
Inductive Logic Program Synthesiswith dialogsPierre FlenerDepartment of Computer Engineering and Information ScienceFaculty of Engineering, Bilkent University, 06533 Bilkent, Ankara, TurkeyEmail: pf@cs.bilkent.edu.tr Voice: +90/312/266-4000 ext. 1450Abstract. dialogs (Dialogue-based Inductive and Abductive LOGicprogram Synthesizer) is a schema-guided synthesizer of recursive logicprograms; it takes the initiative and queries a (possibly computationallynaive) speci�er for evidence in her/his conceptual language. The speci�ermust know the answers to such simple queries, because otherwise s/hewouldn't even feel the need for the synthesized program. dialogs can beused by any learner (including itself) that detects, or merely conjectures,the necessity of invention of a new predicate. Due to its foundation on apowerful codi�cation of a \recursion-theory" (by means of the templateand constraints of a divide-and-conquer schema), dialogs needs verylittle evidence and is very fast.1 IntroductionThis paper results from a study investigating (i) what is the minimal knowledgea speci�er must have in order to want a (logic) program for a certain concept,and (ii) how to convey exactly the corresponding information, and nothing else,to a (logic) program synthesizer (be it automated or not). I argue that \knowinga concept" means that one can act as a decision procedure for answering certainkinds of simple queries [1] about that concept, but that it doesn't necessarilyimply the ability to actually write such a decision procedure. More provoca-tively, I could argue [13] that writing a complete formal speci�cation is oftentantamount to writing such a decision procedure (because it actually featuresa naive or ine�cient algorithm), and is thus often beyond the competence of a\computationally naive" speci�er. But the reader need not agree on the latterclaim, so let's assume, for whatever reasons, that some speci�er wants to, or canonly, give incomplete information about a concept for which s/he wants a (logic)program. This is an innovative program development technique, especially aimedat two categories of users:{ experienced programmers would often rather just provide a few carefullychosen examples and have a synthesizer \work out the details" for them;{ end users are often computationally naive and cannot provide more thanexamples, but this should allow them to do some basic programming tasks,such as the recording of macro de�nitions, etc.



As this project is not about natural language processing, let's also assume thatthe speci�cation language is nevertheless formal.The synthesizer must thus be of the inductive and/or abductive category.However, many (but not all) such synthesizers have the drawback of requiringlarge amounts of ground positive (and negative) examples of the intended con-cept, especially if the resulting program is recursive. The reasons are that groundexamples are a poor means of communicating a concept to a computer, and/orthat the underlying \recursion theory" is poor. To address the �rst reason, someresearchers have successfully experimented with non-ground examples [18], if notHorn clauses [9, 12] or even full clauses [6], as evidence language. To address thesecond reason, schema-guided synthesis has been proposed [9, 12].Especially since the advent of ILP (Inductive Logic Programming), the learn-ing/synthesis of non-recursive programs (or concept descriptions) has made spec-tacular progress, but not so the synthesis of recursive programs. I have thereforedecided to focus on the latter class of programs, to the point where my synthe-sizers even assume that there exists a recursive logic program for the intendedconcept. Even though this seems counterproductive, because a synthesizer can'tdecide in advance whether a concept has a recursive program or not, there aretwo good reasons for this focus and assumption. First, as advocated by Biermann[3], I believe it is more e�cient to try a suite of fast and reliable class-speci�csynthesizers (and, if necessary, to fall back onto a general-purpose synthesizer)than to simply run such a slow, if not unreliable, general-purpose synthesizer.It is thus worthwhile to study the properties of any sub-class of programs andhardwire its synthesis. Second, as the recent interest in constructive induction[10, 20] shows, necessarily-invented predicates have recursive programs. It is thusworthwhile to study the class of recursive programs, because any learner (evena general-purpose one) can use such a specialized recursion-synthesizer once ithas detected, or merely conjectured, the necessity of a new predicate.Finally, let's assume that our speci�er is \lazy," that is s/he doesn't want totake the initiative and type in evidence of the intended concept without knowingwhether it will be \useful" to the synthesizer or not. So we need an interactivesynthesizer, and even one that takes the initiative and queries the speci�er onlyfor strictly necessary evidence. This is actually another solution to the mentionedexample voraciousness of many learners. The query and answer languages needto be carefully designed, though, so that even a computationally naive speci�ercan use the system. For instance, during the synthesis of a sorting program, thespeci�er cannot be queried about an insertion predicate (assuming the synthesis\goes towards" an insertion-sort program), because this is an auxiliary conceptthat is not necessarily known to the speci�er, her/his \mental" sorting algorithmbeing not necessarily the insertion-sort one. Also note that such an interactionscenario does not necessarily assume a human speci�er.I plan to combine all of the mentioned ideas into one system. So, in sum-mary, I aim at an interactive, inductive/abductive, schema-guided synthesizer ofrecursive programs, that takes the initiative and minimally queries a (possiblycomputationally naive) speci�er for evidence in her/his conceptual language.



Example 1. After analyzing my previous work (in a di�erent mindset [9, 10, 12]),I decided on the following target scenario. Assume a (possibly computationallynaive) speci�er somehow has (an equivalent of) the following informal speci�ca-tion in mind:sort(L,S) i� S is a non-decreasing permutation of L,where L, S are integer-lists.Now imagine a logic program synthesizer that takes this speci�er through thefollowing annotated dialogue, where questions are in teletype font, default an-swers (if any) are between curly braces \f: : :g", the speci�er's actual answersare in italics, the comma \," stands for conjunction, and the semi-colon \;"stands for disjunction:Predicate declaration? sort(L : list(int); S : list(int))If the speci�er is ever to use a logic program for sort, s/he must be able to givesuch a predicate declaration, because the predicate symbol, the sequence of for-mal parameters, and their types must be known to her/him. Minimal knowledgeabout the system, its syntax, and its type system is thus unavoidable.Induction parameter? fLg LResult parameter? fSg SDecomposition operator? fL=[HLjTL]g L = [HLjTL]The last three queries seem to require some programming knowledge (see Sec-tion 2 for the terminology), which would go counter a scenario with a computa-tionally naive speci�er. However, note that the system proposes default answers,so that such a speci�er may indeed ignore these queries by simply accepting theirdefault answers.What conditions on <S> must hold such that sort([],S) holds?S = []The speci�er must know what the sorted version of the empty list is, becauseotherwise s/he wouldn't even have the need for a sort program.What conditions on <A,S> must hold such that sort([A],S) holds?S = [A]Also, the speci�er must know what the sorted version of the one-element list is.What conditions on <A,B,S> must hold such that sort([A,B],S)holds? S = [A;B]; A � B;S = [B;A]; A > BFinally, the speci�er must know what the sorted version of a two-element list is,and why it is so. The answer may look complicated (due to the use of variables,conjunction, and disjunction), but note that it only embodies minimal knowl-edge about sort, which is independent of any sorting algorithms. Note how thespeci�er was \forced" to use the �/2 and >/2 predicates, as they are essentialto the concept of number sorting. Soon afterwards, the system reports:A possible logic program for sort is:sort(L,S)  L=[],S=[]sort(L,S)  L=[HLjTL],sort(TL,TS), insert(HL,TS,S)insert(I,L,R)  L=[],R=[I]insert(I,L,R)  L=[HLjTL],I�HL, R=[I,HLjTL]insert(I,L,R)  L=[HLjTL],I>HL, insert(I,TL,TR),R=[HLjTR]This is insertion-sort. Obviously (to us), the implicit informal speci�cation ofinsert is as follows:



insert(I,L,R) i� R is L with I inserted into it,where I is an integer and L, R are non-decreasing integer-lists.But the speci�er need not know this. The system doesn't know this either,and actually uses predicate symbol dpcSort instead (see the naming scheme inSection 2), as well as other parameter names.Do you want another logic program for sort? fyesg Y es; please!Backtracking : : :Decomposition operator? fL=[HLjT],partition(T,HL,TL1,TL2)gL = [HLjT ]; partition(T;HL; TL1; TL2)Assume that partition is a system primitive (whose program is known to thesystem) informally speci�ed as follows:partition(L,P,S,B) i� S (resp. B) contains the elements of L that are smallerthan (resp. bigger than or equal to) P,where L, S, B are integer-lists and P is an integer.After a short while, the system announces:A possible logic program for sort is:sort(L,S)  L=[],S=[]sort(L,S)  L=[HLjT], partition(T,HL,TL1,TL2), sort(TL1,TS1),sort(TL2,TS2), combine(HL,TS1,TS2,S)combine(E,A,B,C)  A=[],C=[EjB]combine(E,A,B,C)  A=[HAjTA], combine(E,TA,B,TC),C=[HAjTC]This is the quick-sort program. The implicit informal speci�cation of combineis as follows:combine(E,A,B,C) i� append(A,[EjB],C),where A, B, C are lists and E is a term.Again, the system actually uses predicate symbol dpcSort instead of combine.Also note that no further queries were posed to the speci�er, and yet the systemcame up with a completely di�erent program.Do you want another logic program for sort? fyesg Y es; sure!Backtracking : : :Decomposition operator? fL=[ , j ],halves(L,TL1,TL2)gL = [ ; j ]; halves(L; TL1; TL2)Assume that halves is a system primitive informally speci�ed as follows:halves(L,F,S) i� F is the �rst half of L, and S is the second half of L, suchthat S has maximum one element more than F, where L, F, S are lists.Soon, the system proclaims:A possible logic program for sort is:sort(L,S)  L=[],S=[]sort(L,S)  L=[ ],S=Lsort(L,S)  L=[ , j ],halves(L,TL1,TL2),sort(TL1,TS1),sort(TL2,TS2),merge(TS1,TS2,S)merge(A,B,C)  C=[],A=[],B=[]merge(A,B,C)  C=[HCjTC],merge(TA,TB,TC),TB=[],A=[HCjTA],B=TBmerge(A,B,C)  C=[HCjTC],merge(TA,TB,TC),TB=[Hj ],HC�H,A=[HCjTA],B=TBmerge(A,B,C)  C=[HCjTC],merge(TA,TB,TC),TA=[],A=TA,B=[HCjTB]



merge(A,B,C)  C=[HCjTC],merge(TA,TB,TC),TA=[Hj ],H>HC,A=TA,B=[HCjTB]This is the merge-sort program. The implicit informal speci�cation of merge isas follows:merge(A,B,C) i� C is the merger of A and B,where A, B, C are non-decreasing integer-lists.The system actually uses the predicate symbol dpcSort instead of merge. Againnote that although no further queries were posed to the speci�er, the systemproduced yet another completely new program.Do you want another logic program for sort? fyesg NoThis ends the target scenario. �In the remainder of this paper, I �rst discuss, in Section 2, the notion of logicprogram schema, and then, in Section 3, I show how such schemata are the key tobuilding the dialogs system (Dialogue-based Inductive and Abductive LOGicprogram Synthesizer), such that it has all the wanted features. The re�nementof dialogs is incremental, introducing more advanced features only as the needarises and as the basic mechanism is already explained. Finally, in Section 4, Ilook at related work, outline future work, and conclude.2 Logic Program SchemataPrograms can be classi�ed according to their synthesis methodologies, such asdivide-and-conquer, generate-and-test, top-down decomposition, global search,and so on, or any composition thereof. Informally, a program schema consists,�rst of all, of a template program with a �xed dataow, but without speci�c in-dications about the actual computations, except that they must satisfy certainconstraints, which are the second component of a schema. A program schemathus abstracts a whole family of particular programs that can be obtained byinstantiating the place-holders of its template to particular computations, usingthe program synthesized so far and the speci�cation, so that the constraintsof the schema are satis�ed. It is therefore interesting to guide program syn-thesis by a schema that captures the essence of some synthesis methodology.This reects the conjecture that experienced programmers actually instantiateschemata when programming, which schemata are summaries of their past pro-gramming experience. For a more complete treatise on this subject, please referto my survey [11]. In ILP, for instance, schemata are used as a form of declar-ative bias by xoanon [22], mobal [16], clint/cia [6], grendel [5], synapse[9, 12], misst [21], cilp [17], MetaInduce [15], and others.For the purpose of illustration only, I will focus on the divide-and-conquersynthesis methodology (which yields recursive programs), and I will restrict my-self to predicates of maximum arity 3.A divide-and-conquer program for a predicate R over parameters X, Y, and Zworks as follows. Assume X is the induction parameter, Y the (optional) resultparameter, and Z the (optional) auxiliary parameter. If X is minimal, then Y



is directly computed from X, possibly using Z. Otherwise, that is if X is non-minimal, decompose (or: divide) X into a vector HX of hx heads HXi and avector TX of t tails TXi, the tails TXi being each of the same type as X, aswell as smaller than X according to some well-founded relation. The tails TXare recursively associated with a vector TY of t tails TYi of Y, the auxiliaryparameter Z being unchanged in recursive calls (this is the conquer step). Theheads HX are processed into a vector HY of hy heads HYi of Y, possibly using Z.Finally, Y is composed (or: combined) from its heads HY and tails TY, possiblyusing Z. For X non-minimal, it is sometimes unnecessary or insu�cient (if notwrong) to perform a recursive call, because Y can be directly computed fromHX and TX, possibly using Z. One then has to discriminate between suchcases, according to the values of HX, TX, Y, and Z. If the underlying relation isnon-deterministic given X, then such discriminants may be non-complementary.In the non-recursive non-minimal case, several (say v) subcases with di�erentsolving operators may emerge; conversely, in the recursive case, several (say w)subcases with di�erent processing and composition operators may emerge: onethen has to discriminate between all of these subcases.Each of the 1+v+w clauses of logic programs synthesized by this divide-and-conquer methodology is covered by one of the second-order clause templates ofTemplate 1. Note that an \accidental" consideration of a parameter W as a resultparameter rather than as an auxiliary parameter does not prevent the existenceof a program (but the converse is true): W will be found to be always equal toits tail TW, and post-synthesis transformations can yield the version that wouldhave been synthesized with W being considered as an auxiliary parameter. Forconvenience, if hx, t, hy, v, or w is particularized to constant 1, then I will oftendrop the corresponding indices. Also, I will often refer to the predicate variables,or their instances, as operators.R(X,Y,Z)  Minimal(X),SolveMin(X,Y,Z)R(X,Y,Z)  NonMinimal(X),Decompose(X,HX,TX), % HX=HX1,: : :,HXhxDiscriminatej(HX,TX,Y,Z), % TX=TX1,: : :,TXtSolveNonMinj(HX,TX,Y,Z)R(X,Y,Z)  NonMinimal(X),Decompose(X,HX,TX),Discriminatek(HX,TX,Y,Z),R(TX1,TY1,Z),: : :,R(TXt,TYt,Z),Processk(HX,HY,Z), % HY=HY1,: : :,HYhyComposek(HY,TY,Y,Z) % TY=TY1,: : :,TYtTemplate 1: Divide-and-conquer clause templates (1 � j � v, v < k � v + w)The constraints to be veri�ed by �rst-order instances of this template are



listed elsewhere [11]. The most important one is that there must exist a well-founded relation \<" over the domain of the induction parameter, such that theinstance of Decompose guarantees that TXi \<" X, for every 1 � i � t. Otherimportant constraints will be seen in Section 3.2.Note that, at the logic program level (and at the schema level), I'm not inter-ested in the control ow: these are not Prolog programs, and there is completeindependence of the execution mechanism.Example 2. The insertion-sort program of Example 1 is a rewriting of the pro-gram obtained by applying the second-order substitutionf R/�A,B,C.sort(A,B), % projection: no auxiliary parameter!Minimal/�A.A=[], SolveMin/�A,B,C.B=[],NonMinimal/�A.9H,T.A=[HjT], Decompose/�A,H,T.A=[HjT],Discriminate/�H,T,B,C.true,Process/�A,B,C.B=A, Compose/�H,T,B,C.insert(H,T,B) gto the fv=0; w=1; hx=1; t=1; hy=1g-particularization of Template 1. This meansthat there is no non-recursive non-minimal case, and one recursive case, whichfeatures decomposition of the induction parameter L into one head, HL, and onetail, TL, the latter giving rise to one tail, TS, of the result parameter S. There isno auxiliary parameter. �Example 3. The insert program of Example 1 is a rewriting of the programobtained by applying the second-order substitutionf R/�A,B,C.insert(C,A,B), % re-ordering of formal parameters!Minimal/�A.A=[], SolveMin/�A,B,C.B=[C],NonMinimal/�A.9H,T.A=[HjT], Decompose/�A,H,T.A=[HjT],Discriminate1/�H,T,B,C.C�H, SolveNonMin/�H,T,B,C.B=[C,HjT],Discriminate2/�H,T,B,C.C>H,Process/�A,B,C.B=A, Compose/�H,T,B,C.B=[HjT] gto the fv=1; w=1; hx=1; t=1; hy=1g-particularization of Template 1. This meansthat there is one non-recursive non-minimal case and one recursive case, bothfeaturing decomposition of the induction parameter L into one head, HL, and onetail, TL, the latter giving rise to one tail, TR, of the result parameter R. Auxiliaryparameter I is used in the discriminants and in the solving operators, and passedaround unchanged in the recursive calls; it is however not used in the processand compose operators of the recursive case. �Amore general template is needed to cover the combine programof Section 1;it would cover logic programs for n-ary predicates with arbitrary numbers of re-sult parameters and auxiliary parameters. Such a template is actually to be usedby any serious implementation of the synthesis mechanism exposed hereafter.In the following, Template 1 will turn out to have too much information,as we will not be able to distinguish between the instances of the operators inthe �rst two clause templates, nor between the instances of NonMinimal, theDiscriminatek, the Processk, and the Composek in the third clause template:I'll thus unite these operators into DSj (with parameters X, Y, Z) and DPCk (with



parameters HX, TY , Y, Z; note that HY has disappeared altogether, and thatdiscrimination must now be on TY), respectively. Moreover, I will want to iden-tify the predicate, say R, in whose logic program a certain operator appears, andthis by just looking at the predicate symbol of that operator: therefore, I'll keepevery operator name short and su�x their names by \-R" or \R", at the tem-plate level and at the instance level. Since nothing in �-calculus mechanizes sucha naming scheme when moving to the instance level, I will enforce it manually.Also note the convenient naming scheme of the internal variables of each clause:every head or tail of some formal parameter has a name syntactically dependenton the name of that parameter (heads are pre�xed by \H" and tails by \T"); thishelps tracing the role of each variable. If a predicate is declared by the speci�eras r(A,B,C), then I will automatically apply the renaming substitution fX/A,Y/B, Z/C, HX/HA, TX/TA, TY/TBg to instances of the template (assumingA is chosen as induction parameter, B as result parameter, and C as auxiliaryparameter), so that the speci�er (and reader) can relate to such instances. Allthis yields Template 2 as a version that is more adequate for my present pur-poses. I'll refer to instances of its �rst clause template as primitive cases, and toinstances of the other one as non-primitive cases.R(X,Y,Z)  DS-Rj(X,Y,Z)R(X,Y,Z) DecR(X,HX,TX) % HX=HX1,: : :,HXhxR(TX1,TY1,Z),: : :,R(TXt,TYt,Z), % TX=TX1,: : :,TXtDPC-Rk(HX,TY,Y,Z) % TY=TY1,: : :,TYtTemplate 2: Divide-and-conquer clause templates (1 � j � v, 1 � k � w)Example 4. The insertion-sort program of Example 1 is a slight rewriting of theprogram obtained by applying the second-order substitutionf R/�A,B,C.sort(A,B), DS-R/�A,B,C.A=[],B=[],DecR/�A,H,T.A=[HjT], DPC-R/�H,T,B,C.dpcSort(H,T,B) gto the fv=1; w=1; hx=1; t=1g-particularization of Template 2, provided the �rst-order renaming substitution fX/L,Y/S,HX/HL,TX/TL,TY/TSg is indeed automat-ically applied in this process. �Example 5. The insert program of Example 1 is a slight rewriting of the pro-gram obtained by applying the second-order substitutionf R/�A,B,C.insert(C,A,B), DS-R1/�A,B,C.A=[],B=[C],DS-R2/�A,B,C.9H,T.A=[HjT],B=[C,HjT],C�H,DecR/�A,H,T.A=[HjT], DPC-R/�A,B,C,D.9H,T.B=[HjT],C=[A,HjT],D>A gto the fv=2; w=1; hx=1; t=1g-particularization of Template 2. �3 The dialogs SystemA dialogs synthesis is divided into two phases. The �rst phase performs a fullparticularization of Template 2 (instantiation of all its form variables, namely



hx, t, v, and w, which yields a second-order logic program) and an instantiationof some of its predicate variables (all except the DS-Rj and the DPC-Rk), and isexplained in Section 3.1. The second phase performs an instantiation of the DS-Rjand the DPC-Rk (that is the computations constructing the result parameter ineach case), and is explained in Section 3.2.3.1 Full Particularization and Partial Instantiation of the TemplatePredicate declaration. dialogs �rst prompts the speci�er for a predicate dec-laration. Assume, without loss of generality, that the speci�er answers with apredicate declaration for a ternary predicate, say p(A:T1,B:T2,C:T3), where pis a new predicate symbol, A, B, C are di�erent variable names, and the types Tiare in the set fatom, int, nat, list( ),: : :g. The actual type system is of noimportance here, and the reader may guess the meanings of these type names.Dialogue issues. dialogs needs to obtain a full particularization of Template 2.This means that the form variables hx, t, v, and w need to be bound to inte-gers. These are technical decisions, but they must be feasible without technicalknowledge, because the speci�er might be computationally naive or might noteven exist (which is an extreme case of naivet�e)! Let me explain: the need fora program for p might arise during the synthesis/learning of a program thatuses p, in which case nobody can answer queries phrased in terms of p. (Ofcourse, giving a predicate declaration for p is always possible.) This situationarises when a synthesizer/learner detects or conjectures the necessity of a newpredicate p; for instance, a Composek operator of a divide-and-conquer programmight itself have a recursive program, so the synthesizer could call itself to �ndthis program. So I need to devise a dialogue mechanism, for this �rst phase, withat least three features: (i) the provision of \reasonable" default answers; (ii) therunnability in two modes, namely aloud (where a computationally naive speci�ermay simply select the default answers, and any other speci�er may answer withpersonal preferences) and mute (where a non-existing speci�er is simulated byautomatic selection of the default answers), and (iii) backtrackability, becausethere might be several reasonable default answers to certain queries, or becausean answer may lead to failure at the second phase.Choice of the parameter roles. The �rst step towards particularization of hx andt is the choice of the roles of the parameters: one of them must be the induc-tion parameter, the others may be either result or auxiliary parameters, if any.Choosing an induction parameter can be done heuristically: any parameter ofan inductively de�ned type such as nat or list( ) is a good candidate. Fromthe predicate declaration, dialogs can create a sequence of potential inductionparameters, keep the �rst one as the (�rst) default answer, and the remainingones as default answers upon backtracking. Similarly for the result parameter (ifany), which is also likely to be of an inductively de�ned type: from the remainingparameters (if any), dialogs can create a sequence of potential result parame-ters, keep the �rst one as the (�rst) default answer, and the remaining ones as



default answers upon backtracking. Finally, dialogs can propose as the auxil-iary parameter (if any) the remaining parameter (if any). Note that an auxiliaryparameter is likely, but not certain, not to be of an inductively de�ned type, agood counter-example being I of insert, which is an integer, but has nothing todo with the \inductive nature" of inserting something into a list. Also remember,from Section 2, that an auxiliary parameter may inadvertently be considered asa result parameter, without any inuence on the existence of a correct program(but the synthesis is likely to be a bit slower). In the following, I will implicitlydrop all occurrences of Z in Template 2 in case there is no auxiliary parameter.Instantiation of R. Assuming, without loss of generality, that B is chosen as in-duction parameter, C as result parameter, and A as auxiliary parameter, dialogscan now apply the second-order substitution fR/�U,V,W.p(W,U,V)g and the re-naming substitution fX/B,Y/C,Z/A,HX/HB,TX/TB,TY/TCg to Template 2,hence (partly) instantiating the heads and the recursive calls of the templates.Instantiation of DecR and particularization of hx and t. The choice of an instanceof DecR will �nally particularize hx and t. dialogs can simply use a type-speci�cprede�ned sequence of potential instances of DecR, keep the �rst one as the (�rst)default answer, and the remaining ones as default answers upon backtracking.Assuming induction parameter B is of type list(int), the sequence could beDecR/�L,H,T.L=[HjT] hx/1, t/1DecR/�L,H1,H2,T.L=[H1,H2jT] hx/2, t/1: : : : : :DecR/�L,H,T1,T2.9T.L=[HjT],partition(T,H,T1,T2) hx/1, t/2DecR/�L,T1,T2.L=[ , j ],halves(L,T1,T2) hx/0, t/2: : : : : :Similar sequences are pre-de�ned for every type, such that they enforce the well-foundedness constraint.Particularization of v and w. De�nitely the hardest particularization is to de-cide, in advance, howmany subcases there are for each case. A safe approach is toconjecture that there is one primitive case (v = 1), as well as one non-primitivecase (w = 1), and to have the remainder of synthesis re�ne this: if either ofthese cases turns out to have subcases, which means that the instance of DS-Ror DPC-R is a disjunctive formula, then set v or w to the number of disjuncts inthis instance and rewrite the overall program accordingly.So far so good. This terminates the �rst phase: in Template 2, all form variablesand all predicate variables except DS-R and DPC-R are by now instantiated.From a programming point of view, all creative decisions have been taken, butalternative decisions are ready for any occurrence of backtracking (either becausesome decision leads to failure of the second phase, or because the speci�er wantsanother program after successful completion of the second phase). The remaininginstantiations are performed by the second phase, which is discussed in the nextsubsection.



3.2 Instantiation of the Solving ComputationsThe instantiation of the remaining predicate variables (namely DS-R and DPC-R)also is interactive and is based on the notions of abduction through (naive)unfolding and querying, and induction through computation of most-speci�cgeneralizations (or: least-general generalizations). 1Basic principle. In a nutshell, the basic principle is as follows. Assume, for con-creteness and simplicity, that the �rst phase produced the following instantiationof Template 2 (without auxiliary parameter), with list A being the induction pa-rameter, divided by head-tail decomposition, and B being the result parameter:p(A,B)  DS-p(A,B)p(A,B)  A=[HAjTA],p(TA,TB),DPC-p(HA,TB,B)The possible computation \traces" for various most-general values of the induc-tion parameter are:p([],D1)  DS-p([],D1)p([E1],F1)  DS-p([E1],F1)p([E1],F1)  p([],F1),DPC-p(E1,F1,F1)p([G1,G1],H1)  DS-p([G1,G1],H1)p([G1,G1],H1)  p([G1],H1),DPC-p(G1,H1,H1): : :The strategy is to (a) query the speci�er for an instance of the last atom of eachtrace, using previous answers to resolve recursive calls, (b) inductively infer aninstance of DS-p from some of the answers, and (c) inductively infer an instance ofDPC-p from the other answers. The criterion of how to establish such a partitionof the answers follows from the dataow constraints of the schema (see below).The speci�er must know what B is when A is the empty list. A query isgenerated by instantiating the �rst clause top([],D1)  DS-p([],D1) (1)Unfolding of second-order atoms is impossible, so the unfolding process stopshere. The queryWhat conditions on <D0> must hold such that p([],D0) holds?can be extracted from this clause. The answer should thus be a formula F[D0],where only D0 may be free, explaining how to compute D0 from [] such thatp([],D0) holds. In other words, DS-p([],D0) should be \equivalent" to F[D0].Instantiating the second clause when A is the empty list would lead to failure ofthe unfolding process at the equality atom.The speci�er must also know what B is when A has one element. A query isgenerated by instantiating the second clause top([E1],F1)  [E1]=[HAjTA],p(TA,TB),DPC-p(HA,TB,F1)Unfolding the equality atom gives1 Term g is more general than term s if there is a substitution � such that s = g�. Wealso say that s is more speci�c than g. The most-speci�c generalization (abbreviatedmsg) of terms a and b is a term m that is more general than both a and b, and suchthat no term more speci�c than m (up to renaming) is more general than both a andb. The msg of a non-empty set of terms is de�ned similarly. See [19] for more details.



p([E1],F1)  p([],TB),DPC-p(E1,TB,F1)Unfolding the p atom, using clause (1) with the newly obtained evidence of DS-pas a \shortcut," givesp([E1],F1)  F[TB],DPC-p(E1,TB,F1)Recursively unfolding all the atoms in F [TB] eventually reduces this clause top([E1],F1)  DPC-p(E1,tb1,F1) (2)where tb0 represents the value of TB after this \execution" of F [TB].The queryWhat conditions on <E1,F1> must hold such that p([E1],F1) holds?can be extracted from this clause. The answer should thus be a formulaG[E1,F1],where only E1 and F1 may be free, explaining how to compute F1 from [E1] suchthat p([E1],F1) holds. In other words, DPC-p(E1,tb0,F1) should be \equiva-lent" to G[E1,F1]. Instantiating the �rst clause when A is a one-element listwould yield the same query, so we can directly establish that DS-p([E1],F1)should also be \equivalent" to G[E1,F1].Next query the speci�er for what B is when A has two elements. Again, s/hemust know the answer. A query is generated by now instantiating the secondclause top([G1,G1],H1)  [G1,G1]=[HAjTA],p(TA,TB),DPC-p(HA,TB,H1)Unfolding the equality atom givesp([G1,G1],H1)  p([G1],TB),DPC-p(G1,TB,H1)Unfolding the p atom, using clause (2) with the newly obtained evidence ofDPC-p as a \shortcut," givesp([G1,G1],H1)  G[G1,TB],DPC-p(G1,TB,H1)Recursively unfolding all the atoms in G[G2,TB] will reduce this clause top([G1,G1],H1)  DPC-p(G1,tb1,H1)where tb1 represents the value (possibly using G2) of TB after this \execution" ofG[G2,TB]. The queryWhat conditions on <G1,G2,H2> must hold such that p([G1,G2],H2)holds?can be extracted from this clause. The answer should thus be a formulaH[G1,G2,H2], where only G1, G2, and H2 may be free, explaining how to compute H2from [G1,G2] such that p([G1,G2],H2) holds. In other words, DPC-p(G1,tb1,H2)should be \equivalent" to H[G1,G2,H2]. Instantiating the �rst clause when A isa two-element list would yield the same query, so we can directly establish thatDS-p([G1,G2],H2) should also be \equivalent" to H[G1,G2,H2].One may continue like this for an arbitrary number of times, gathering moreand more evidence of DS-p and DPC-p. As of now, I do not have a clear heuris-tic for when to stop gathering evidence. The current implementation simplygoes through the loop a constant number of times and lets the speci�er give\skip" answers (at her/his risk!) when tired or bored. Overcoming this is con-sidered future work. Sooner or later thus, some inductive inference has to bedone from this evidence. For example, if G, H, : : : are conjunctions of literals(for other situations, see below), then it \often" (see below) su�ces to com-pute the most-speci�c generalization of an \adequate" subset of the tuple set(considering all predicate symbols and the connectives \," and \:" as functors)



fhE1,tb0,F1,Gi, hG1,tb1,H2,Hi, : : :g, say hha; tb; b;Mi, and the binding of DPC-pto �T,U,V.T=ha,U=tb,V=b,M can then complete the synthesis of the secondclause. Similarly, compute the msg of the \counterpart complementary subset"of the tuple set fh[],D0,Fi, h[E1],F1,Gi, h[G1,G2],H2,Hi, : : :g, say ha; b;Mi, andthe binding of DS-p to �T,U.T=a,U=b,M can then complete the synthesis of the�rst clause. I call this (and its re�nement hereafter) the MSG Method [9, 12, 8].This presentation of the basic principle is of course very coarse, as it side-tracks or leaves open many important issues, which will be discussed next. Inany case, notice how query generation and answering actually abduce evidenceof the still missing operators.Unfolding issues. In general thus, the principle of query generation is to succes-sively instantiate every clause for most-general values of the induction parameterand to unfold its �rst-order body atoms (until only a second-order atom remains),so that a query in terms of the target predicate only can be extracted, hidingthe fact that the speci�er actually has to answer a query about the second-orderatom. Answers to previously posed queries are made available during this unfold-ing process as shortcuts, avoiding thus that the same query is generated twice.Naive unfolding is su�cient here, as I am only interested in the logic, not in thecontrol, of logic programs. Also, I assume there is a system program for everyprimitive (such as =/2).As usual, unfolding uses all applicable clauses (except when shortcuts areavailable, in which case only the shortcut clauses are used), so that severalclauses may result from an unfolding step; unfolding then continues from all ofthese clauses, with the same stopping criterion and the same spawning process.Moreover, it is sometimes unnecessary to recursively unfold until only a second-order atom is left.Example 6. Both of these phenomena can be illustrated by means of the delOddspredicate, which is informally speci�ed as follows:delOdds(L,R) i� R is L without its odd elements, where L, R are integer-lists.Suppose L is chosen as induction parameter, which is divided by head-tail de-composition, and R is chosen as result parameter. The following �rst two queriesare posed to the speci�er:What conditions on <R0> must hold such that delOdds([],R0)holds? R0 = []What conditions on <A1,R1> must hold such that delOdds([A1],R1)holds? odd(A1); R1 = [];:odd(A1); R1 = [A1]Note that the second answer is disjunctive, and that it not only says how theresult is computed, but also when/why it is so. Now, during the generation ofthe query about what happens when L has two elements, the following clausesare obtained after some unfolding:delOdds([B1,B1],R1)  odd(B1),DPCdelOdds(B1,[],R1)delOdds([B1,B1],R1)  :odd(B1),DPCdelOdds(B1,[B1],R1)Note that the unfolding yielded two clauses (using the shortcuts established fromthe second query). The primitive predicate odd being introduced by the speci�er,we need not unfold it. Therefore, the queries



What conditions on <B1,B2,R2> must hold such thatdelOdds([B1,B2],R2) holds, assuming odd(B2)?odd(B1); R2 = [];:odd(B1); R2 = [B1]What conditions on <B1,B2,R2> must hold such thatdelOdds([B1,B2],R2) holds, assuming :odd(B2)?odd(B1); R2 = [B2];:odd(B1); R2 = [B1; B2]should be extracted: note the new sub-sentences introduced by the keywordassuming. �Instantiation of DS-R and DPC-R through the MSG Method. Above, I wrote thatit \often" su�ces to compute msgs in order to help instantiate DS-R and DPC-R(in case their evidence involves only conjunctions of literals); so what is thecriterion for doing so? And how to choose the \adequate" tuple subsets overwhich msgs are computed? To answer these, we �rst have to analyze the dataowof divide-and-conquer programs in even greater detail than so far, namely insidethe DS-R and DPC-R operators [9, 12, 8].Let's start with the discriminate-process-compose operator. Essentially, it isY that is \constructed from" HX, TY, and Z. \Constructing" a term \from"others means that its constituents (constants and variables) are taken from theconstituents of these other terms; functors can safely be ignored here, due totheir \decorative" role in logic programming. For example, in insert(HL,TS,S),which is the DPC-R operator of the insertion-sort program in Section 1, result S isconstructed from HL and TS. But we know more: all the constituents of TY mustbe used for constructing Y or for discriminating between di�erent constructions ofY, because otherwise the recursive computations of TY would have been useless;but the constituents ofHX and Z onlymight be used in this construction of Y. Forexample, in insert(HL,TS,S), result S is indeed constructed from the \entire"TS, but also from HL; however, in R=[HLjTR], which is the DPC-R operator of theinsert program in Section 1, result R is indeed constructed from TR, and from HL,but not from auxiliary parameter I; and there are programs with constructionsof Y that involve TY and Z but not HX, or even only TY. Finally: Y can onlybe constructed from the constituents of HX, TY, and Z, but may not \invent"other constituents, except maybe for the type-speci�c constants (such as 0, nil,: : : ), although this is not always the case. All these observations can be gatheredin the following de�nition (which is a particular case of Erdem's version [8],which itself is a powerful and generic extension of my old version [9, 12]): atuple hhx; ty; y; z;Fi is admissible (for building a discriminate-process-composeoperator) i� constituents(ty) � constituents(hy;Fi) ^constituents(y) � constituents(hhx; ty; zi) [ f0; nil; : : :gwhere terms ty, y, and z are optional, and �rst-order formula F is a conjunc-tion of literals without any equality atoms. From such an admissible tuple, wecan build an admissible instance of DPC-R by binding this predicate variable to�T,U,V,W.T=hx,U=ty,V=y,W=z,F .



Let's continue with the discriminate-solve operator. Essentially, it is Y thatis constructed from X and Z. But the constituents of X and Z only might beused in this construction of Y. Finally, Y may even \invent" new constituents: Ihere restrict invented constituents to the type-speci�c constants (0, nil, : : : ),although this is not always the case. All these observations can be gatheredin the following de�nition [8]: a tuple hx; y; z;Fi is admissible (for building adiscriminate-solve operator) i�constituents(y) � constituents(hx; zi) [ f0; nil; : : :gwhere terms y and z are optional, and �rst-order formula F is a conjunc-tion of literals without any equality atoms. From such an admissible tuple, wecan build an admissible instance of DS-R by binding this predicate variable to�T,U,V.T=x,U=y,V=z,F .Admissibility of the instances of the DS-Rj and the DPC-Rk gives us thus other(dataow) constraints of the divide-and-conquer schema. They are enforced asfollows:1. partition the tuple set for DPC-R into a minimal number of subsets (calledcliques) of which any two elements have an admissible msg;2. analyze every such clique: if the msg of the counterpart subset of the tuplesfor DS-R is also admissible, then delete the clique from the tuples for DPC-R;otherwise delete that counterpart subset from the tuples for DS-R;3. take the msgs of the remaining cliques for building admissible instances ofthe DPC-Rk, and set w to the number of these cliques;4. partition the remaining tuple set for DS-R into a minimal number of cliques,build admissible instances of the DS-Rj from their msgs, and set v to thenumber of these cliques.This is essentially my old MSG Method [9, 12], but run with the extendedde�nitions of admissibility.Example 7. The synthesis of delOdds, as started in Example 6, continues as fol-lows. The �rst answer abduces the following evidence of DSdelOdds (left column)and DPCdelOdds (right column):1.h[],[],truei (not applicable)The second answer abduces the following evidence of DSdelOdds and DPCdelOdds:2.h[A1],[],odd(A1)i hA1,[],[],odd(A1)i3.h[A1],[A1],:odd(A1)i hA1,[],[A1],:odd(A1)iThe third and fourth answers abduce the following evidence of DSdelOdds andDPCdelOdds:4.h[B1,B2],[],(odd(B1),odd(B2))i hB1,[],[],odd(B1)i5.h[B1,B2],[B1],(:odd(B1),odd(B2))i hB1,[],[B1],:odd(B1)i6.h[B1,B2],[B2],(odd(B1),:odd(B2))i hB1,[B2],[B2],odd(B1)i7.h[B1,B2],[B1,B2],(:odd(B1),:odd(B2))i hB1,[B2],[B1,B2],:odd(B1)i



Note that tuples 4 and 5 for DPCdelOdds are just variants of its tuples 2 and 3,respectively; they could thus be eliminated. In fact, dialogs detects this dur-ing query generation and never even poses the third query to the speci�er; thecorresponding tuples are non-interactively abduced using the answer to the sec-ond query as shortcut. At step (1), the msg of all the tuples for DPCdelOddsis hHL,TR,R,Pi. Since there is a predicate variable in the fourth slot, namely P,this tuple is not admissible. So we should partition the tuple set into a minimalnumber of cliques of which any two elements have an admissible msg. A par-tition into two cliques of three elements each (with tuples 2, 4, 6, and 3, 5, 7,respectively) achieves this, with the following msgs:h[HLjTL],R,Pi hHL,TR,TR,odd(HL)ih[HLjTL],R,Qi hHL,TR,[HLjTR],:odd(HL)iThere are no other partitions yielding two cliques. The partitions yielding threeto six cliques are obviously uninteresting, as each of their cliques is properlycontained in some clique of the bi-partition.At step (2), the counterpart six pieces of evidence of DSdelOdds can bedeleted, because their two msgs (in the left column above) are not admissible(due to the presence of predicate variables).At step (3), w is set to 2, and DPCdelOdds1 is bound to �T,U,V.T=HL,U=TR,V=TR,odd(HL), while DPCdelOdds2 is bound to �T,U,V.T=HL,U=TR,V=[HLjTR],:odd(HL).At step (4), v is left to be 1, and DSdelOdds is bound to �T,U.T=[],U=[],true, using the only remaining evidence for DSdelOdds. �What if the answers to the queries are not conjunctions of literals? For sim-plicity, and without loss of power, I restrict the answer language to the connec-tives not (\:"), and (\,"), and or (\;"), and I require answers to be in disjunctivenormal form, with the variables appearing in the query being implicitly free, allothers being implicitly existentially quanti�ed. Therefore, it su�ces to break updisjunctive answers into their conjunctions of literals, and to apply the MSGMethod. This was actually illustrated in the delOdds example.Instantiation of DPC-R through recursive synthesis. Instantiating DPC-R via theMSG Method assumes that there is a �nite non-recursive axiomatization of thatoperator. But such is not always the case; take for example the insert predicateused in the insertion-sort program in Section 1: its program is recursive andhence not synthesizable through the MSG Method. So another method needsto be devised for detecting and handling such situations of necessary predicateinvention [20, 10]. Since the MSG Method has been devised to always succeed(indeed, in the worst case, it partitions a tuple set into cliques of one elementeach), a heuristic is needed for rejecting the results of the MSG Method and thusconjecturing the necessity of predicate invention. A good candidate heuristic is[9, 8]: if there are \too few" cliques for DPC-R, then reject the results of the MSGMethod. The interpretation of \too few" is implementation-dependent, and could



be user-controlled by system-con�dence parameters; the current implementationonly rejects when w is 0.Example 8. After the three queries of the insertion-sort synthesis of Example 1(assuming L is chosen as induction parameter, which is divided by head-taildecomposition, and S is chosen as result parameter), the abduced tuples forDSsort and DPCsort respectively are (after some renaming):h[],[],truei (not applicable)h[A1],[A1],truei hA1,[],[A1],trueih[B1,B2],[B1,B2],B1�B2i hB1,[B2],[B1,B2],B1�B2ih[B1,B2],[B2,B1],B1>B2i hB1,[B2],[B2,B1],B1>B2iThe MSG Method partitions, at step (1), the three tuples for DPCsort into threecliques of one element each; at step (2), these tuples are removed because theircounterparts for DSsort are admissible as well; at step (3), no evidence is leftfor DPCsort, so w is set to 0; �nally, at step (4), the four tuples for DSsort arepartitioned into three cliques, so v is set to 3. This result is however rejectedby the heuristic above: it is conjectured that DPCsort cannot be instantiatedthrough the MSG Method (that is, a program for insert cannot be found bythis way). �So how to proceed? This is a situation of necessary predicate invention, whichis precisely one of the situations targeted by dialogs, which is a recursion-synthesizer (due to its foundation on Template 2). So the idea is for dialogs tore-invoke itself, under the assumption that a divide-and-conquer program existsfor the missing operator.The instantiations done by steps (3) and (4) of the MSG Method need to beundone. The latter is thus revised as follows: steps (3) and (4) only create theinstances, but the actual bindings are deferred until acceptance by the rejectionheuristic.Using Template 2 and the declaration of the current predicate (see below),the variable DPC-R is bound to �T,U,V,W.dpcR(T,U,V,W), and the predicate dec-laration dpcR(H:T4,T:T3,R:T3,A:T1) is elaborated (assuming that the elementsof induction parameter B:T2 are of type T4, that hx = t = 1, and that C:T3 isthe result parameter and A:T1 the auxiliary parameter). Indeed, under these as-sumptions, the call to the new predicate will be dpcR(HB,TC,C,A).Note that thisdoesn't necessarily create a predicate of maximum arity 3, but, as said earlier,a generalization of Template 2 should be used for any serious implementation.Moreover, the variable DS-R is instantiated according to the msgs of the tuplesthat have no counterparts among the tuples for DPC-R. For the insertion-sort syn-thesis, this gives the declaration dpcSort(I:int,L:list(int),R:list(int)),while variable DSsort is bound to �A,B,C.A=[],B=[], and variable DPCsort isbound to �H,T,B,C.dpcSort(H,T,B), just like in Example 4.The �rst phase of the sub-synthesis must be run in mutemode, as the speci�erdoesn't know what kind of program the system is synthesizing and therefore can't



be expected to answer queries about its operators, let alone about the operatorsused in synthesizing these operators.However, some hints for the �rst phase of this sub-synthesis could be ex-pressed: in general, it seems reasonable to hint at T as induction parameter, R asresult parameter, and H, A as auxiliary parameters. A reasonable hint could alsobe expressed for instantiation of DecR, but I do not go into these details here.In any case, these hints beg a fourth feature of the dialogue mechanism (see\Dialogue issues" above), namely: (iv) preference of hints (if any) over defaultsin mute mode. In general, dialogs is thus also called with a possibly empty hintlist, rather than with only a predicate declaration.The second phase of this sub-synthesis should not generate queries about thenew predicate. It shouldn't even synthesize a program for the new predicate byexplicit induction on the parameter hinted at, because not every value of thatinduction parameter is \reachable" by values of the induction parameter of thesuper-synthesis: queries about the new predicate can't always be formulated interms of the old one. For example, a factorial program needs to invent a multi-plication predicate, but actually only uses a sparse subset of the multiplicationrelation [17]. The \trick" to make dialogs generate queries about the top-levelpredicate (see below) such that the answers actually pertain, unbeknownst tothe speci�er, to that new predicate is quite simple: the �rst phase of the sub-synthesis should add the obtained clauses to those of the super-synthesis, ratherthan work with these new clauses only.Thus, in general, dialogs is called with a start program as an additionalargument: this is the empty set in the case of a new synthesis (for the top-levelpredicate), or a set of clauses for a (unique) top-level predicate and its (directlyor indirectly) used predicates, in case dialogs is used (possibly by itself) fora necessary invention of a predicate that is (directly or indirectly) used by thetop-level predicate. The �rst phase gets a predicate declaration for the currentpredicate and builds the current program by adding the new clauses to the startprogram. Query generation in the second phase is always done for the top-levelpredicate, but unfolding will eventually \trickle down" to a missing operatorof the current predicate and extract a question for it in terms of the top-levelone. The answers to queries help instantiate a missing operator of the currentpredicate, through either the MSG Method or further recursive synthesis.Example 9. Let's continue the synthesis of the insertion-sort program (from Ex-ample 1 and Example 8). dialogs calls itself recursively in mute mode withsort(L,S)  L=[],S=[]sort(L,S)  L=[HLjTL],sort(TL,TS),dpcSort(HL,TS,S)as start program, sort as top-level predicate, dpcSort(I:int,L:list(int),R:list(int) as declaration for current predicate dpcSort, parameter L as pre-ferred induction parameter, parameter R as preferred result parameter, and pa-rameter I as preferred auxiliary parameter. Assume the �rst phase builds thecurrent program by adding to the start program the following clauses:dpcSort(I,L,R)  DSdpcSort(I,L,R)dpcSort(I,L,R)  L=[HLjTL],dpcSort(I,TL,TR),DPCdpcSort(HL,TR,R,I)



In the second phase, query generation for most-general one-element and two-element lists as induction parameter L of the top-level predicate sort leads,without interaction (due to the second and third queries of the super-synthesis),to the following tuples for DSdpcSort and DPCdpcSort, respectively:hA1,[],[A1],truei (not applicable)hB1,[B2],[B1,B2],B1 �B2i hB2,[B1],[B1,B2],B1,B1 �B2ihB1,[B2],[B2,B1],B1 >B2i hB2,[B1],[B2,B1],B1,B1 >B2iThis is scanty evidence to continue from, so one could decide to generate aquery about what happens when induction parameter L of the top-level predicatesort has three elements. This would yield an extension to the target scenario ofExample 1; the ensuing computations are too long to reproduce here, but theyeventually lead to the correct binding (just as in Example 5) of DSdpcSort1 to�A,B,C.A=[],B=[C], of DSdpcSort2 to �A,B,C.9H,T.A=[HjT],B=[C,HjT],C�H,and of DPCdpcSort to �A,B,C,D.9H,T.B=[HjT],C=[A,HjT],D>A. Note that v is2, and w is 1. A more \daring" move would be to directly infer these instancesfrom the tuples above, and thus to stay within the targeted scenario. Indeed,the �rst tuple can directly lead to the instantiation of DSdpcSort1, based onthe observation that there is no counterpart evidence of DPCdpcSort; the secondtuple can directly lead to the instantiation of DSdpcSort2 (by generalizationof constant nil to a variable), based on the observation that the counterpartevidence of DPCdpcSort forces the \breaking up" of the second parameter inorder to construct the third one; conversely, the third tuple can directly lead tothe instantiation of DPCdpcSort (by generalization of constant nil to a variable),based on the observation that the counterpart evidence of DSdpcSort forces the\breaking up" of the second parameter in order to construct the third one.Formalizing this, and hence reducing dialogues, is considered future work. �A high-level dialogs algorithm can be found in the Appendix.4 ConclusionIn this paper, I have �rst motivated and then incrementally reconstructed thereasoning that led to the design of the dialogs system, which is a dialogue-based, inductive/abductive, schema-guided synthesizer of recursive logic pro-grams, that takes the initiative and minimally queries a (possibly computation-ally naive) speci�er for evidence in her/his conceptual language. dialogs canbe used by any learner (including itself) that detects, or merely conjectures, thenecessity of invention of a new predicate.Queries are kept entirely in terms of the speci�er's conceptual language,and are simple, because they only ask what \happens" when some parameterhas a �nite number of \elements." Even better, the speci�er must know theanswers to such queries, because otherwise s/he wouldn't even feel the needfor the synthesized program. Answers are thus also in the speci�er's conceptuallanguage, and are independent of the synthesized program. Answers are stored



so that synthesis can proceed with minimal querying. Indeed, a query can begenerated more than once, albeit with di�erent \intentions" (that is, aiming atgathering evidence of di�erent operators): the aimed-at operators are either theones of the top-level predicate or the ones of the current predicate (when thetop-level predicate needs to invent the current predicate).A competent speci�er assumption only holds in the second phase, becauseof the backtrackability feature of the dialogue in the �rst phase: the speci�er(if any!) can answer just about anything during the �rst phase, because wronganswers will lead to failure in the second phase.Note the elegant ways by which dialogs avoids the \background knowledgere-use bottleneck" [13]: �rst, it only tries to re-use the =/2 primitive (by theMSG Method); moreover, other primitives (such as �/2 or odd) used by thespeci�er in answers to queries end up in the synthesized program (which preventsthe sometimes automa-g-ic avor of inductive synthesis); �nally, the system re-uses the primitives occurring in its knowledge base for DecR. Overall thus, theseprimitives do not \compete" in re-use situations.Due to its foundation on an extremely powerful codi�cation of a \recursion-theory" (by means of the template and constraints of a divide-and-conquerschema), the current prototype implementation needs very little evidence and isvery fast. An even faster and more powerful implementation is planned.The time-complexity of synthesis is essentially linear in the complexity of thesynthesized program, due to the repeated unfolding of the synthesized programfor various most-general values of some parameter. Steps (1) and (4) of the MSGMethod amount to partitioning a graph into a minimal number of cliques, whichis known to be an NP-complete problem; however, this should not be an issue,as the graphs under investigation only have a few nodes.The class of synthesizable programs is a subset of the class of divide-and-conquer programs. It seems to depend on the knowledge base for DecR, but a\Devil's Advocate" argument against its completeness with respect to that classmay be countered by appealing to the ingenuity of a non-naive speci�er whenanswering the DecR question. The current (relaxable) assumptions are that DS-Ris non-recursively de�ned, and that DPC-R has a divide-and-conquer instance, ifa new predicate needs to be invented for it.dialogs falls into the category of trace-based inductive synthesizers [9] (suchas [3], grendel [5], synapse [9, 12],MetaInduce [15], cilp [17], : : : ), becauseit �rst explains its examples in terms of computation traces (that �t a certaintemplate), and then generalizes these traces into a recursive program. The maininnovation here is that dialogs generates its own, generalized examples. Notethat spectre [4] and tracy [2] are not trace-based synthesizers, as they don'tconstruct their candidate clauses in a truly schema-guided way. However, theydo use a form of declarative bias to enumerate and analyze (that is, acceptor reject) potential clauses, and they also feature unfolding/resolution in theprocess of verifying the coverage of examples.dialogs is most closely related to synapse [9, 12]: this non-interactiveschema-guided inductive/abductive synthesizer expects some positive (ground)



examples as well as Horn clause equivalents (called properties) of at least theanswers that dialogs would query for. In other words, dialogs is a simpli�ca-tion of synapse, without any loss of power, but with less burden on the speci�erand with faster synthesis. The Proofs-as-Programs Method (which should havebeen called Abductive Method) of synapse has disappeared, as it has becomethe driving synthesis mechanism of the second phase of dialogs.The cilp [17] andMetaInduce [15] systems essentially feature subsets of thefunctionality of synapse and dialogs, in the sense that they have only examplesas input language, rely on a simpler divide-and-conquer schema, and use lesspowerful MSG Methods, which cannot infer disjunctively de�ned operators.The clint [6] and clint/cia systems [7], although they are model-basedinductive synthesizers [9], are also related to dialogs, in the sense that theyare also interactive, sometimes guided by (mono-clausal) templates, and have anextended evidence language (full clauses, called integrity constraints). However,these integrity constraints are not used constructively during a synthesis, butonly to accept or reject candidate programs.As said before, a stopping criterion for the dialogue loop of the second phaseneeds to be identi�ed. Co-routining the abduction, induction, and evaluationsteps of that phase seems an approach towards this, as the loop can then beexited when the msgs stop changing.Future work will also aim at increased schema independence (it's alreadylargely achieved in the second phase, except for the hardwired veri�cation ofthe constraints), at least via the coverage of an even more powerful divide-and-conquer schema (with support of compound induction parameters, : : : ) and ofother schemata (tupling generalization [14], descending generalization [14], : : : ).Ideally, the schema would be a parameter of the system, and thus constitute areal declarative bias.Another plan is to integrate dialogs with a post-synthesis transforma-tion/optimization tool; the preference will of course go to using schema-guidedtransformers [14], as these can exploit much of the additional information (suchas \what is the instance of each operator?") generated by dialogs.AcknowledgmentsMany thanks to Esra Erdem for numerous stimulating discussions about theMSG Method. The anonymous reviewers were constructive in suggesting someimprovements of the presentation. Esra Erdem, Halime B�uy�uky�ld�z, and SerapY�lmaz provided useful feedback on an earlier version of this paper, and con-tributed to the implementation of a �rst prototype of the dialogs system, aswell as to the ordeal of typesetting this document in LaTEX.References1. Angluin, D.: Queries and concept learning. Machine Learning 2(4):319{342, 1988.2. Bergadano, F., Gunetti, D.: Learning clauses by tracing derivations. In S. Wrobel(ed), Proc. of ILP'94, pp. 11{29. GMD-Studien Nr. 237, Sankt Augustin, 1994.



3. Biermann, A.W.: Dealing with search. In A.W. Biermann, G. Guiho, and Y. Ko-drato� (eds), Automatic Program Construction Techniques, pp. 375{392. Macmil-lan, 1984.4. Bostr�om, H., Idestam-Almquist, P.: Specialization of logic programs by pruningSLD-trees. In S. Wrobel (ed), Proc. of ILP'94, pp. 31{48. GMD-Studien Nr. 237,Sankt Augustin, 1994.5. Cohen, W.C.: Compiling prior knowledge into an explicit bias. In Proc. of ICML'92,pages 102{110. Morgan Kaufmann, 1992.6. De Raedt, L., Bruynooghe, M.: Belief updating from integrity constraints andqueries. Arti�cial Intelligence 53(2-3):291{307, February 1992.7. De Raedt, L., Bruynooghe, M.: Interactive concept learning and constructive in-duction by analogy. Machine Learning 8:107{150, 1992.8. Erdem, E.: An MSG Method for Inductive Logic Program Synthesis. Senior ProjectFinal Report, Bilkent University, Ankara (Turkey), May 1996.9. Flener, P.: Logic Program Synthesis from Incomplete Information. Kluwer, 1995.10. Flener, P.: Predicate Invention in Inductive Program Synthesis. TR BU-CEIS-9509,Bilkent University, Ankara (Turkey), 1995. Submitted.11. Flener, P.: Synthesis of Logic Algorithm Schemata. TR BU-CEIS-96xx, BilkentUniversity, Ankara (Turkey), 1996. Update of TR BU-CEIS-9502. In preparation.12. Flener, P., Deville, Y.: Logic program synthesis from incomplete speci�cations.Journal of Symbolic Computation 15(5{6):775{805, May/June 1993.13. Flener, P., Popel��nsk�y, L.: On the use of inductive reasoning in program synthesis.In L. Fribourg and F. Turini (eds), Proc. of META/LOPSTR'94. LNCS 883:69{87,Springer-Verlag, 1994.14. Flener, P., Deville, Y.: Logic Program Transformation through GeneralizationSchemata. TR BU-CEIS-96yy, Bilkent University, Ankara (Turkey), 1996. Inpreparation. Extended abstract in M. Proietti (ed), Proc. of LOPSTR'95. LNCS1048:171{173, Springer-Verlag, 1996.15. Hamfelt, A., Fischer-Nilsson, J.: Inductive metalogic programming. In S. Wrobel(ed), Proc. of ILP'94, pp. 85{96. GMD-Studien Nr. 237, Sankt Augustin, 1994.16. Kietz, J.U., Wrobel, S.: Controlling the complexity of learning in logic throughsyntactic and task-oriented models. In S. Muggleton (ed), Inductive Logic Pro-gramming, pp. 335{359. Volume APIC-38, Academic Press, 1992.17. Lapointe, S., Ling, C., Matwin, S.: Constructive inductive logic programming. In S.Muggleton (ed), Proc. of ILP'93, pp. 255{264. TR IJS-DP-6707, J. Stefan Institute,Ljubljana (Slovenia), 1993.18. Muggleton, S., Buntine, W.: Machine invention of �rst-order predicates by invertingresolution. In Proc. of ICML'88, pages 339{352. Morgan Kaufmann, 1988.19. Plotkin, G.D.: A note on inductive generalization. In B. Meltzer and D. Michie(eds), Machine Intelligence 5:153{163. Edinburgh University Press, 1970.20. Stahl, I.: Predicate invention in ILP: An overview. TR 1993/06, Fakult�at Infor-matik, Universit�at Stuttgart (Germany), 1993.21. Sterling, L.S., Kirschenbaum, M.: Applying techniques to skeletons. In J.-M.Jacquet (ed), Constructing Logic Programs, pp. 127{140. John Wiley, 1993.22. Tinkham, N.L.: Induction of Schemata for Program Synthesis. Ph.D. Thesis, DukeUniversity, Durham (NC, USA), 1990.



Appendix: The dialogs Algorithm% Interactive synthesis of a recursive (divide-and-conquer) pgm.dialogs <-set interaction mode to `aloud',read(PredDecl), % declaration for r, the top-level predicateHints = {},StartPgm = {},dialogs(PredDecl,Hints,StartPgm,Pgm),write(Pgm),if the specifier wants more programs then fail else true.% Synthesis (in case of detected or conjectured necessary% predicate invention) of a recursive (divide-and-conquer) pgm% for the current predicate declared in PredDecl, using Hints% (if any), which program is used by and thus added to the% context program StartPgm to yield the final program Pgm.dialogs(PredDecl,Hints,StartPgm,Pgm) <-% phase 1NewClauses = a set of divide-and-conquer clauses (according toTemplate 2) for the current predicate (which is declared inPredDecl), where only the DecR operator has been instantiated,according to Hints (if any),CurrPgm = StartPgm union NewClauses,% phase 2abduce(CurrPgm,DSev,DPCev),induce(DSev,DPCev,DSinsts,DPCinsts),evaluate(DSinsts,DPCinsts,CurrPgm,Pgm).% Interactive abduction of evidence sets DSev and DPCev for the% uninstantiated operators DS-R and DPC-R in program Pgm.abduce(Pgm,DSev,DPCev) <-DSev = {}, DPCev = {}, % initializationsas often as ``needed'' doconstruct Goal, % a goal for the top-level predicatedemo(Pgm,Goal,Assumptions,Residue),ask(Goal,Assumptions,Residue,DS-exs,DPC-exs),DSev = DSev union DS-exs,DPCev = DPCev union DPC-exsod.% An SLD-refutation of <- Goal in theory Pgm (augmented with% shortcut clauses from previous queries) generates the conj% Assumption, but is blocked by the unresolvability of the% unit-goal Residue, because it has a predicate variable.demo(Pgm,Goal,Assumption,Residue) <- ...



% The set DS-exs (resp. DPC-exs) contains the tuples for the% predicate variable DS-R (resp. DPC-R) in second-order atom% Residue, which tuples are extracted from the answer (by the% specifier or by an oracle based on previous answers) to the% query under what conditions atom Goal must hold, assuming% that conjunction Assumption holds.ask(Goal,Assumption,Residue,DS-exs,DPC-exs) <- ...% Inductive generalization of the evidence sets DSev and DPCev% into lists of ``plausible'' instances (according to the% admissibility criteria) DSinsts and DPCinsts for the operators% DS-R and DPC-R.induce(DSev,DPCev,DSinsts,DPCinsts) <- % revised MSG Methodpartition(DPCev,DPCcliques), % step 1 (as in text)prune(DPCcliks,NewDPCcliks,DSev,NewDSev), % step 2 (as in text)buildInsts(NewDPCcliks,DPCinsts), % step 3 (revised)partition(NewDSev,DScliks), % step 4 (revised)buildInsts(DScliks,DSinsts). % step 4 (cont'd)% Heuristic-based acceptance or rejection of the induced% instances DSinsts and DPCinsts for the uninstantiated operators% DS-R and DPC-R in second-order logic program CurrPgm, so as to% instantiate the latter into a first-order program Pgm.evaluate(DSinsts,DPCinsts,CurrPgm,Pgm) <-if #DPCinsts=0 then % reject!construct NewPredDecl % decl. for dpcR, the new curr. pred.construct NewHints, % hints for dpcRin the last two clauses of CurrPgm doinstantiate the DS-Rj (as described in text),particularize v accordingly,instantiate DPC-R to dpcR,particularize w to 1yielding NewStartPgm,set interaction mode to `mute',dialogs(NewPredDecl,NewHints,NewStartPgm,Pgm) % recursion!else % accept!in the last two clauses of CurrPgm doparticularize v to #DSinsts,for 1<=j<=v do instantiate DS-Rj using DSinsts[j],particularize w to #DPCinsts,for 1<=k<=w do instantiate DPC-Rk using DPCinsts[k]yielding Pgm.This article was processed using the LaTEX macro package with LLNCS style


