and queries the specifier about it. This is suitable for all levels of expertise of human
users, as the queries are formulated in the specifier’s (initially unknown) conceptual language, in a program-inde-
pendent way, and such that the specifiermust know the answers if s/he really feels the need for the program. The
technique is schema-guided, and currently has two schemas (divide-and-conquer and accumulate). The evidence
language implicitly amounts to (non-recursive) normal programs. Type declarations are available as language bias.
The hypothesis language is recursive normal programs with possibly multiple base clauses and recursive clauses.
The technique fits the generic algorithm as follows:
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• the evidenceEr is empty;
• the oracleOr is the specifier;
• the context programC is arbitrary;
• the predicate sequencec is empty in the template template (sic);
• selectSchema interactively selects a schema and astrategy, the latter stating which open predicates play the

roles ofd, p, andq, respectively; the technique is thus really schema-guided;
• close-cd interactively closes thed predicates by reuse of suitable programs from the repositories;
• abduce computes evidence sets ofp andq as follows:

Ep ∪ Eq = {e' | ∃ g ∈ Gr . (V ∪ {e'}) ⊕ Or |— SLDNF++g}

whereGr is a finite set of most-general goals forr, obtained by varying the size of the induction parameter;
also, SLDNF++ denotesextended SLDNF execution [45], which can also prove certain clausal goals; the ques-
tions to the oracle aboutp andq are reverse-engineered into questions aboutr; all answers by the oracle are
stored asjudgments, to prevent asking the same question twice;

• induce workssimultaneously onp andq; for each pair of corresponding evidence clauses ofp andq, it deletes
one (see [80]) and divides the remaining clauses of each set into maximal subsets such that their lgθs are not
too general according to a construction mode; each of these lgθs constitutes one clause ofPp or Pq;

• acceptable conjectures necessary or useful predicate invention ifPq is empty, because otherwise all the com-
putations would be non-recursively performed through the base clauses;

• recurse amounts tosbis(■,Or,V ∪ Pp,Pr); thus, the evidence is again empty, but the context program facility
is used here: the new synthesis isnot independent of the old one, in the sense that abduction of evidence will
again start from goals forr; the questions aboutp andq (of the oldq thus) being reverse-engineered into ques-
tions aboutr, the oracle forr can be used here as well; the judgments stored at the previous level avoid duplicate
questions; the new evidence is thusnot necessarily less numerous than the old one, and some heuristic (see
[80]) detects and handles the sparseness problem, if it occurs.

Let us now analyse the behaviour of this instance of the generic algorithm on an example, featuring necessary/use-
ful predicate invention.

Example 11: Consider the following template of a schema calleddivide-and-conquer:

r(X,Y,Z) ← solve(X,Y,Z)
r(X,Y,Z) ← decompose(X,Z,H,X1,…,Xt), r(X1,Y1,Z), …, r(Xt,Yt,Z), compose(H,Z,Y1,…,Yt,Y)

Consider the strategydc1 for this schema, expressing thatc is empty,d is decompose, p is solve, andq is com-
pose. Another strategy isdc2, which isdc1 where the roles ofdecompose andcompose are exchanged.

Here is a sample transcript of a dialogue for thereverse(L,R) relation, which holds iffR is the reverse of listL.
Proposed answers (if any) are between curly braces “{…}” and can thus be chosen as defaults by computationally
naive specifiers; the specifier’s actual answers are initalics (and are printed even when the default was chosen); the
comma “,” stands for conjunction; and the semi-colon “;” stands for disjunction. The dialogue is fully backtrack-
able, which yields the opportunity to synthesise several programs.

Predicate declaration? reverse(L:list(term),R:list(term))
Schema? {divide-and-conquer, accumulate} divide-and-conquer
Strategy? {dc1, dc2} dc1
Induction parameter? {L} L
Result parameter? {R} R
Decomposition? {L=[HL|TL]} L=[HL|TL]
When does reverse([],R) hold? R=[]
When does reverse([A],R) hold? R=[A]
When does reverse([A,B],R) hold? R=[B,A]
When does reverse([A,B,C],R) hold? R=[C,B,A]
When does reverse([A,B,C,D],R) hold? stop it!

Note how all questions are aboutreverse, and that the specifier decided (at her/his own risk) when s/he had given
enough information. However, itis enough for inferring the following program (after some unfolding):

reverse(L,R) ← L=[], R=[]
reverse(L,R) ← L=[HL|TL], reverse(TL,TR), compose(HL,TR,R)
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compose(E,L,R) ← L=[], R=[E]
compose(E,L,R) ← L=[HL|TL], compose(E,TL,TR), R=[HL|TR]

Let us inspect in some detail what happened. Theabduce step produces the following pairs of corresponding piec-
es of evidence ofsolve andcompose:

solve([],[]) ← (none)
solve([A],[A]) ← compose(A,[],[A]) ←
solve([A,B],[B,A]) ← compose(A,[B],[B,A]) ←
solve([A,B,C],[C,B,A]) ← compose(A,[C,B],[C,B,A]) ←

The induce step produces zero clauses forcompose (after deleting all its evidence), and three clauses forsolve.
Theacceptable heuristic thus conjectures necessary/useful predicate invention, so that DIALOGS calls itself with
as (open) context program the first two clauses of the program above. Before that, it constructs the predicate dec-
larationcompose(HL:term,TR:list(term),R:list(term)) and switches its execution mode from (the initial)aloud
to mute, meaning that all constructed default answers will be automatically selected. Indeed, the specifier has no
idea whatcompose means (especially that the intended relation ofcompose depends on the one ofdecompose,
and is thus not unique), and should thus not have to answer queries about it. DIALOGS also constructshints for the
default answer construction, stating here that thedivide-and-conquer schema with strategydc1 ought to be se-
lected, thatTR ought to be the induction parameter, thatR ought to be the result parameter, and thatHL ought to
be a passive parameter. With this setup, plus the judgments stored during the old synthesis, the new synthesis can
be run entirely off-line (as witnessed by the transcript above) and yet collect evidence of thesolve andcompose
predicates of (the old)compose. More evidence can be gathered for these predicates, so the specifier is actually
again asked what the reverse of a four-element-list is, because there is no judgment for it. Suppose s/he still believes
s/he already said everything useful aboutreverse. This time, from the results of theabduce step, theinduce step
produces clauses that do not lead to a conjecture of necessary/useful predicate invention by theacceptable heu-
ristic, and the final program is as above.♦

3.2 Schema-less Synthesis

SPECTRE II and M ERLIN . The following two theory-guided techniques are not really related, but we grouped
them together because they were designed by the same person. An initial theory cannot (really) be seen as a sche-
ma, as it is usually modified during the induction, and thus does not (really) guide the induction process. Further-
more, an initial theory is problem-specific, whereas a schema would have to be problem-independent.

The inputs to theSPECTRE II (SPECialisation by TRansformation and Elimination) technique [9] are carefully
crafted ground literals (positive and negative examples) as evidence of possibly multiple (syntactic or semantic ma-
nipulation) relations, and an overly general initial theory that is already recursive. The hypothesis language is def-
inite programs. There is no background knowledge, nor any kind of bias. The technique cannot perform any kind
of predicate invention.

The technique only works under the following assumptions: all positive examples are logical consequences of
the initial theory, there is a finite number of refutations of the positive and negative examples, and there are no pos-
itive and negative examples that have the same sequence of input clauses in their refutations.

The technique works as follows. First, as long as there is a refutation of a negative example such that all clauses
used in this refutation also appear in all refutations of the positive examples, an atom in a clause of the current pro-
gram is unfolded. Second, for each refutation of a negative example, an input clause that is not used in any refuta-
tion of any positive example is removed. The clauses to be unfolded or removed can be selected randomly; this
does not affect the correctness of the induced program w.r.t. the training set.

Example 12: Suppose the positive examplesodd(s(0)), odd(s3(0)), odd(s5(0)), the negative examplesodd(0),
odd(s2(0)), odd(s4(0)), and the following initial theory are given:

odd(0) ← (c1)
odd(s(X)) ← odd(X) (c2)

According to the first step, there is a negative example, namelyodd(0), for which all clauses, namelyc1, in its
refutation appear in all refutations of the positive examples. If one selects c2 and unfolds the atom in its body, then
the following new program is obtained:
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odd(0) ← (c1)
odd(s(0)) ← (c3)
odd(s2(X)) ← odd(X) (c4)

No other unfolding need now be done. Then, according to the second step, clausec1 must be removed. This results
in the following new program:

odd(s(0)) ← (c3)
odd(s2(X)) ← odd(X) (c4)

which is correct. ♦

The correctness of the technique is proved by a theorem [8]. The technique is passive, and actually uses heuristics
during clause selection for unfolding and removing. The technique is a generalisation of theSPECTRE technique
[11], in the sense that it no longer requires the examples to be of the same relation.

The inputs to theMERLIN  (Model Extraction by Regular Language INference) technique [10] are carefully craft-
ed ground literals (positive and negative examples) as evidence of one (syntactic or semantic manipulation) rela-
tion, and an overly general initial theory that is already recursive. The hypothesis language is definite programs.
The technique is passive and resolution-based. There is no background knowledge, nor any kind of bias.

Previous resolution-based approaches to theory-guided induction produce hypotheses as sets of resolvents of the
initial theory, where allowed sequences of resolution steps are represented by resolvents. However, this is not al-
ways possible. For instance, suppose the positive examplesp([a,b]), p([a,a,b,b,b]), the negative examplesp([b,a]),
p([a,b,a]), and the following initial theory are given:

p([]) ← (c1)
p([a|L]) ← p(L) (c2)
p([b|L]) ← p(L) (c3)

One can then find the following characterisation of the sequences of resolution steps that are used in the refutations
of the positive examples, where the characterisation does not hold for the refutations of the negative examples: first
the clausec2 is used an arbitrary number of times, then the clausec3 is used an arbitrary number of times, and
finally c1. This cannot be expressed by a set of resolvents of the given theory, but rather by the following theory:

p([]) ← (c1)
p([a|L]) ← p(L) (c2)
p([b|L]) ← q(L) (c4)
q([]) ← (c5)
q([b|L]) ← q(L) (c6)

Note that predicateq had to be necessarily invented.

The technique has a new approach to solving this representation problem. It tries to induce a finite-state machine
that represents allowed sequences of resolution steps. It thus views refutations of positive (resp. negative) examples
as strings in (resp. not in) a formal language, and represents this as a finite-state machine, where the final states
correspond to either a positive example or a negative example. Then, this automaton is reduced by merging the start
states, and is made deterministic. Next, the set of sequences allowed by the given initial theory is represented as a
context-free grammar, and then a new context-free grammar is derived that represents the intersection of the former
grammar and the automaton. Finally, this new grammar is used to produce the final program, possibly with predi-
cate invention. The technique assumes that all positive examples are logical consequences of the initial theory, and
that there are no positive and negative examples that have the same sequence of input clauses in their refutations.
Describing this in detail is beyond the scope of this paper, and we refer to the original article [10]. Suffice it to say
that, from the initial theory and examples above, the technique infers the correct specialisation above.

SMART . The evidence for the SMART [54] technique may consist of arbitrarily chosen ground literals (positive and
negative examples) for one (syntactic or semantic manipulation) relation. The positive examples may lie on non-in-
tersecting resolution paths of induced programs, and may thus be quite sparse. The hypothesis language is definite
programs. The background knowledge is definite clauses with mode and type information, and a search bias is
given in the form of an upper bound on the length of clauses.
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The unique (unit)base clause is first induced, in a way similar to CRUSTACEAN (see Section 3.1), the main dif-
ference being that the technique can generate its own negative examples for the base clause, rather than using only
the user-supplied ones.

Therecursive clause is next induced, as follows. Candidate recursive clauses from the hypothesis space are enu-
merated top-down in an exhaustive manner, and one such clause is selected if it is correct w.r.t. the set of positive
and negative examples. Search explosion is controlled by enforcing the given upper bound on clause lengths and
by disallowing inactive variables. Let us illustrate this on an example.

Example 13: Assume the technique constructs a recursive clause for thesort predicate, yielding the following
clause at some moment:

sort(L,S) ← dec(L,H,T), part(T,H,L1,L2)

wheredec andpart are background predicates. Beyond the first body atom,L has no role to play for the rest of the
clause, since it has been replaced by two variables, namelyH andT. Similarly,H andT have no roles beyond the
second body atom. The technique thus considers variables likeL, H, T asinactive variables, and it eliminates them
from the set {L, S, H, T, L1, L2} of possible variables in order to construct the set ofactive variables, which can
be used in an atom to be added after the currently last body atom. This restricts the search space. Continuing with
the example above, the technique then adds two recursive atoms, yielding the clause:

sort(L,S) ← dec(L,H,T), part(T,H,L1,L2), sort(L1,S1), sort(L2,S2)

Note that, during the introduction of a recursive call, the technique does not take into consideration thesort(H,C),
sort(T,C), andsort(L,C) atoms, as they would have inactive variables. The clause induced so far does not yield a
correct program yet with the base clause, asS still needs to be computed. We omit this here.♦

However, it is not always possible not to reuse inactive variables since some classes of programs only become
inducable if the technique allows reusing inactive variables. This situation is handled using some strategies (see
[54]). Also note that the technique cannot perform any kind of predicate invention.

SKILIT . The input of the SKILIT  technique [42] may consist of arbitrarily chosen ground literals (positive and neg-
ative examples) as evidence of one (syntactic or semantic manipulation) relation, plus mode and type declarations
of the involved predicates and (possibly recursive) algorithm sketches as search bias. Analgorithm sketch [41] [13]
is an incomplete representation of the derivation associated with a positive example. An algorithm sketch is repre-
sented as a clauseE ← L1,…,Lm, whereE is a positive example and eachLi is either a ground literal involving a
background predicate or a literal of the form$p(…), called asketch atom, involving an undefinedsketch predicate
$p. The body of a sketch represents the derivation related to exampleE. If there is no sketch for an example
r(t1,…,tn), then ablackbox sketch is automatically constructed, namelyr(t1,…,tn) ← $p(t1,…,tn). We do not con-
sider sketches as schemas, because they can be problem-specific whereas schemas ought to be problem-independ-
ent. The hypothesis language is definite programs. The background knowledge is a set of definite clauses.

The technique starts with the empty program, and adds one clause (by refinement of an algorithm sketch) at each
iteration, provided that clause together with the current program and background knowledge does not cover any
negative examples. At the end of each iteration, redundant clauses are removed from the current program (see [42]).
This is repeated until two successive programs are the same and all positive examples are covered by the program.
Refinement of an algorithm sketch is realised by substituting all its sketch predicates by suitable background pred-
icates or by the predicate of the examples (by which way recursion is introduced). If there are no matches between
a sketch atom$pi(…) and any of the atoms that are logical consequences of the background knowledge, then that
sketch atom is replaced byb(…), $pk(…), whereb is a background predicate that generates the outputs of $pi and
$pk is a new sketch predicate. The refined algorithm sketch is then generalised by variablising the parameters of its
sketch atoms such that the dataflow is preserved. Note that the technique is passive and cannot perform any kind
of predicate invention.

The SKILIT +MONIC technique differs from SKILIT in the way it performs consistency checking. It uses integrity
constraints (which are first-order clauses) instead of negative examples. A Monte Carlo method for verifying in-
tegrity constraints (MONIC) [43] is used.

Example 14: Suppose given the positive examplessort([],[]) andsort([3,2,1],[1,2,3]), the negative examples
sort([3,2],[3,2]) and sort([],[1]), the algorithm sketchessort([],[]) ← $p1([]), $p2([]) andsort([3,2,1],[1,2,3]) ←
sort([2,1],[1,2]), $p3(3,[1,2],[1,2,3]), and background knowledge with programs for theinsert andnull predi-
cates. Synthesis starts by refining the first sketch. Its sketch predicate$p1 is determined to benull, sincenull([]) is
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a logical consequence of the background knowledge. Its second sketch predicate$p2 is also found in that way to
benull. Synthesis then refines the second sketch. Its sketch predicate$p3 is found to beinsert, since the back-
ground knowledge hasinsert(3,[1,2],[1,2,3]) as a logical consequence. The resulting program is the following:

sort(L,S) ← null(L), null(S)
sort([H|T],S) ← sort(T,Y), insert(H,Y,S)

which is a correct program.♦

3.3 Synthesis by General-Purpose Techniques

There is a wealth of general-purpose techniques that can induceboth non-recursiveand recursive logic programs,
but they vary greatly in their ability to synthesise recursive programs. Here we just overview some representative
techniques that have reasonable behaviour on the latter task, and refer the reader to other overviews [59] [78].

M IS. The introduction of theModel Inference System (MIS) [68] [69] is often consideredthe initial breakthrough
event of ILP. Although it can identify (in-the-limit)any logic program, MIS has mostly been demonstrated through
its ability to synthesise recursive programs. The evidence language is ground literals (positive and negative exam-
ples) for possibly multiple relations performing any kind of manipulations, and the hypothesis language is definite
programs. Additional specification information includes type, mode, and determinism information as search bias,
and a list of deemed-to-be-relevant predicates of the background knowledge as language bias (if this basis set in-
cludes the predicate(s) for which examples are given, then recursive clauses will be considered by the technique).
The background knowledge consists of definite clauses. Induction incrementally proceeds bottom-up, starting from
the initial theoryP (or the empty program, if none is given):4

repeat
read the next example
repeat

if P is not complete (i.e.,P does not cover some positive examplep)
then generate a previously untried clause that coversp and add that clause toP;

if P is not consistent (i.e.,P covers some negative examplen)
then discard a clause fromP that coversn

until P is complete and consistent w.r.t. all examples read so far
forever

Induction is interactive (during the search for a false clause whenP is found to be non consistent), via classification
queries to the source. The generation of a new clause (in case of detected non-completeness) proceeds by gener-
al-to-specific refinement through theθ-subsumption-ordered lattice of clauses constrained by the biases. This re-
sults in intelligent pruning of the search space: ifP is not complete w.r.t. some positive example, then no program
more specific thanP need be considered; conversely, ifP is not consistent w.r.t. some negative example, then no
program more general thanP need be considered.

Example 15: During the synthesis of a program for themember predicate, the (here heavily annotated) dialogue
between the technique and the source goes basically as follows:

MIS: Declare the predicate for which a program is to be synthesised.
Source:member(+x,+[x]). (The first argument is a term, while the second argument is a list of terms. The

“+” means that both arguments must be ground at call-time.)
MIS: What are the predicates possibly used by amember program? (That is: what is the basis set?)
Source:member/2. (The source thinks there is a recursive program, using no other predicates.)
MIS: The initial programP0 is the empty program■. First example?
Source:member(a,[a]).
MIS: P0 is not complete, becausemember(a,[a]) is not covered. After a call to the clause generator, the

revised programP1 is {member(X,[Y|T]) ← }, which is consistent and complete w.r.t. the examples
presented so far. Next example?

Source:¬member(a,[b,c]).

4. We omit here the control aspects related to the detection of potential non-termination.
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MIS: P1 is not consistent, becausemember(a,[b,c]) is covered. The first, and only, clause ofP1 is found
to be the false one and is thus removed. The resulting empty program is not complete, because
member(a,[a]) is not covered. The clause generator needs more information and queries the source:
Is member(a,[]) a positive example?

Source: No.
MIS: Now clause refinement goes through, and the revised programP2 is {member(X,[Y]) ← }, which is

consistent and complete w.r.t. the examples presented so far. Next example?
Source:¬member(a,[b]).
MIS: P2 is not consistent, becausemember(a,[b]) is covered. Its first, and only, clause is thus removed. The

resulting empty program is not complete, becausemember(a,[a]) is not covered. After another call
to the clause generator, the revised programP3 is {member(X,[X|T]) ← }, which is consistent and
complete w.r.t. the examples presented so far. Next example?

Source:member(c,[d,c]).
MIS: P3 is not complete, becausemember(c,[d,c]) is not covered. The clause generator again needs to

query the source: Ismember(d,[c]) a positive example?
Source: No.
MIS: Clause refinement succeeds now, and the revised programP4 is {member(X,[X|T]) ← ,

member(X,[Y|T]) ← member(X,T)}, which is consistent and complete w.r.t. the examples
presented so far. Next example?

Suppose the source now stops presenting examples. The technique has synthesised a correct logic program.♦
Like all incremental techniques, the technique is sensitive to the evidence ordering, and can be forced into the

induction of infinite, redundant, or dead code. Also, it cannot perform any kind of predicate invention.
Many improvements of MIS have been proposed [26] [38][39] [52], and many variations thereof have been de-

signed. Here we just list those that have been demonstrated essentially through their ability to synthesise recursive
programs. The CONSTRUCTIVEINTERPRETER [23] is a passive variant, as it fully mechanises the oracle by requiring
that a complete specification be adjoined to the example set. The MARKUS technique [12] [34] essentially improves
on the clause generator. Some researchers have recognised that, as far as recursive programs are concerned, the
search space could be considerably reduced if programs were constrained to fit certain schemas. The XOANON tech-
nique [77] is a variant of MIS that explores a second-order search space (a lattice, actually), ordered by a corre-
sponding extension ofθ-subsumption, with second-order expressions (called schemas) at the top, and first-order
expressions (i.e., programs) at the bottom. Synthesis starts from a schema believed-to-be-applicable, and the im-
provement in synthesis time can be exponential when a “good” schema is selected. Similarly, the MISST technique
[74] proposes a new clause generation operator for MIS, such that the inferred program corresponds to askeleton
to which programmingtechniques (such as “adding a parameter”) have been applied.

CIGOL , GOLEM , and PROGOL . The next three techniques are not really conceptually related, but were developed
by overlapping teams.

The CIGOL (“logiC” read backwards) technique [57] is theory-guided, with evidence, initial theory, background
knowledge, and hypotheses all as definite programs (i.e., no negative examples can be given). The evidence can be
for possibly multiple relations, which can perform any kind of manipulations, but it has to be carefully chosen. No
language or search bias can be given. The technique performs incremental, bottom-up theory-revision in order to
complete the incomplete initial theory. It uses three inductive inference rules, discussed next. First, there is a re-
stricted, non-deterministic form of the first-order absorption rule. The technique performs a best-first search for
absorptions with a preference for “simple” consequent clauses. It uses Occam information compression to guide
absorptions, using the total number of predicate and function symbol occurrences in the program as encoding meas-
ure. An absorption is then only allowed if it produces a positive compression value. Second, the technique can per-
form predicate invention, through a restricted, non-deterministic form of the first-order intra-construction rule.
Notice that intra-construction itself can only inducenon-recursive clauses for the invented predicateq. However,
subsequent absorption on such clausescan introduce recursion into some clause for the invented predicate, hence
making the technique able not only to perform pragmatic predicate invention but also necessary predicate inven-
tion. Third, the truncation rule is used for dealing with a boundary case of the intra-construction rule. It generalises
a set of unit clauses by computing their lgθ. The technique is interactive in two ways. On the one hand, an oracle
(which is the source here) is asked to recognise and name the invented predicates, given their abduced evidence.



25

On the other hand, generalised clauses obtained through absorption and truncation are tested by asking the oracle
whether they are correct and even worthy to keep. The oracle thus has to be quite expert, both in computation and
in the application domain. There is no restriction on the numbers of base clauses, recursive clauses, or recursive
calls within the latter. The technique can however not detect or handle the sparseness problem, should it occur.

Example 16: Suppose we start from the empty initial theory and background knowledge. After being provided
with the two clausesmember(1,[1]) ← andmember(2,[2,3,4]) ← , a truncation is performed, yielding the clause
member(X,[X|T]) ← , calledc1, which is validated as consistent by the source. Upon the next clause, saymem-
ber(5,[4,5]) ← , another truncation takes place, givingmember(X,[Y|T]) ← , which is however considered incon-
sistent by the source and thus not retained. After receiving another clause, saymember(6,[5,6,7,8,9]) ← , a new
truncation takes place, resulting in a clause considered consistent by the source, namelymember(X,[Y,X|T]) ← .
A subsequent absorption yields the recursive clausemember(X,[Y|T]) ← member(X,T), calledc2, which is also
validated as consistent by the source. The source can now stop providing evidence, as clausesc1 andc2 constitute
a correct implementation of the intended relation formember. ♦

In general, the technique seems to require less evidence than MIS, but it is also apparently at least as powerful as
MIS (due to its additional predicate invention ability). Its incremental nature makes the technique quite sensitive to
the evidence ordering.

The GOLEM technique [58] aims at overcoming the search explosion of its predecessor (due to the high non-de-
terminism of the inverse resolution rules). The rlgθ operator is suitable for this purpose as it eliminates all search,
though it suffers from its often unrealistic requirement for finite, ground background knowledge, from its induction
of intractably large— if not infinite—clauses, and from its inability to induce multiple clause hypotheses (which is
essential for recursive theories). All these problems are successfully tackled here, as described next.

The technique takes as evidence a set of ground literals (positive and negative examples) of one single relation
that may perform any kind of manipulation, and as background knowledge a set of definite clauses where every
head variable also occurs in the body. From such background knowledge, it is possible to generate a depth-limited
Herbrand model, the integer depth boundh being provided by the source as a language bias. This model replaces
the background knowledge when computing the rlgθ of two clauses, which makes the computation of the rlgθ pos-
sible (due to the groundness of the model), and the (reduced) rlgθ necessarily finite (due to the finiteness of the
model). It now remains to make the (reduced) rlgθ tractably large, as its size normally grows exponentially in the
numbern of input clauses. It turns out that if the hypothesis language is restricted toij -determinate definite clauses,
then the number of literals in an rlgθ is upper-bounded by a polynomial function independent ofn (the power being
j i). This bound is conservative, as practical observation shows no dramatic increase, and even an eventual decrease
asn increases sufficiently. So it suffices thati andj are also provided as a language bias (i = j = 2 often is a good
setting). Next, the original notion of clause reduction (throughθ-subsumption equivalence) can be made even more
effective through the optional provision of mode information as search bias and a clever usage of the negative ex-
amples. Finally, a multiple clause hypothesis can be induced even in an rlgθ-based technique, namely by iterating
over an inner loop that computes a consistent rlgθ of only a subset of the given positive examples and retracting all
covered positive examples at the end of each such iteration (hence a greedy control strategy).

The technique is passive, data-driven, non-incremental, and cannot perform any kind of predicate invention. The
mentioned inner loop proceeds in three phases. In the first phase, a starting clause is chosen among the rlgθs of a
random sampling of positive example pairs to be the consistent one covering the largest number of positive exam-
ples. In the second phase, the starting clause is greedily generalised in another loop, at each iteration taking its rlgθ
with a positive example, chosen among a random sampling to be the one that yields the consistent rlgθ covering
the largest number of positive examples, and this as long as the cover increases. Finally, in the third phase, the re-
sulting clause is reduced. Recursion may appear in the rlgθ of clauses, depending on the background knowledge.
There is thus no restriction on the numbers of base clauses, recursive clauses, or recursive calls within the latter.

The technique can induce the quicksort program from about 15 positive examples, 4 negative examples, and 84
literals in the generated model of the background knowledge, but it is generally awkward for inducing recursive
programs [56]. It may even fail to induce a program that is correct w.r.t. the given evidence, even if there is one in
its hypothesis space. It has been quite successful on real-world applications in knowledge acquisition and discov-
ery, such as drug design and satellite fault diagnosis. It generally copes well with (very) large training sets.

The PROGOL (“Prolog” where the last three characters are inverted) technique [56] adds inductive inference rules
to a standard Prolog interpreter, and can be run both in interactive mode and in passive mode. Its evidence language
is Horn clauses, with a distinction between positive evidence (namely definite clauses) and negative evidence (neg-
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ative examples plus integrity constraints, as their generalisation, i.e., headless Horn clauses). The evidence can be
for possibly multiple relations, which can perform any kind of manipulations, but it has to be carefully chosen. The
background knowledge is made of normal programs, including the standard Prolog primitives. Type, mode, and
multiplicity information must be provided as search bias. By this token, one also declares which predicates can
appear in the heads and which ones in the bodies of hypothesis clauses. Recursive clauses will be considered if
some predicate may appear both in heads and in bodies. Other biases require the source to limit the number of
clauses in a hypothesis, the depthi of variables and numberc of literals in candidate clauses, the depthh of per-
formed SLDNF resolutions, the number of clauses explored in the inner loop, etc., all this in order to ensure poly-
nomial tractability of the technique. The hypothesis language is definite programs. There is no restriction on the
numbers of base clauses, recursive clauses, or recursive calls within the latter.

The bottom-up technique applies a covering approach, which works as follows, starting from the empty hypoth-
esis. After selecting the next piece of positive evidence, a consistent, bias-compliant clause covering it is generated
(see below) and added to the hypothesis, after deleting from the latter all clauses made redundant by this new
clause. Furthermore,all pieces of positive evidence that are covered by the new clause (i.e., not just the selected
one) are deleted from the evidence. This is repeated until there are no more pieces of positive evidence. Inside this
loop, the covering clause is constructed in a general-to-specific search in theθ-subsumption clause lattice, bounded
on top by the empty clause and at the bottom by a clause⊥i (wherei is the depth bound on the variables). The latter
is the most specific finite and bias-compliant clause that can be computed from the chosen piecee of positive evi-
dence and the background knowledgeB, namely such thate is SLDNF-derivable fromB ∧ ⊥i in at mosth steps.
An A*-like algorithm is used for the search of the covering clause, guaranteeing to return the clause that maximally
Occam-compresses the current positive evidence, using the total number of atom occurrences in the program as
encoding measure. (This does not mean that the final hypothesis maximally compresses the whole positive evi-
dence, because the covered pieces of positive evidence are retracted at each iteration.) The technique cannot per-
form any kind of predicate invention. The covering approach with greedy search makes the technique very sensitive
to the ordering of the evidence.

Example 17: Consider again thedelOdds predicate of Section 3.1. Suppose given the following type, mode, and
determinism declarations:

modeh(1,delOdds(+clist,−clist)) modeb(1,delOdds(+clist,−clist))
modeb(1, odd(+constant)) modeb(1,+clist=[−constant|−clist])
modeb(1,even(+constant)) modeb(1,−clist=[+constant|+clist])

These express that atoms of predicatedelOdds may appear both in the heads (h) and in the bodies (b) of hypothesis
clauses, with two variables of type constant-list (clist) as formal parameters, such that there is one (1) correct in-
stance of such an atom if its first actual parameter is ground (+) and its second an unbound variable (−). Atoms of
predicatesodd andeven may appear only in the bodies of clauses (hence no hypothesis is to be induced for them),
with a variable of typeconstant as formal parameter, which must be ground at call-time. Equality (=) may also
only appear in bodies, in atoms of the formL=[H|T], such that there is one (1) correct instance if eitherL or both
H andT are ground at call-time, with the other variable(s) being unbound then. Let the other biases be set to their
defaults (c = 4,h = 30,i = 3). Let the background knowledge contain the definitions of the involved types. Consider
now the following evidence (ordered by column-wise traversal):

delOdds([],[]) ← delOdds([A],[]) ← odd(A)
delOdds([3,4],[4]) ← delOdds([B],[B]) ← even(B)
delOdds([3,5],[]) ← … examples ofodd/1 …
delOdds([6,7],[6]) ← … examples ofeven/1 …
delOdds([6,8],[6,8]) ←
delOdds([7,8,9],[8]) ← ← delOdds([1],[1])
delOdds([6,7,8,9],[6,8]) ← ← delOdds([6,8],[8])

Note that 5 of the pieces of positive evidence fordelOdds are identical to those used above by SYNAPSE, but that
the other 2 pieces used by the latter are technically not necessary here, because they are subsumed by the 2 prop-
erties. The examples forodd andeven are also new, as are the negative examples. From this evidence set, the tech-
nique automatically synthesises, in 3 iterations, the following correct program (which is similar to the one of
Example 10, except that equality has here been eliminated through unfolding with the clauseX=X ← ):
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delOdds([],[]) ←
delOdds([A|B],C) ← delOdds(B,C), odd(A)
delOdds([A|B],[A|C]) ← delOdds(B,C), even(A)

Note that the evidence set had been carefully crafted (in order to be so small): dropping any piece of evidence will
result in a wrong program. The properties replace large numbers of positive examples.♦

FILP . The evidence language of theFILP  (Functional Inductive Logic Programming) technique [7] [5] [6] is
ground atoms (positive examples) for possibly multiple (syntactic or semantic manipulation) total functions, and
they can be arbitrarily chosen. The intended relations must thus be total functions in some given modes, which must
also be provided, as search bias. The hypothesis language is definite programs, where every predicate is used in a
fully deterministic mode. The background knowledge is definite clauses, plus declarations of the modes of their
head atoms. If some predicates in the background knowledge are only defined through ground unit clauses, then
the latter are generalised as well. A language bias describing the hypothesis space is also given. An instance of such
a bias for thesort predicate is:

sort(L,S) ← {L=[], S=[]}
sort(L,S) ← {L=[H|T], sort(T,V), insert(H,{V,S})}

The curly braces used for the body atoms and the parameters denote any subset of the elements inside them. For
this bias, two sample described clauses are (taking one for each clause of the bias):

sort(L,S) ← L=[], S=[]
sort(L,S) ← L=[H|T], sort(T,V), insert(H,V,S)

Note that such a bias may indicate potential recursive calls. There is no restriction on the numbers of base clauses,
recursive clauses, or recursive calls within the latter. We do not consider such a bias a schema, because it is prob-
lem-specific.

The technique consists of a clause generation loop that is repeated until all of the positive examples and none of
the negative examples are covered by the generated clauses. Initially, every clause is a unit clause for a top-level
predicate, where the parameters are all different variables. These clauses are clearly over-general. At each iteration,
a literal is introduced to the body of the clause being specialised, by choosing among the possible literals of the
language bias, in order to make the over-general clause cover fewer negative examples. The technique can thus not
perform any kind of predicate invention. This addition of literals continues until the clause obtained does not cover
any of the negative examples. During this addition of literals, if the clause does not cover any positive example,
then backtracking occurs. Throughout the clause generation process, mode declarations are taken into account to
reduce the search space, and negative examples are computed directly from the positive examples (by the closed
world assumption), since the program being induced is supposed to be fully deterministic in the indicated mode (it
thus suffices to keep the input values unchanged and to arbitrarily modify some output value). During the clause
generation process, if there are missing positive examples, then they are asked from the oracle (which is the source
here). In other words, the technique is interactive. For instance, let the generated clause bep(A,B) ← q(A,C),
r(A,C,B), let the positive example being investigated to see if it is covered by that clause be +p(a,b), and let the
background knowledge cover the atomq(a,c), but nothing for predicater. Then, the oracle is queried for instanti-
ation of the exampler(a,c,X), and let the answer ber(a,c,b), hence allowing the proof that the positive example is
covered by that clause.

Example 18: Suppose the examples+reverse([ ],[]), +reverse([a],[a]), +reverse([a,b],[b,a]), +reverse([a,b,c],
[c,b,a]) are given. The background knowledge is a program of the append predicate. The language bias isre-
verse(X,Y) ← {X=[], Y=[], X=[H|T], …, reverse(T,W), …, append(W,[H],Y), …} (sic). Finally, the mode dec-
larationsappend(in,in,out) andreverse(in,out) are given, with an implicit full determinism on these modes. The
initial clause to be specialised isreverse(X,Y) ← . The first literal being added to the body of the clause is com-
puted heuristically asY=[]. However, the resulting clause covers the generated example−reverse([a],[]), so more
literals need to be added. If the literalX=[H|T] is now added, then no positive examples are covered, so another
literal has to be added instead. It is found to beX=[ ]. Now, the resulting clausereverse(X,Y) ← Y=[], X=[] covers
just the example +reverse([],[]), which is removed from the example set. The second clause of the program is
found in the same way, and isreverse(X,Y) ← X=[H|T], reverse(T,W), append(W,[H],Y). The two clauses above
cover all positive examples, but no (inferred) negative ones.♦
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3.4 Summary

We now summarise our overview by means of a chart (see Table 1). The top five lines name classification criteria,
whereas the bottom sixteen lines name actual comparison criteria and features, so that the techniques may be meas-
ured up to each other. In a cell, a cross (×) means that the feature is supported, no answer means that the feature is
not supported, and “n/a” means that the question whether or not the feature is supported is non-applicable. The
space allocated in this overview to a technique is (usually) proportional to its power in terms of the answers given
to the comparison criteria and features.



29

An important remark is that all overviewed special-purpose techniques are non-incremental, so that the distinc-
tion of bottom-up versus top-down induction does not really apply to them, nor the consideration of identification
criteria. There is no theoretical reason preventing the design of incremental special-purpose techniques for induc-
ing recursive hypotheses, but it is nevertheless noteworthy that all known (to us) techniques of inductive synthesis
of recursive programs are non-incremental. Incrementality thus does not seem to be a promising research avenue
for this field. Indeed, as seen, incremental techniques are often very sensitive to the ordering of the evidence, in the
sense that infinite, redundant, or dead code may be generated (from an adverse ordering). Such behaviour is prob-
ably deemed dangerous, as incremental techniques do not really have a sense of direction when they are synthesis-
ing recursive programs, which is not really adequate considering the fragile nature of recursive programs.

Also, the table clearly identifies (other) directions for future research, as well as cross-fertilisation opportunities,
such as the combination of the best ways of satisfying a criterion in order to design new techniques. No technique
is intrinsically superior to all others, and further judgment depends on the application setting (see the next section).

a. θ = θ-subsumption, rθ = relativeθ-subsumption, ir = inverse resolution, ii = inverse implication, ie = inverse entailment
b. i = interactive, p = passive
c. dd = data-driven, tg = theory-guided
d. ga = ground atoms, gl = ground literals, dp = definite programs, dp- = some restricted form of dp, np = normal programs, Hc = Horn

clauses

Table 1: Comparison of techniques for the induction of recursive logic programs

special-purpose recursion-only synthesisers general-purpose

schema-biased schema-less

generality modela ii ii θ θ θ θ θ θ ir ir θ n/a θ θ rθ ie n/a

interactive / passiveb p i p p p p p i p p p p i i p i/p i

data-driven / theory-guidedc dd dd dd dd dd dd dd dd tg tg dd dd tg tg dd dd dd
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evidence languaged gl gl gl gl ga np ga np gl gl gl gl gl dp gl Hc ga

# predicates in evidence 1 1 1 1 1 1 1 1≥1 1 1 1 ≥1 ≥1 1 ≥1 ≥1

semantic manipulation? × × × × × × × × × × × × × ×
from arbitrary evidence? × × × × × n/a × × × ×
type information? × × × × ×
mode information? × × n/a n/a × × × × × ×
determinism information? n/a n/a × × ×
other bias? (except schemas) × × × × × × ×
background knowl. languaged gl dp dp np np dp dp dp dp dp- np dp-

hypothesis languaged dp dp dp dp dp np dp np dp dp dp dp dp dp dp- dp dp-

# base clauses / predicate 1 1 1 ? 1≥1 1 ≥1 ≥1 ≥1 1 ≥1 ≥1 ≥1 ≥1 ≥1 ≥1

# recursive clauses / predicate 1 1 1 1 1≥1 1 ≥1 ≥1 ≥1 1 ≥1 ≥1 ≥1 ≥1 ≥1 ≥1

# recursive calls / clause 1 1 1 ≥1 1 ≥1 1 ≥1 ≥1 ≥1 ≥1 ≥1 ≥1 ≥1 ≥1 ≥1 ≥1

necessary predicate invention? × × × × × × ×
useful predicate invention? × ×
handling of sparseness? × × × ×
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4 Prospects of Inductive Synthesis

In the previous section, we have discussed the achievements of the inductive synthesis of recursive programs in an
application-independent fashion. We now discuss the application prospects of such techniques, be they the existing
ones or forthcoming ones. From our doubts on the realism of some existing techniques for the intended application
area, we filter out more directions for future research and assess the viability of inductive synthesis in that area.

There are essentially two such application areas. The first,knowledge acquisition and discovery(Section 4.1),
has actually never been explicitly targeted by research on inductive synthesis of recursive programs, but we have
some thoughts here. The second,software engineering (Section 4.2), is the most frequently targeted one, but has
been the object of much controversy and prejudice, which we summarise and then support or debunk, as necessary.

4.1 Applications in Knowledge Acquisition and Discovery

Knowledge acquisition and discovery from data (and data mining) is about extracting and transforming hidden in-
formation into valuable knowledge through the discovery of relationships and patterns in these data. This sounds
very much like a vague re-formulation of the general ILP task itself, but we here consider it an application area as
the data in question is usually very voluminous. In fact, this is a very natural application area for ILP and we expect
ILP to have its most impressive results here, especially that such has already been the case anyway. So there is no
need to argue as far as ILP as a whole is concerned.

But what about the usefulness of inductive synthesis of recursive programs to this application area? Especially
that, intuitively, just like the procedures in application software, very few real life concepts seem to have recursive
definitions, rare examples beingancestor and natural language. We argue that it is worth having a special-purpose
recursion synthesiserattached to a general-purpose induction technique. Indeed, a general-purpose technique may
detect (or conjecture) the necessity (or usefulness) of inventing a new predicate, and since such a new predicate is
then known in advance to have a recursive program (see Section 2.4.2), it seems preferable to invoke a special-pur-
pose recursion synthesiser for such auxiliary purposes rather than have the general-purpose technique do it all.
Also, the (abduced) evidence of the new predicate may be quite sparsely distributed over its intended relation, and
(some) special-purpose recursion synthesisers handle this situation quite well (as seen in Section 3), whereas even
the best general-purpose techniques require a lot of evidence in order to reliably induce recursively defined hypoth-
eses: see the experiments with MIS in [68] [69], with FOIL in [65] [66], or with PROGOL in [56]. We believe that
general-purpose ILP techniques and special-purpose recursion synthesisers have both much to gain from such a
synergy.

4.2 Applications in Software Engineering

Wouldn’t it be nice if we could automatically obtain correct programs from specifications consisting just of a few
examples of their input/output behaviour, or would it? This dream of automa-g-ic programming is as old as Com-
puter Science and has been an area of intense research since the late 1960s. As there is no difference between (ex-
ecutable) formal specifications and programs [51], this is sometimes calledprogramming by examples and can be
seen as an innovative programming technique, especially aimed at two categories of programmers:

• expert programmers would often rather just provide a few carefully chosen examples and have a synthesiser
work out the details (of recursion) for them, hence increasing their productivity;

• end users are often computationally naive and cannot provide (much) more than examples, but this should nev-
ertheless allow them to do some basic programming tasks [21], such as the recording of macro definitions, etc.

Of course, any programmer in the spectrum laid out by these extremes can benefit from programming by examples,
but we believe that the risk/benefit ratio is optimal for these extremes of expertise. Indeed, the risk is that an incor-
rect program can be synthesised. This risk can be minimised by an expert user who knows how the synthesiser
works and how reliable it is. The risk is not so relevant for end users, as they usually do not want to write safe-
ty-critical software anyway and can thus cope with approximate programs.

In any case, the scenario here is that the source of all inputs is a human (called thespecifier, though we may also
speak of theprogrammer), and this has to be taken into account as well as exploited. Indeed, a human cannot be
expected to provide inputs (called thespecification) that are too voluminous, especially that an expert programmer
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would thus actually lose in productivity. Also, a human has considerably more expertise than the average source
and oracle, and this may be exploited, say in an interactive fashion. The specifier also is the oracle (if any).

The scenario also requires an extremely high (ideally 100%) accuracy of the synthesised program against the test
set if not against the entire intended relation, because a program that does not exactly do what is expected is useless
(though this may not be a big problem in end user computing). The slightest mistake in a recursive clause is usually
amplified manifold through recursion before a base clause becomes applicable.

Since one does not in general know in advance whether a recursive program exists or not, we suggest (in case of
doubt) to first invoke a recursion synthesiser and fall back onto a general technique if the former fails. This is a
suitable invocation scenario for programming assistance applications, as for many problems a suitable recursive
(e.g., divide-and-conquer) program will be much more efficient than any non-recursive (e.g., generate-and-test)
program. Actually, even during induction by a general-purpose technique, necessary (or useful) invention of a new
predicate may be detected or conjectured: the general-purpose technique could then invoke a recursion synthesiser,
since the new predicate is then known in advance, by definition, to have a recursive program (see Section 2.4.2).

We will here only discuss the prospects of techniques for the inductive synthesis of recursive programs for pro-
gram construction, but not for related tasks, such as program verification [4] [6] [12], program transformation [14],
etc. Any ILP technique may of course be interfaced with a program transformer (which reduces the time/space
complexity and/or increases the time/space efficiency of programs), since a program to be transformed may have
been synthesised by any approach, be it deductive, constructive, inductive, manual, mixed, sorcery, or whatever.

We urge the reader to remember at all moments that the discussion below isonly about the programming assist-
ance application area, but not about all mentioned application areas within software engineering: any criticism
should be application-specific. See [7] for another discussion of applying ILP techniques to software engineering.

4.2.1 The Background Knowledge Usage Bottleneck

Some researchers have been wondering about interfacing ILP with deductive/constructive synthesis, so that these
tasks be complementary rather than competing. Indeed, since the latter assumes given a formal specification, the
question arises where such a specification would come from. Such knowledge acquisition tasks have been success-
fully tackled by ILP techniques for building the knowledge base of expert systems, but can ILP help here as well?
Since specifications are usually required to be non-recursive (representing often a naive and inefficient program,
for instance of the generate-and-test class), the techniques overviewed here do not apply and inducing such speci-
fications would be a general ILP task. However, we believe that it is even more time-consuming and risky (but not
more difficult) to induce generate-and-test programs from incomplete information than to synthesise recursive
(e.g., divide-and-conquer) programs from such information. Indeed, the class of generate-and-test programs has so
little structure, as opposed to the class of divide-and-conquer programs (remember the schema of Example 1), that
we see no way how the induction of generate-and-test programs could be efficiently and effectively guided. Just
consider the potentially huge set of background knowledge predicates.

This brings us directly to a first problem of many existing inductive synthesisers, namely theirbackground knowl-
edge usage bottleneck [32]. In a realistic programming scenario, the background knowledge consists of clauses for
numerous predicates, just like with human programmers. However, we humans tend to dynamically organise this
background knowledge according to relevance criteria, so that we do not think of using a definition of the
grand-mother concept when constructing a sorting program. Or, less dramatically, during the construction of a
quicksort program for integer lists, background knowledge about binary tree processing or lexicographic ordering
of characters tends to be more in the background than knowledge about list processing, and, at one point during
that construction, even knowledge about list merging or splitting may move further back.

Many researchers have tried to simulate this human hierarchy of background knowledge, though often in a very
extreme way: transcripts (e.g., FORCE2 [18, p.78], TIM  [40], [59, p.633], etc.) are shown where the background
knowledge containsexactly and only some predicates actually sufficient (up to necessary predicate invention) to
complete a synthesis. For instance, when the evidence is aboutsort, thenpartition andappend are put into the
background knowledge, and a quicksort program is induced. This is certainly a fine result, but there are two prob-
lems with it.

First, it only establishes the inducability of such a program by these techniques in anoptimal scenario. But what
about the monotonicity of inducability: if we addmerge andsplit to that background knowledge, will the tech-
niques still be able to induce the quicksort program? Will they find a merge-sort program? Will they find other sort-
ing programs? What about the efficiency of induction: will they find all these programs quickly? What if we add
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potentially irrelevant predicates, such as arithmetic operations: are monotonicity and efficiency of induction pre-
served? Will the techniques discover (efficient) new sorting programs? Is useful predicate invention performed to
avoid undisciplined background knowledge usage? Does the ordering of the background knowledge affect the syn-
thesised program? The problem thus is that the optimal scenario is often unrealistic: in general, one does not know
in advance which parts of the background knowledge will be relevant during a synthesis. One can make educated
guesses, but creativity has its own ways. Finally, if one has to manually select the potentially relevant background
knowledge before every synthesis session, then a poor productivity (at least of expert users) will be achieved. We
thus believe in the following recommendation:Within a given problem domain, background knowledge should be
problem-independent and given once and for all (rather than crafted for each session), and the induction technique
should dynamically order it.

Second, such a scenario amounts to actuallyteaching a quicksort program, which goes counter specification
practice: one specifiesall possible programs for a problem (and how to use them), but nota possible program. Now
we come to the earlier (in Section 2.1) announced justification of why the teacher and learner terminology is some-
times misleading and why we decided to speak of source and induction technique instead: a teacher (usually)
knows how the taught concept can be defined, whereas a specifier does not always know how the specified problem
can be implemented (recursively). Choosing between the teacher/learner and the specifier/synthesiser terminolo-
gies is thus application-specific, and neither terminology applies to induction as a whole. One may of course argue
for the higher realism of the scenario where onlypotentially (rather than actually) relevant predicates are placed
into the background knowledge, because the source then really is a specifier rather than a teacher. However, as ar-
gued above, this approach only works if such potentially relevant predicates are stored in a problem-independent
domain-specific collection that can be designated by name rather than enumerated by hand for each synthesis.

In any case, this discussion shows that much research is needed in order to more effectively simulate the human
ability of dynamically organising problem-specific background knowledge according to its relevance to the partic-
ular problem at hand, and even to the stage of solving that problem. This is calledknowledge mobilisation by Polya
[64]. In a first approximation, there need not be much focus on simulating creativity (algorithm discovery). A prom-
ising direction seems to be the pre-determination of the dynamic relevance ordering for a class of programs, so as
to partition background knowledge predicates according to their relevance to the place-holders of a template cap-
turing that class, and according to the types of their parameters [28] [30] [42]. This approach even has the advantage
of being also useful for the re-use problem in deductive/constructive synthesis. Another, complementary approach
is to try toavoid background knowledge usage in certain well-defined situations (such as the induction of thecom-
pose predicate of a divide-and-conquer program), namely by useful predicate invention (see Example 7 in
Section 2.4.2 for a description of the problems that occur when useful predicate invention is avoided). Maybe back-
ground knowledge usage should, in such situations, only be done when such predicate invention fails?

4.2.2 Other Occurrences of the Knowing-an-Answer Syndrome

There are other occurrences of the knowing-an-answer syndrome, which is incarnated when running a synthesiser
in the teacher/learner setting rather than in the specifier/synthesiser setting. In general thus, the symptoms of this
syndrome are thata possible program is somehow subtly encoded in the inputs (evidence, background knowledge,
bias, or initial theory), hence making inductive synthesis a mere extraction process. We now discuss this syndrome
when the encoding is done in inputs other than the background knowledge, though the problematic consequences
are the same as discussed above.

Some techniques require the source to know the base clauses of a possible program, in the sense that they have
to be somehow provided in the inputs (e.g., thebasecase function of FORCE2 [18]), possibly because the technique
can only induce the recursive clauses. However, note that the base clauses of all possible programs for a predicate
arenot the same: for thesort predicate, an insertion-sort program has one base-clause (for the empty list), whereas
a merge-sort program (with splitting of the list into two halves) has two base clauses (one for the empty list, the
other for singleton lists).

Other techniques even require the source to know the recursive clauses of a possible program, in the sense that
the provided examples must be on the same resolution path in order for the technique to find such a recursive clause
(e.g., LOPSTER [47]). This implies that the evidence cannot be arbitrarily chosen, but must be carefully crafted, hav-
ing a possible solution strategy in mind. This restriction can sometimes be overcome by using inverse implication
or inverse entailment generalisation models.
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Still other techniques require the source to encode anentire possible program in a language bias. For instance,
the clause description language of FILP [5] allows the following language bias (note that it is but a slight variant of
the one in Section 3.3):

sort(L,S) ← {X=[], Y=[]}
sort(L,S) ← {X=[H|T], sort(Y,V), insert(E,W,R)}

but FILP cannot infer the correct dataflow by unifying some of its variables. In other words, a correct dataflow has
to be given, as one cannot just list the potentially useful predicates. So let us give a correct dataflow and see what
happens when not all the computations are given. The following bias is unfortunately in general insufficient (note
its similarity now to a problem-independent divide-and-conquer template, see Example 1):

sort(L,S) ← {L=[], solve(S)}
sort(L,S) ← {L=[H|T], sort(T,V), compose(H,V,S)}

as FILP cannot induce programs for the problem-dependentsolve andcompose predicates, unless they are de-
scribed in the evidence or background knowledge, which would however return the argument to the background
knowledge usage bottleneck (in Section 4.2.1). In other words, correct computations have to be given as well.
Overall thus, a FILP bias gives very little else beyond a correct program.

Similarly for the algorithm sketches of SKILIT [13]: although they do not necessarily give away an entire pro-
gram, they often reveal much of a possible program. Fortunately, the technique also works from self-constructed
blackbox sketches, which happens when it is given no user-provided sketches.

Finally, the basis set of MIS [69] and the mode declarations of PROGOL [56] amount to hand-picking, for each
problem, the believed-to-be-relevant predicates (but not their arguments, as for FILP above) from a potentially large
background knowledge, which may however not be suitable to all kinds of programmers. The inability of these
techniques to override this bias or even to invent new predicates further hampers the programmer.

In all these techniques, the idea is that the specifier should somehow be computer-assisted when s/he has an ap-
proximate idea of a possible solution strategy. However, this reduces the productivity of the (expert) specifier and
the creativity of the synthesiser, but may of course be interesting in some cases. Also note that, for non-recursively
definable concepts, from a given viewpoint, there is usually only one correct description. For instance, for thebird
concept, there is one description from a cat’s point of view, one description from a biologist’s point of view, etc.
But not so for recursively definable concepts, where there are usually many (even viewpoint-independent) correct
programs [32]. For instance, for thesort predicate, there are programs implementing the quicksort algorithm, the
merge-sort algorithm, etc.

4.2.3 The Background Knowledge Usage Miracle

Some techniques feature another problem with background knowledge usage, namely that certain predicatesmust
be selected from it in order to induce a program (unless they are invented), no matter what algorithm is implement-
ed by that program. We call such predicatesintrinsic predicates (to a problem), as opposed toextrinsic predicates,
which need not appear in a program (for that problem). For instance, if the evidence ofsort does not mention the
≤ predicate for deciding the total order according to which the elements have to be sorted, then that predicatemust
somehow be selected from the background knowledge (unless it is invented or intrinsic to some used background
knowledge predicate), whether the final program is a quicksort or a merge-sort program. It is thus intrinsic tosort.
However, theappend predicate is extrinsic tosort, because it appears in a quicksort program but not in a
merge-sort program. If intrinsic predicates are not invented, then we consider it amiracle if they are actually se-
lected from the background knowledge. (Note that the bottleneck problem is thus about the presence of too many
extrinsic predicates, whereas the miracle problem is about intrinsic predicates.) Such a miracle may (have to) hap-
pen in a general ILP setting, but is useless in a programming setting, where the specifier is a human being. Indeed,
no human specifier can possibly want a program forsort without knowing the≤ predicate: such an intrinsic pred-
icate is not peculiar to the specifier’s mental sorting algorithm (if s/he has any), but proper to the sortingproblem.

So the specifier should somehow be able to convey the intrinsic predicates to the synthesiser, so as to avoid that
the synthesiser has to spend time on predicate invention or on guesswork among the background knowledge. With
specifications by examples only, conveying such intrinsic predicates is impossible. There are at least two related,
complementary approaches to overcoming this problem. First, the evidence language can be extended, for instance
to (non-recursive) Horn clauses [28] [43] [56], or even to general clauses [22]. Second, synthesis can be interactive,
asking the specifier questions in whose answers the intrinsic predicates (if any) must appear [30]. Note that the pro-
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vision of the intrinsic predicates does not mean a productivity loss for the specifier, because s/he ought to know
these intrinsic predicates anyway and need not give the extrinsic ones, but thus rather a reliability and productivity
gain for the synthesiser.

4.2.4 Scenario Violations: Too Voluminous/Sophisticated Inputs, Too Inaccurate Programs, etc.

Some techniques violate the scenario laid out above, in the sense that they require toovoluminous inputs (such as
the problem-specific biases and initial theories of FILP [5], SPECTREII [9], M ERLIN [10], PROGOL [56], and MIS

[69]) from some categories of specifiers, or induce programs that have too low accuracies against training or test
sets (e.g., SKILIT  [42], GOLEM [58]), or even that have both problems (e.g., SKILIT +MONIC [43], which is surprising
as one would conjecture that many inputs mean high accuracies). (We ignore here the already discussed problems
when the background knowledge and biases are manually tuned for a given problem.) It is of course very subjective
to define what is meant by too voluminous inputs and too inaccurate programs, especially that they are related is-
sues. We estimate that a viable technique should synthesise ann-literal program from specifier-provided inputs of
maximumc·n literals (or words), with a (nearly) 100% accuracy against an arbitrary test set, wherec varies between
1 (for experts) and 5 (for end users). In this sense, most here overviewed techniques have too voluminous inputs,
especially those requiring a manual encoding of (part of) a possible program in a bias. To us, it seems that, just like
for background knowledge,biases should be problem-independent, within a given problem domain (note that such
is already the case for schemas, by their very definition). Fortunately, most techniques overviewed here synthesise
quite accurate programs in this sense, and this usually even from very little evidence.

A related violation is the requirement of toosophisticated inputs (such as thebasecase andmaxdepth functions
of FORCE2 [18], the validation queries of CIGOL [57], or the problem-specific biases and initial theories of FILP [5],
SPECTREII [9], M ERLIN [10], SKILIT  [42], SKILIT +MONIC [43], PROGOL [56], and MIS [69]). An end user cannot
always be able to provide adequate biases (and background knowledge), and an expert user would be slowed down
by providing such inputs. Also, some theory-guided induction techniques put tight pre-conditions on the initial the-
ory (e.g., SPECTREII [9], M ERLIN [10]), which may be hard to ensure even by expert users. For instance, SPECTREII
[9] imposes that there are no positive and negative examples that have the same sequence of input clauses in their
refutations, which is an undecidable property. Or, the initial theory may be required to be overly general, rather
than in an arbitrary connection to the intended relations. Over-generality is fortunately easy to establish (and is thus
quite general [16]): it suffices to use a template as the initial theory. A template like the one in Example 1 is inad-
equate because its predicate symbols are meant to be open, but one can specialise it in a problem-specific fashion
so that it is guaranteed to be overly general, for instance as follows (assuming thelist predicate is known):

sort(L,S) ← L=[], list(S)
sort(L,S) ← L=[H|T], sort(T,V), list(V), list(S)

Unfortunately, many theory-guided techniques cannot cope with such an initial theory (which is almost a template).

4.2.5 Information Loss

Some techniques featureinformation loss during the induction process, and this is especially dramatic in a pro-
gramming context (where high accuracy is crucial), though deplorable in any case.

For instance, for near-minimal-sized evidence sets, the behaviour of PROGOL [56] may become quite unpredict-
able. When retrying a successful synthesis afteradding a piece of evidence, the induction sometimes fails (e.g.,
insert the new, innocuous-looking, and even redundant clausedelOdds([1],[]) ← into second position of the pos-
itive evidence in Example 17). Conversely, when retrying a failed synthesis afterdropping a piece of evidence, the
synthesis sometimes is successful. (Failure and success are here judged according to whether the inferred program
is incorrect or correct.)

Also, we have already mentioned the sensitivity to evidence ordering of incremental techniques. PROGOL [56]
can succeed or fail on the same training set, depending on the order in which it is presented (e.g., moving the prop-
erties of Example 17 forward by at least four positions results in an incorrect program). MIS [69] can even be forced
into the induction of infinite, redundant, or dead code.

Finally, for the induction of a program forunion(A,B,C), which holds iff setC is the union of setsA andB, the
SKILIT  technique [42] is reported in [43] to have an accuracy of 22.5%±6.1 from 10 randomly generated positive
examples and 0 negative examples, but an accuracy of only 18.6%±5.3 from 10 positive and 10 negative examples.
This accuracy loss from more information can be explained as follows: synthesis with no negative examples tends



35

to produce more general programs than with negative examples, so that accuracy on a positive test set may be high-
er. Also, SKILIT +MONIC [43] results in rather low accuracies, even when starting from correct and complete infor-
mation in the integrity constraints. For instance, from integrity constraints with correct and complete information
as well as 20 randomly generated positive examples for theunion predicate, the accuracy is only 47.6%±35.0. The
technique fortunately has the advantage of still working from incomplete information in the integrity constraints
(as it does not know how complete their information is), but then the resulting accuracies might drop even lower,
e.g., to levels where negative examples are used.

In general, it seems that constructive ways of using negative evidence (when it is labelled as such) have not been
properly explored: when induction is driven by the positive evidence (as for SKILIT ), then the negative evidence (or
the constraint set) is often only used for an analytico-destructive purpose, namely the acceptance or rejection of a
candidate program. However, especially when negative evidence is given as (Horn-)clausal constraints [22] [23]
[28] [43] [56], it should be possible to use it constructively as well. To the best of our knowledge, only SYNAPSE

[28] and the CONSTRUCTIVEINTERPRETER [23] do so (and in quite similar ways).

4.2.6 Conclusion about Programming Applications

We repeat that we do not mean to imply that the techniques discussed here are useless in general, but only that they
are sometimes unrealistic (at least in their current versions) for real programming assistance applications.

Progress has been very slow (even negligible according to some) in this application area (if one considers all tack-
led target languages), and, after nearly 30 years of research without much practical results, the legitimate question
arises whether research should be continued at all in this field. Perhaps symptomatically, the European Union-spon-
sored project ILP-2 (the follow-up to the ILP project of ESPRIT III) does not cover software engineering applica-
tions. There has been significant controversy and prejudice [32] about the usefulness of such research, even and
especially outside the community. Insider detractors may point to the problems raised in this section, and we of
course support such warnings, whereas outsider detractors usually raise the risk issue, which we would however
like to debunk [32]: when applicable, inductive synthesis is no more risky than deductive/constructive synthesis!
Indeed, the only difference is that the former starts from known-to-be-incomplete information and the latter from
assumed-to-be-complete information, but inboth cases one hasno guarantee that the synthesised program does
what was actuallyintended. That deductive/constructive synthesis guarantees that the synthesised program does
what wasspecified does not affect the fact that it is the formalisation step from intentions to formal specifications
that is risky, rather than thekind of synthesis being performed from the produced specification. The main issues are
that a specification should be labelled as probably-incomplete or potentially-complete, and that an appropriate kind
of synthesis technique should be invoked. The two approaches can thus be considered complementary, rather than
rivals, and the ultimate decision of which one to use should lie with the specifier, not with the research community.

So then, what is our statement on the future of the inductive synthesis of recursive programs applied towards pro-
gramming assistance? We believe such techniquescan be (made) viable, provided more research is done on over-
coming the obstacles listed above, provided more realistic programming scenarios are aimed at, and provided the
future work directions and cross-fertilisation opportunities of Table 1 are pursued. We believe that some categories
of programmerswould use such techniques, provided it improves their productivity or increases the class of pro-
grams they can write by themselves.

5 Conclusion

The inductive synthesis of recursive (logic) programs is a challenging and important sub-field of ILP. It is challeng-
ing because recursive programs are particularly delicate mathematical objects that must be designed with utmost
care. It is important because recursive programs (for certain predicates) are sometimes the only way to complete
the induction of a finite hypothesis (involving these predicates). We have overviewed the achievements of this
sub-field, throwing in theoretical results and historical remarks where appropriate. These achievements, after over
a quarter-century of research, are a clear testimony to the difficulty of the task: witness the slow progress in increas-
ing synthesis reliability and speed, and in decreasing the volume and sophistication of the required inputs; also wit-
ness the huge variety of different approaches. We have also debated the practical applicability of the overviewed
techniques in two application areas, namely knowledge discovery and software engineering (or rather: program-
ming). It turns out that these are completely different settings and that such settings (may) have to be exploited and
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taken into account when designing new techniques. We are confident that thereis a future for such techniques (es-
pecially that they are necessary anyway), provided progress is made by combining the best individual results into
powerful and reliable inductive recursion synthesisers.

Acknowledgments

The first author thanks some of the ILP’96 and LOPSTR’96 participants for stimulating discussions on the feasibility,
necessity, and future of the inductive synthesis of recursive programs, which conversations eventually led to the
decision to write this paper. Both authors gratefully acknowledge the assistance of some of the designers of the
techniques discussed here, for providing us with implementations and missing papers, and for patiently answering
our probing questions. We are also indebted to the anonymous referees, to the editors of this special issue, as well
as to Lubos Popelínsky and Alípio Jorge, for their insightful comments on the first versions of this paper.

References

[1] D.W. Aha, S. Lapointe, C.X. Ling, and S. Matwin. Inverting implication with small training sets. In F.
Bergadano and L. De Raedt (eds),Proc. of ECML’94, pp. 31–48. LNAI 784, Springer-Verlag, 1994.

[2] D.W. Aha, S. Lapointe, C.X. Ling, and S. Matwin. Learning recursive relations with randomly selected small
training sets. In W.W. Cohen and H. Hirsh (eds),Proc. of ICML’94. Morgan Kaufmann, 1994.

[3] D. Angluin and C.H. Smith. Inductive inference: Theory and methods.Computing Surveys 15(3):237–269,
Sept. 1983.

[4] F. Bergadanoet al. Inductive test case generation. In S. Muggleton (ed),Proc. of ILP’93, pp. 11–24. Technical
Report IJS-DP-6707, J. Stefan Institute, Ljubljana, Slovenia, 1993.

[5] F. Bergadano and D. Gunetti. An interactive system to learn functional logic programs. In R. Bajcsy (ed),
Proc. of IJCAI’93, pp. 1044–1049. Morgan Kaufmann, 1993.

[6] F. Bergadano and D. Gunetti. Inductive synthesis of logic programs and inductive logic programming. In Y.
Deville (ed),Proc. of LOPSTR’93, pp. 45–56. Springer-Verlag, 1994.

[7] F. Bergadano and D. Gunetti.Inductive Logic Programming: From Machine Learning to Software Engineer-
ing. The MIT Press, 1995.

[8] A.W. Biermann. Automatic programming. In S.C. Shapiro (ed),Encyclopedia of Artificial Intelligence, sec-
ond, extended edition, pp. 59–83. John Wiley, 1992.

[9] H. Boström. Specialization of recursive predicates. InProc. of ECML’95. LNAI, Springer-Verlag, 1995.
[10] H. Boström. Theory-guided induction of logic programs by inference of regular languages. InProc. of

ICML’96. Morgan Kaufmann, 1996.
[11] H. Boström and P. Idestam-Almquist. Specialization of logic programs by pruning SLD-trees. In S. Wrobel

(ed),Proc. of ILP’94, pp. 31–48. GMD-Studien Nr. 237, Sankt Augustin, Germany, 1994.
[12] I. Bratko and M. Grobelnik. Inductive learning applied to program construction and verification. In S.

Muggleton (ed),Proc. of ILP’93, pp. 279–292. TR IJS-DP-6707, J. Stefan Inst., Ljubljana, Slovenia, 1993.
[13] P.B. Brazdil and A.M. Jorge. Learning by refining algorithm sketches. In A. Cohn (ed),Proc. of ECAI’94, pp.

443–447. John Wiley, 1994.
[14] M. Bruynooghe and D. De Schreye. Some thoughts on the role of examples in program transformation and

its relevance for explanation-based learning. In K.P. Jantke (ed),Proc. of AII’89, pp. 60–77. LNCS 397,
Springer-Verlag, 1989.

[15] W. Buntine. Generalized subsumption and its applications to induction and redundancy.Artificial Intelligence
36(2):149–176, Sept. 1988.

[16] W.W. Cohen. The generality of over-generality. InProc. of IWML’91, pp. 490–494. Morgan Kaufmann, 1991.
[17] W.W. Cohen. Compiling prior knowledge into an explicit bias. In P. Edwards and D. Sleeman (eds),Proc. of

ICML’92, pp. 102–110. Morgan Kaufmann, 1992.
[18] W.W. Cohen. PAC-learning a restricted class of recursive logic programs. In S. Muggleton (ed),Proc. of

ILP’93, pp. 73–86. Technical Report IJS-DP-6707, J. Stefan Institute, Ljubljana, Slovenia, 1993.
[19] W.W. Cohen. PAC-learning recursive logic programs: Efficient algorithms.Journal of Artificial Intelligence

Research 2:501–539, 1995.



37

[20] W.W. Cohen. PAC-learning recursive logic programs: Negative results.Journal of Artificial Intelligence Re-
search 2:541–573, 1995.

[21] A. Cypher. EAGER: Programming repetitive tasks by example. InHuman Factors in Computing Systems, Proc.
of CHI’91, pp. 33–39. ACM Press, 1991.

[22] L. De Raedt and M. Bruynooghe. Belief updating from integrity constraints and queries.Artificial Intelligence
53(2–3):291–307, Feb. 1992.

[23] N. Dershowitz and Y.-J. Lee. Logical debugging.Journal of Symbolic Computation, Special Issue on Auto-
matic Programming 15(5–6):745–773, May/June 1993.

[24] Y. Deville. Logic Programming: Systematic Program Development. Addison Wesley, 1990.
[25] Y. Deville and K.-K. Lau. Logic program synthesis: A survey.Journal of Logic Programming, Special Issue

on 10 Years of Logic Programming, 19–20:321–350, May/July 1994.
[26] W. Drabent, S. Nadjm-Tehrani, and J. Maluszynski. Algorithmic debugging with assertions. In H. Abramson

and M.H. Rogers (eds),Proc. of META’88, pp. 501–521. The MIT Press, 1988.
[27] E. Erdem and P. Flener. Completing open logic programs by constructive induction.International Journal of

Intelligent Systems, 1999.
[28] P. Flener.Logic Program Synthesis from Incomplete Information. Kluwer Academic Publishers, 1995.
[29] P. Flener. Predicate invention in inductive program synthesis. Technical Report, 1995. (Available as

http://www.csd.uu.se/~pierref/pub/TRpredInv.ps.gz)
[30] P. Flener. Inductive logic program synthesis with DIALOGS. In S. Muggleton (ed),Proc. of ILP’96, pp. 175–

198. LNAI 1314, Springer-Verlag, 1997.
[31] P. Flener and Y. Deville. Logic program synthesis from incomplete specifications.Journal of Symbolic Com-

putation, Special Issue on Automatic Programming 15(5–6):775–805, May/June 1993.
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