
ILP and Automatic Programming:Towards Three ApproachesPierre Flener, Bilkent University, Ankara, Turkey �Lubo�s Popel��nsk�y, Masaryk University, Brno, Czech Republic yOlga �St�ep�ankov�a, CTU Prague, Czech Republic zAbstractThe prospects of inductive logic programming (ILP) with respect to automatic programming (programsynthesis) are discussed. We argue that logic program synthesis from incomplete information is buta niche of ILP, and study consequences of this statement. Then, three approaches are described:schema-driven synthesis of logic programs from incomplete speci�cations, the role of transformationtechniques in ILP, and interactive assumption-based inductive learning.1 IntroductionAutomatic programming (or: program synthesis) [6, 1] is one of the lines of research directed towardsthe design and implementation of software meeting given requirements. The adjective \automatic"does not necessarily imply a fully automatic synthesis of programs. Any degree of automation isacceptable, as we would like to engage computers in the process of programming. The currentresearch may be split into at least two streams, unfortunately with too little overlap: deductivesynthesis from (assumed-to-be) complete speci�cations (by axioms) and inductive synthesis from(known-to-be) incomplete speci�cations (e.g. by examples). In this work, we are addressing thelatter stream. However, we realize that a cooperation between those streams is necessary to solvereal problems of software engineering, and that this would be advantageous for both of them. Formore information on the need for cross-fertilization and cooperation between deductive and inductivesynthesis, see [17].At present, more attention is paid to the employment of ILP techniques in automatic programming[2, 4, 20, 8]. The goal of the paper is to show what makes inductive synthesis of logic programsspeci�c, how it di�ers from concept learning as well as to analyze consequences of this di�erence. Itimplies the necessity to focus on exploitation of programmer's knowledge (like schemata), on programtransformation techniques, and on human{computer interaction.2The organisation of the paper is following. In the Section 2., we analyze the use of inductive reasoningin logic program synthesis. The relation between ILP and logic program synthesis is discussed.The problems with inductive synthesis are shown and a solution is proposed. In the Section 3.,a framework of a schema-driven synthesis of logic programs from incomplete speci�cations is givenand results reached by SY NAPSE synthesizer are discussed. The schema-driven synthesis seemsto be overcomming the most of existing ILP synthesizers by its capability to learn more complexpredicates, even if some of background knowledge predicates are unknown. Section 4. is focusedon a role of tranformation techniques in a process of program construction. Existence of powerfulltransformation techniques could allow us to focus on a synthesis of simple programs, which canbe later transformed into more e�cient ones. Section 5. starts with a role of human{computerinteraction. We elaborate a new approach to model-based learning { assumption-based interactivelearning { which tries to �nd a minimal completion of an incomplete learning set leading to a correctprogram synthesis. In the Section 6., WiM , an assumption-based learning system is introduced.Results reached with WiM in learning simple list processing predicates are described and comparedwith those of FILP [4], CRUSTACEAN [2] and BMWk [23].In the following section, we analyze the use of inductive reasoning in logic program synthesis and�Department of Computer Engineering and Information Science, Faculty of Engineering, Bilkent University,TR-06533 Bilkent, Ankara, Turkey; pf@bilkent.edu.tryFaculty of Informatics, Masaryk University, Bure�sova 20, CZ{602 00 Brno, CZ; popel@fi.muni.czzFaculty of Electrical Engineering, CTU, Technick�a 2, CZ-166 27 Praha 6, CZ; step@lab.felk.cvut.cz1

a relation between concept learning and program synthesis. Under the term teacher we understanda human specifying a program not by explicit programming, and the term learner designates aprogram learning a logic program from such information provided by a teacher.2 On the Use of Inductive Reasoning in Program Syn-thesisILP may be divided [11] into Empirical ILP (heuristic-based learning of a single concept from manyexamples) and Interactive ILP (algorithmic and oracle-based learning of many concepts from a fewexamples). An important distinction needs to be done here. Program synthesis from examples isbut a niche (albeit a signi�cant one) of ILP. Deductive approaches to (logic) program synthesis fromcomplete speci�cations are traditionally only interested in synthesizing programs that actually per-form some \computations", that is they incrementally \compute" some output(s) from some input(s)through looping behavior such as iteration or recursion. This includes divide-and-conquer programs,and global/local search programs [30]. Other program classes are straight-line programs (with noloops at all), which are virtually identical to their complete speci�cations and thus not subject todeductive synthesis, and generate-and-test programs. Although they might perform \computations"(in the above sense) during their individual generate and/or test phases, they don't perform over-all \computations" and are thus generally considered as starting points (speci�cations) to deductiveapproaches to program synthesis/transformation, whose goal it is then precisely to distil a divide-and-conquer or global/local search program therefrom.Regarding inductive approaches to (logic) program synthesis from incomplete speci�cations now, thesame objectives (should) hold: divide-and-conquer and global/local search programs are the chal-lenging program classes we (should) aim at. Straight-line programs solve \mere" data-classi�cationproblems and can be learned by exploring pre-enumerated search spaces, which is traditionally ratherthe realm of empirical machine learning. Generate-and-test programs should not really be a targetclass, unless there is a hint by the speci�er for their synthesis. Such a hint could be some meta-knowledge giving e.g. the upper limit for the considered complexity of the concepts used in thegenerate and test phases of the program. Otherwise, generators and testers must be either inventedad hoc from the incomplete speci�cations (examples, ...), which seems even more complicated thansynthesis of looping programs because the generators and testers are unrelated to each other, orre-used from a knowledge base. The considered knowledge base must be really large in order to copewith all problems (if the knowledge base is kept small in order to bias the learner/synthesizer, thenthere is no point in automated learning/synthesis, because the teacher/speci�er already knows thetarget description/program).In the sequel, by \programs" we mean recursive concept descriptions, and by \identi�cation proce-dures" we mean non-recursive concept descriptions. Other di�erences between ILP in general andinductive program synthesis in particular are summarized in the following table:ILP Inductive Program SynthesisClass of hypotheses any recursive programsSpecifying agent human or machine humanIntended concept sometimes unknown always knownConsistency of examples any attitude assumed consistentNumber of examples any a fewNumber of predicates in examples at least 1 exactly 1Rules of inductive inference selective and constructive necessarily constructiveCorrectness of hypotheses any attitude total correctness is crucialExistence of hypothesis schemas hardly any yes, manyNumber of correct hypotheses usually only a few always manyTable 1: Inductive Program Synthesis as a Niche of Inductive Logic ProgrammingThe central column of the table shows the spectrum of situations covered by ILP research, but itdoesn't mean to imply that all learners do cover, or should cover, this full spectrum. The right-handcolumn however shows the most realistic situation for inductive program synthesis, that is a situationthat should be covered by every synthesizer. Let's have a look now at these two columns.In ILP, the agent who provides the examples can be either a human being or some automated device(such as a robot, a satellite, a catheter, : : :). It is possible for this agent not to know the intendedconcept, which means that it may give examples that are not consistent with the intended concept, orthat it may give wrong answers to queries from the learner. Examples can be given in any amounts:Empirical ILP expects numerous examples, while Interactive ILP expects only a few examples andoften constructs its own examples so as to submit them to the teacher. Examples may involve more

than one predicate-symbol: the instance \Tweety" of the concept \canary" could yield the examplemouth(tweety; beak) ^ legs(tweety; 2) ^ skin(tweety;feathers)^ utterance(tweety; sings) ^ color(tweety;yellow) ^ : : :which involves many predicate-symbols, but not a canary=1 predicate-symbol. The used rules ofinductive inference can be either selective (only the predicate-symbols of the premise may appear inthe conclusion) or constructive (the conclusion \invents" new predicate-symbols). Selective rules areoften su�cient to learn concepts, such as \canary", from multi-predicate examples. There are manylearning situations where an approximately correct concept description is su�cient, whereas in othersituations a totally correct description is hoped for. Schemata (template concept descriptions) area well-known means of syntactic bias to reduce the size of learning search spaces. However, if onedoesn't somehow know in advance whether the concept to be learned is \computational" (it has aprogram as a concept description) or not (it doesn't have a program as a concept description), thenit is hard to use/�nd an adequate schema. Moreover, non-\computational" concepts tend to haveeither application-speci�c schemata (and then arises the question as to their acquisition) or generalschemata such asP (X;Y)(Generate(X;Y) ^ Test(Y)which spell out the entire search space of logic programs and thus don't reduce its size. For generalconcepts, there are usually only a few correct hypotheses: for instance, there is probably only onecorrect de�nition of the \canary" concept, in any given context.But in inductive program synthesis, the most realistic setting is where the speci�er is a human beingwho knows the intended concept and who is assumed to provide only examples that are consistentwith that intended concept. \Knowing a concept" means that one can act as a decision procedure foranswering membership queries for that concept [3], but it doesn't necessarily imply his/her abilityto actually write that decision procedure. Such a speci�er cannot be expected to be willing to givemore than just a few examples. Examples only involve one predicate-symbol, namely the one forwhich a program is to be synthesized: for instance, an example of an integer-list sorting programcould be sort([2;1; 3]; [1; 2; 3]). The used rules of inductive inference thus necessarily include con-structive rules, as programs usually use other programs than just themselves. Total correctness ofthe synthesized program w.r.t. the intended concept is crucial in inductive synthesis. Programs arehighly structured, complex entities that are usually designed according to some strategy (such asDivide-And-Conquer, Global/Local Search, etc): program synthesis can thus be e�ectively guidedby a program schema that reects some design strategy. The existence of many such schemata andthe existence of many choice-points within these strategies entail the existence of many correct pro-grams for a given \computational" concept. For instance, integer-list sorting can be implemented byInsertion-Sort, Merge-Sort, Quicksort programs, and many more.So there is a dream of actually synthesizing programs from speci�cations by examples. Since manyintentions are covered by an in�nity of examples, �nite speci�cations by examples cannot faithfullyformalize such intentions, and the synthesizer needs to extrapolate the full intentions from the exam-ples. This is necessarily done by unsound (or rather: not-guaranteed-to-be-sound) reasoning, such asinduction or abduction.2.1 Approaches to Inductive SynthesisIn the early 1970s, some researchers investigated how to synthesize programs from traces of sampleexecutions thereof. However, traces are very procedural speci�cations, and constructing a trace meansknowing the program, which rather defeats the purpose of synthesis. Regarding inductive synthesisfrom examples, there are basically two approaches [15] [1]:1. Trace-based Synthesis: positive examples are �rst \explained" by means of traces (that �t somepredetermined program schema), and a program is then obtained by generalizing these traces,using the above-mentioned techniques of inductive synthesis from traces. Sample works aresurveyed by D.R. Smith [28]. This research was a precursor to the EBL/EBG research ofMachine Learning.2. Model-based Synthesis: a logic program is \debugged" w.r.t. positive and negative examplesuntil its least Herbrand model coincides with the intentions. This is the ILP approach. Sampleworks are those of E.Y. Shapiro [27], and many others are compiled by Muggleton [25].Historically speaking, both approaches barely overlap in time: trace-based synthesis research tookplace in the mid and late 1970s, whereas model-based synthesis research is ongoing ever since theearly 1980s. Indeed, in the late 1970s, trace-based synthesis research hit a wall and partly declareddefeat considering that the found techniques didn't seem to scale up to realistic problems. But then,E.Y. Shapiro [27] and others published their �rst experiments with model-based approaches, andmodel-based synthesis took over, not only for inductive program synthesis, but for inductive concept

learning in general.\Linguistically" speaking, both approaches also barely overlap: trace-based synthesis was pursuedby the Functional Programming community, whereas model-based learning is being investigated bythe Logic Programming community. Revivals of trace-based synthesis in the Logic Programmingcommunity have been suggested by Hagiya [18] and Flener [15, 16].2.2 The Problems with Inductive SynthesisIt is illusory to hope that very general learning techniques carry over without major e�ciency prob-lems to particular tasks such as inductive program synthesis: since synthesis is akin to compilation,this illusion amounts to looking for a universal programming language.Some good ideas of trace-based synthesis (such as schema-guidance) haven't received much attentionby model-based learning research. Indeed, as seen above, for general concepts, there are hardly anyschemas that wouldn't spell out the entire search space. Now, for the particular task of model-basedsynthesis, there is room for schemas: program schemas signi�cantly reduce the search space, theybring \discipline" into an otherwise possibly anarchic debugging process, and they convey part of theprogram design knowledge.There is a fundamental di�erence between a teacher/learner relationship and a speci�er/synthesizerrelationship. A teacher usually is expected to know how to compute/identify the concept s/he isteaching to the learner, whereas a speci�er usually only knows what the concept is about, the de-termination of how to compute it being precisely the task of the synthesizer. So a teacher can guidea learner who is \on the wrong track", but a speci�er usually can't. A teacher can, right before thelearning session, set the learner \on the right track" by providing carefully chosen examples and/orbackground knowledge, but a speci�er often can't. For instance, most ILP systems can learn theQuicksort program from examples of sort=2 plus logic procedures for partition=3 and append=3 asbackground knowledge. But this amounts to a \speci�cation of quicksort=2", which is a valid objec-tive for a teacher, but not for a speci�er: one speci�es sort=2, a problem, not quicksort=2, a solution!We really wonder about the e�ciency of model-based learners in a true speci�er/synthesizer setting,where a lot of relevant and irrelevant background knowledge is provided. A solution to the ensuingine�ciency would be structured background knowledge, such as classifying the partition=3 procedureas a useful instance of the induction-parameter-decomposition placeholder of a Divide-and-Conquerprogram schema.The second problem with inductive synthesis is that examples alone are too weak a speci�cationapproach. When examples are generated by some automated device, one can hardly expect moreinformation, but human example generators should be able to provide more information. This iscrucial because of the abundance of negative learnability results from examples alone. As conveyedby Table 1, in program synthesis, we usually have the setting of a human speci�er who knows theintended relation. So s/he probably knows quite a bit more about that relation, but can't expressit by examples alone. For instance, it is unrealistic that somebody would want a sorting program(for integer lists, say) and not know the reason why [2; 1] is sorted into [1; 2] rather than into [2; 1].The reason is of course that 1 < 2, but the problem here is that the < =2 predicate-symbol can-not be used in the examples. More generally, the problem is about the lack of provision of domainknowledge to the synthesizer and has been perceived a while ago. Various proposed solutions aretype declarations for the parameters [27], type assertions about the intended relation [14], prop-erties of the intended relation [15, 16], integrity constraints about a set of intended relations [11],and bias (all knowledge potentially useful for narrowing the search space), as generally used inILP. Assertions/properties/integrity constraints/... should only be an additional source of poten-tially incomplete information about the intended concept. Otherwise, that is if this information isknown/required to be complete, a deduction-based synthesizer would be more appropriate, as theexamples could then be safely ignored. This is a problem with some of the proposed solutions [12].Of course, if someone wants to give complete knowledge about the intentions, then the synthesizershould be able to handle it.Inductive synthesis researchers are fully aware of the limitations of their research. They view it as justthe provision of components and tools for software engineering environments. In the synthesizer-as-a-workbench-of-powerful-mini-synthesizers approach advocated by A.W. Biermann [5] and by schema-guided synthesis researchers such as D.R. Smith [29, 30], there is a place for inductive synthesizers,because certain classes of programs can be reliably synthesized with little e�ort from a few examples.2Now we present an overview of the SYNAPSE synthesizer (for a full description see [15, 16]) , whichstepwisely synthesizes divide-and-conquer logic programs from examples and properties.

3 Stepwise, Schema-guided Synthesisof Logic Programs: SYNAPSEIn [15, 16], a strategy for stepwise synthesis of logic programs from speci�cations by examples andproperties is presented. It is part of an attempt at an automation of the logic programming method-ology of Deville [13]. The synthesis process is guided by a divide-and-conquer schema, featuresnon-incremental presentation of examples, and is interactive. The system is both inductive and de-ductive: it starts with inductive reasoning from the examples, and then performs deductive reasoningfrom the properties whenever appropriate.Examples are ground facts. Only positive examples are used. Properties are de�nite clauses. Inpractice, it turns out that providing such properties is quite straightforward. It must be stressed herethat the synthesis mechanism was designed to work even (or rather: especially) in the absence ofrecursive properties: recursion discovery and introduction is a major challenge in synthesis!Let compress(L;C) hold i� compact-list C is the compression of list L. This can be illustrated bythe following example:compress([a; a; b; b; a; c; c; c]; [a; 2; b; 2; a; 1; c; 3])We use this predicate for a description of the synthesis mechanism. The eight ground examples:compress([]; [])compress([a]; [a; 1])compress([b; b]; [b; 2])compress([c;d]; [c; 1; d; 1])compress([e; e; e]; [e;3])compress([f;f; g]; [f;2; g; 1])compress([h; i; i]; [h; 1; i; 2])compress([j;k; l]; [j;1; k; 1; l; 1])and the three properties:true) compress([X]; [X; 1])X = Y) compress([X;Y]; [X;2])X 6= Y) compress([X;Y]; [X;1; Y; 1])are provided by the speci�er.Schemata are template programs with �xed control ows (e.g. divide-and-conquer, generate-and-test, global/local search, etc.). A possible divide-and-conquer schema for a binary predicate is asfollows:R(X;Y), Minimal(X) ^Solve(X;Y)__(1 � k � c) NonMinimal(X)^Decompose(X;HX;TX)^Discriminatek(HX;TX;Y)^R(TX;TY)^Processk(HX;HY)^Composek(HY;TY; Y)If X is minimal, e.g. an empty list or the integer zero, then usually Y is very easy to �nd. Otherwise,X is decomposed into a series HX of heads of X and a series TX of tails of X. Tails are of the sametype as X, but smaller than X, e.g. a shorter list. The tails TX recursively yield tails TY of Y , byR(TX;TY). The heads HY of Y are processed from the HX, and Y is composed from its heads HYand tails TY . If there is more than one way of composing Y , than discriminants are needed.The synthesis consists of two phases of a total of eight steps that follow this divide-and-conquerschema.� Expansion phase1. Syntactic creation of a �rst approximation2. Synthesis of Minimal and NonMinimal3. Synthesis of Decompose4. Syntactic insertion of the recursive atoms� Reduction phase5. Synthesis of Solve6. Synthesis of the Processk and Composek

7. Synthesis of the Discriminatek8. Syntactic generalizationThe expansion phase corresponds to the trace-generation phase of trace-based synthesis (see section2.1), because the given examples are \explained" in terms of divide-and-conquer traces. The reductionphase corresponds to the trace-generalization phase of trace-based synthesis, because the obtainedtraces are \folded" together by a recurrence relation detection mechanism.For the compress=2 problem, synthesis proceeds as follows:Expansion PhaseAt Step 1, the examples are simply rewritten as follows:compress(L;C), L = [] ^C = []_L = [a] ^C = [a; 1]_:::_L = [f; f; g] ^C = [f;2; g; 1]_:::At Step 2, L is non-deterministically chosen as the induction parameter. Then, L = [] is tried as theinstance of Minimal and L = [j] as the instance of NonMinimal, both instances being extractedfrom a knowledge base.At Step 3, L = [HLjTL] is tried as the instance of Decompose, by extraction from a knowledge base.The values of HL and TL can then be computed for each disjunct of the current program:compress(L;C), L = [] ^L = [] ^C = []_L = [j] ^ L = [HLjTL] ^ L = [a] ^C = [a; 1]^HL = a ^ TL = []_:::_L = [j] ^ L = [HLjTL] ^ L = [f;f; g] ^C = [f;2; g; 1]^HL = f ^ TL = [f; g]_:::At Step 4, the recursive atoms are syntactically inserted, depending on the number of tails ofthe induction parameter introduced by the instance of Decompose chosen at Step 3. Here thereis only one tail (namely TL) of the induction parameter L, so only one recursive atom (namelycompress(TL; TC)) is introduced for every disjunct that reects a non-minimal example. The valuesof TC can then be deductively computed using the properties, respectively by querying the user(analogy-based methods are under investigation as well).For our problem, the deductive method is su�cient: e.g. the third disjunct becomes:_L = [j] ^L = [HLjTL] ^ L = [f; f; g] ^C = [f; 2; g; 1] ^HL = f ^ TL = [f; g]The value [f; g] of TL matches the value [X;Y] of the �rst parameter in the head of the second andthe third properties, both times under the substitution X=f;Y=g. However, only the body X 6= Y ofthe third property:X 6= Y) compress([X;Y]; [X;1; Y; 1])is satis�able under this substitution, so we obtain the value of TC for the third disjunct by in-stantiating the second parameter of the head of the third property via the substitution X=f;Y=g.Hence:_L = [j] ^L = [HLjTL] ^ compress(TL; TC) ^ L = [f;f; g] ^C = [f;2; g; 1]^HL = f ^ TL = [f; g] ^ TC = [f;1; g; 1]Similarly for the other non-minimal disjuncts.Reduction PhaseAt Step 5, a method similar to the ones of Steps 6 and 7 is used to �nd that C = [] is a good instanceof Solve(L;C) (which in turn is the current instance of Solve(X;Y)).At Step 6, we instantiate Process(HX;HY) ^ Compose(HY;TY; Y), which can also be seen asinstantiating ProcessCompose(HX;TY; Y) (namely by compiling away the intermediate variableHY). In our problem, we thus have to instantiate ProcessCompose(HL;TC;C) so as to computethe compact list C from its tail TC and the head HL of L. This involves partitioning the non-minimaldisjuncts such that in each partition this computation is performed in the same way.If all the desired instances can be expressed only in terms of equality atoms, then computing the MSGs(most-speci�c generalizations) of the < HL;TC; C > triples extracted from the current program willreadily yield this partition. Otherwise, e.g. if the instance contains recursive calls, the synthesizer

reinvokes itself using these < HL;TC; C > triples as new examples as well as properties derived fromthe initial properties as new properties.For our problem, the MSG method is su�cient and partitions the disjuncts into two classes (henceinstantiating the schema-variable c of the divide-and-conquer schema above to 2). We havecompress(L;C), L = [] ^C = []^L = [] ^C = []_L = [j] ^ L = [HLjTL] ^ compress(TL; TC) ^C = [HL; 1jTC]^L = [a] ^C = [a; 1] ^HL = a ^ TL = [] ^ TC = []_:::_L = [j] ^ L = [HLjTL] ^ compress(TL; TC) ^ TC = [HL;M jTTC]^C = [HL;s(M)jTTC]^L = [f;f; g] ^C = [f;2; g; 1] ^HL = f ^ TL = [f; g]^TC = [f;1; g; 1] ^M = 1 ^ TTC = [g; 1]_:::where s(M) stands for the successor of integer M .At Step 7, discriminants deciding on which instance of the Processk(HX;HY)^Composek(HY;TY; Y)is applicable are synthesized. This is achieved by proving that the properties logically follow fromthe currently synthesized logic program: if the proof fails, then analysis of the failure reveals theinstances of the Discriminatek .For our problem, the proof of the �rst property yields:discriminate1(HL; []; [HL; 1])(truewhile the proof of the second property gives:discriminate2(HL; [HTL]; [HL;2])(HL = HTLand the proof of the third property yields:discriminate1(HL; [HTL]; [HL;1;HTL; 1])(HL 6= HTLAfter some regrouping and generalizing, we obtain the following instances:discriminate1(HL;TL; C), TL = []_(TL = [HTLj] ^HL 6= HTL)discriminate2(HL;TL; C), TL = [HTLj] ^HL = HTLAt Step 8, all equality atoms involving constants introduced from the examples are removed. Theresults looks as follows.compress(L;C), L = [] ^C = []_L = [j] ^ L = [HLjTL]^TL = [] _ (TL = [HTLj] ^HL 6= HTL)^compress(TL; TC) ^C = [HL; 1jTC]_L = [j] ^ L = [HLjTL]^TL = [HTLj] ^HL = HTL^compress(TL; TC) ^ TC = [HL;M jTTC] ^C = [HL;s(M)jTTC]A �rst version of the SYNAPSE system has been written in Quintus Prolog as a meta-programbased on the ground representation of object-variables (100K, including about 42% of comments).Synthesis is interactive (the user may express preferences and hints) and non-deterministic (a family ofalternative programs is synthesized). Not all the features of the synthesis mechanism described in [15]have been implemented yet. Predicate invention is done by self-invocation on a derived speci�cationby examples and properties. A very general divide-and-conquer schema is hardwired into the system.Other problems within the scope of the SYNAPSE synthesis mechanism are:� plateau(N;E;P) i� P is a plateau of N elements equal to E, where N is a positive integer,E is a term, and P is a non-empty list, e.g. plateau(2; a; [a; a]), but not plateau(0; f; []), norplateau(2; a; [a; a; b);� firstP lateau(L; P;S) i� P is the �rst plateau 1 of L, and S is the corresponding su�x of L,where L is a non-empty list, P is a plateau, and S is a list, e.g. firstP lateau([a; a; b]; [a; a]; [b]),but not firstP lateau([a; a; b]; [a]; [a; b]);� delete(E;L;R) i� R is L without its �rst (existing) occurrence of E, where E is a term, L is anon-empty list, and R is a list, e.g. delete(a; [a; b; a]; [b; a]), but not delete(a; [a; b; a]; [a; b]);� sort(L;S) i� S is a non-descendingly ordered permutation of L, where L, S are integer lists.1a plateau is a non-empty list of identical elements

These problems range from easy (plateau=3: 3 examples, 2 properties) to moderately di�cult(compress=2 : 8 examples, 3 properties; firstP lateau=3: 7 examples, 3 properties; and delete=3:6 examples, 3 properties) to intricate (sort=2: 10 examples, 3 properties). For the latter, theInsertion-Sort, Merge-Sort, and Quicksort programs can be found upon backtracking of the synthesismechanism, provided (for the latter two) that the predicates split=2 and partition=3 are availablein the knowledge-base for the Decompose place-holder. This approach reects a structured provi-sion of knowledge to the synthesis mechanism, and thus solves the e�ciency problem in the pres-ence of (too) much background knowledge. The needed instantiations of the Compose place-holder,namely insert=3, merge=3, and append=3, respectively, can be invented from scratch by recursivere-invocation of the synthesis mechanism on a derived speci�cation by examples and properties.2In the following, we discuss how transformation techniques can signi�cantly improve the capabilitiesof ILP systems.4 Logic Program Transformations and ILPThe e�ciency of logic programs obtained through di�erent ILP techniques depends signi�cantly onthe used representation language and on the available background knowledge. The primary goal ofILP is to create a program covering the presented examples. Moreover, in some domains the resultingprogram represents new knowledge, which should be understandable to its expected human user inorder to be veri�ed or accepted by him/her. That is why ILP does not have to seek the most elaborateprograms, ever. On the contrary, sometimes simple and well understandable programs should be theprimary goal. Unfortunately, simplicity of expression and program e�ciency do not go hand in handoften. That is why we believe that program transformation techniques should be included in anILP environment. There is one more reason for this belief, namely the problem of \good choice" ofexamples and of the language. The type of program created by an ILP system is highly dependent onavailable background knowledge. Suppose we want to synthesize a program for reversing lists. If thebackground knowledge provides a de�nition of append=3, it is unwise to insist that the ILP systemhas to derive from the examples of the input-output relation of the intended program directly thewell known linear version of reverse=2 using an auxiliary predicate with the accumulator parameter.We believe that it is su�cient if an ILP system identi�es the correct \naive" reverse computing theresult in quadratic time w.r.t. the length of the input. Later the problem of e�ciency of the resultingprogram can be treated as a separate task of further \optional" processing. This last step can besupported by a transformational approach. In such a case the learning process will follow a naturalsequence reminding closely the classical didactic approach utilized by human teachers:1. learning a \simple" or \naive" logic program covering the given examples,2. transformation of the former result into a more e�cient version based on the results of deeperexperience or experimentation with the intermediate version.The invention/de�nition of new predicates | the so called \eureka" | is one of the crucial problemsof the search for a useful program transformation aiming at higher e�ciency. Most papers on programtransformations are devoted to the search for provably equivalent programs exhibiting some requestedproperties, e.g. higher e�ciency. But it may well be the case that in the area of ILP another approachcan be followed:Would it not be wise to try to combine a heuristic technique o�ering a good hint forimprovement of the input logic program with the strong debugging facilities of an MIS-like system [27]?Under this assumption, the important property of the transformed program is no longer full equiv-alence to the original input program, because a nearly correct version can be tuned to the providedexamples by the debugging system. The transformation step should suggest a new version of a pro-gram, syntax of which di�eres from that of the input program (e.g. a new predicate is introduced),while both programs exhibit the same beahviour on most provided examples of the input-outputrelation.It has been shown in many papers [e.g. [9], [32]] that practical experience with a naive programcan give good hints leading to eureka occurrence. The eureka step is one of the bottle-necks of theclassical approach to program transformations as they have been de�ned by Burstall and Darlington[10]. Their basic operations are de�nition, instantiation, abstraction, unfold, fold, and laws. Eurekaoccures in the de�nition step and it is often impossible to be applied without utilization of laws |reasoning capabilities | which are very di�cult to be automated. We advocate a heuristic approachto program transformations. A brief description of a primary version of such a system is given insection 4.2. Our system extends the original set of transformation steps by a new operation calledmeta-abstraction, because it abstracts on predicates rather on terms.

4.1 Meta-abstractionUsing pure abstraction during the program transformation, we can often loose some important infor-mation on data processed in the studied case. In order to make-up for this draw-back, backgroundknowledge (laws) can be utilised for exact description of the relation between the abstracted variableand the original data-structure. Let us call meta-abstraction a transformation operation which1. introduces a substitution variable for a speci�c instance in a program clause (this is what pureabstraction does),2. adds to the original clause full information on the construction of the introduced variable usingpredicates from background knowledge.Let us consider a predicate sub/2, refered to as sublist, de�ned as follows: sub(X,L) holds i� list Xcan be obtained from the list L by leaving-out some of its elementssub([],Y).sub([A|X],[A|Y]):-sub(X,Y).sub(X,[A|Y]):-sub(X,Y).Suppose we have identi�ed that our input examples correspond to the relation, denoted by csub/3,de�ned by the following clausecsub(X,Y,Z):-sub(X,Y),sub(X,Z).The logic program consisting of this clause and the above de�nition of the predicate sub representsa generate-and-test program which is obviously far from e�cient. Let us try to transform it into amore e�cient version. During the transformation course we reach a clausecsub([A|C1],[A|L1],[B|M1]):-sub(C1,L1),sub([A|C1],M1).Now, meta-abstraction is used to obtain a new version of this clause, which reads as followscsub([A|C1],[A|L1],[B|M1]):-sub(C1,L1),append([A],C1,D),sub(D,M1).The body of this clause will serve as a basis for de�nition of a new auxiliary predicate dsub/4dsub(B;C;L;M), 9D(sub(C; L) ^ append(B;C;D) ^ sub(D;M))After some more transformational steps, we obtain �naly a more e�cient version, denoted by csub1/3,of the original predicate csub utilizing the auxiliary predicate dsub:csub1(C,L,M):-dsub([],C,L,M).dsub([],[],L,M).dsub([],[A|C1],[A|L1],[A|M1]):-dsub([],C1,L1,M1).dsub([],[A|C1],[A|L1],[B|M1]):-dsub([A],C1,L1,M1).dsub([],C,[A|L1],M):-dsub(([],C,L1,M).dsub([A],C,L,[A|M1]):-dsub([],C,L,M1).dsub([A],C,L,[B|M1]):-dsub([A],C,L,M1).This program is not only more e�cient then the original csub, but it compares well even withtransformed version of csub/3 obtained in [33].4.2 STRATEGYActually, we are developing a system STRATEGY for generation of nearly equivalent transformedversions of an input program. This system [34] implements a heuristic search for this purpose.STRATEGY generates the transformation graph of the input logic program using all transformationoperations. The de�nition operation is restricted in order to provide a semi-�nite search space. Thisrestriction is motivated by the results on normal forms of logic programs [32]. The transformationgraph is searched by an A* algorithm using iterative deepening. The applied heuristic functionreects the case history of the successful applications of the transformation operations with respectto the treated logic program (and the speci�c predicate it is applied to). The �rst experiments withthe implementation of STRATEGY [34] seem to indicate that it leads rather quickly to a new moree�cient \nearly correct" version of the original program for \small problems".The actual version serves as an input to the debugging facilities of MIS [27], which produces a correct�nal version using the original program as an oracle.2A program construction is an interactive process. Automatic programming should be as well. Someaspects of that statement are discussed bellow. Then, an assumption-based interactive learning isintroduced.

5 Interactive Automatic Programming5.1 Interactive Program SynthesisConstructing programs is a process with informal intentions at the very beginning and a hopefullycorrect program at the end. In the case of batch learning, teacher is not always able to collect allthe information needed for a program synthesis, namely to build a good example set, in advance. 2On the other side, a solution o�ered by interactive learners like MIS [27] or CLINT [11], to askexamples one-by-on, is too bothering for a teacher.In our case, as a teacher is a human, learning from examples can be seen as a programming byexamples. But this kind of programming is nothing but programming. This means that it su�ersfrom the same disease like the classical programming - an informality of teacher's intentions. Becauseof that, more attention should be paid to a methodology programming by examples, in our case to aproblem of driving teacher to choose good examples [24].Constructing programs is an iterative process, where in each step a \better" program is constructed,i.e. a program respecting the teacher's intentions more precisely. 3 We see two ways of solving thisdrawback: to ask a teacher to formalize his or her intentions, or to support the transfer of knowledgeon program being learned. Here, and in the next section, we will address the latter. First, we brieydescribe a new approach to interactive model-based learning, an assumption-based leraning.5.2 Assumption-Based Interactive Learning: hM scenarioIn our approach we wish to exploit the advantages of interactive learners and limit their drawbacks,namely:� to lower the amount of information needed (number of examples, information about the neededbackground knowledge predicates, bias);� to limit the number of queries to the teacher during a synthesis.Ideas on the assumption-based framework underlying our methodology may be found in [7, 22]. Thegeneric hM program [26] consists of three parts:1. Generator of assumptions, which generates extensions of the learning set.An assumption can be any formula consistent with that learning set. The generator employsa preference relation to generate the most-preferable assumptions �rst.2. Inductive learner3. Truth maintenance system, which evaluates the acceptability of assumptions. It may askqueries to the teacher.In the next section, WiM , an assumption-based interactive system, is introduced. Results reachedwith WiM in learning simple list processing predicates are described and compared with those ofFILP [4], CRUSTACEAN [2] and BMWk [23].6 WiMWiM is a �rst implemenation of the assumption-based method. It is implemented in standard Prolog.WiM needs only small example set (2 or 3 positive examples) for learning list processing predicates.Before describing a session with the WiM program, we describe Markus+, our modi�cation ofMarkus learner, which we use as the instance of the inductive learner in WiM .6.1 Markus+Markus+ [26] is an improved version of theMarkus learner [19, 20, 21]. Markus improved Shapiro'sMIS system [27] by an optimal generation of the re�nement graph, by controlling the search spacewith several parameters, and by use of iterative deepening search, among others. Unlike MIS,Markus processes positive and negative examples in batch.The improved version, Markus+, allows shifting of bias and the de�nition of a second-order schemawhich the learned program has to match. Three parameters are used for shifting bias | the maximalnumber of free variables in a clause, the maximal number of goals of a clause body, and the maximalhead argument depth (X; [XjY]; [X;Y jZ], etc. are of depths 0, 1, 2, etc., respectively). The teacher2Even the assumption on the consistency of the example set, which is common for all ILP learners, can befound too restrictive. Here, we suppose that an example set is consistent.3Intentions are assumed to be �xed. The fact that intentions may change during the period of programconstruction will not be addressed here.

speci�es lower and upper bounds of those parameters. Markus+ starts with the minimal values ofthese settings. If no acceptable result has been found, one of the settings is increased by 1 so that allvariations are being tried. It means that the bias of Markus+ may be weaker than that of Markus.6.2 WiM : Main algorithmA learning session for a predicate P starts from a learning set L, a second-order schema SP of thepredicate P , a de�nition of modes and types of arguments D, and a set of background knowledgepredicates BK given by teacher. We will demonstrate it by learning last(Elem; List) predicate (Elemis the last element of a list List) using WiM with an input knowledge as follows:L = flast(a; [a]); last(b; [c; b])gSP = P : �Q ; P : �Q;P:D = f�x;+[x]gBK = fgQ may be a conjunction of background knowledge predicates, i.e. recursive programs containing twoclauses are acceptable. The set BK of background knowledge predicates is empty so that only last/2predicates may appear in the learned program.WiM processes the learning set L. If it has found an intensional de�nition of a predicate P suchthat it matches the second-order schema, then the teacher is asked to con�rm/reject that predicatede�nition. If the teacher doesn't agree with the found solution, it may either ask for an anothersolution { in that case an assumption is being generated to extend the learning set L { or give a newexample. If s/he agree with the found predicate de�nition, the session is �nished.In our example, an incorrect de�nitionlast(X,[Y|Z]) :- last(X,Z).last(X,[X|Y]).was found for the learning set L. That is why the generator of assumptions is called to generate anassumption. As an assumption, a near miss to a chosen positive example is generated. A near-missed example is a negative example that di�ers from a positive example of the intended predicate\as little as possible". A preference relation on the set of examples is de�ned [26] to generatenearmisses of less complex examples �rst. For list processing predicates, a sum of argument lengthshas been found suitable. 4The constant set for the two examples above, if extended by a constant d, is fa,b,c,dg. The examplelast(a,[a])is chosen for generating near misses. The following syntactic approach is used for computing nearmisses: extend a set of constants by a new constant. Then take a positive example and modify itby adding/deleting a list element, or by replacing an atom, using the extended constant set. Forlast(a,[a])not last(d,[a]), not last(a,[]), not last(a,[d,a]),not last(a,[a,d])are generated. For each of assumptions, a truth maintenance system calls Markus+ to process theoriginal example set extended by the assumptions. If the new predicate de�nition di�ers from thede�nitions found so far, the teacher is asked to con�rm/reject the assumption. For the assumptionsnot last(d,[a]) and not last(a,[]), the same incorrect solution as above is found. For notlast(a,[d,a]),WiM has found no solution because of inconsistency in the example set. That's whyuser is asked only the following questionlast(a,[a,d]) assumed to be false. OK ? (yes /no /unknown /why)If the teacher agrees (yes), then the following information is displayed to the teacherFound predicatelast(X,[Y|Z]) :- last(X,Z).last(X,[X]) :- true.under assumption thatlast(a,[a,d]) = falseand an equivalence query [3] like in MIS [27]) is asked.OK (yes. / new example) ?4A length of atoms is equal to 0, a length of list argument is equal to the length of the list.

If the teacher has no example to add to the learning set, the learning session is �nished.If the answer is no, i.e. the assumption is rejected, the example is added into the learning set aspositive one, and the learning session goes on with this extended learning set. If unknown is answered,WiM search for another assumption deleting the old one from the learning set. If the answer iswhy, the learned predicate de�nition using the assumption last(d,[a,d]) is displayed and the samequestion is asked again. The example set is left unchanged.In the following section, experimental results obtained by WiM are summarized and compared withresults of FILP [4], CRUSTACEAN [2] and BMWk [23].6.3 Discussion of resultsFor the synthesis of list-processing predicates, the upper bounds of the maximal number of freevariables in a clause as well as the maximal head argument depth were set to 2. The maximalnumber of goals of a clause body was set to 3. We tested WiM on the following predicates� member(E; L) i� the element E appears in the list L;� append(L1; L2; L3) i� the list L3 is equal to the list L1 appended by the list L3;� delete(E;L1; L2) i� the list L2 is the non-empty list L1 without its �rst (existing) occurrenceof E;� reverseConcat(L1; L2) i� the list L2 has the same elements as the list L1 but in the reverseorder. It uses concat(L1;E; L2) predicate which appends the element E to the list L1;� reverseAppend(L1; L2) is the same as reverseConcat(L1; L2) but using append(L1; L2; L3);� last(E; L) i� the element E is the last element of the list L;� split(L1; L2; L3) i� the lists L2 and L3 contain only odd and even elements, respectively, of thelist L1.In the table bellow, a number of the examples needed are summarized:WiM FILP CRUSTACEANmember 2+ 4 4append 2+1 4 4delete 2+1 - 3reverseConcat 2+ 4 -reverseAppend 3+ - 3last 2+1 - 3split 2+1 - 6Table 2: Learning list processing predicatesFor WiM , the number before the + sign means a number of positive examples in the initial exampleset. 1 after the + signs that one assumption was added to the initial example set. We need at worstas many examples as CRUSTACEAN and less then or FILP . The initial example set need not beso carefully choosen like this one for FILP . The number of queries to a teacher is less than for MIS[27]. It would be interesting to compare WiM with the BMWk methodology [23]. WiM doesn'tneed to have examples on the same computational chain. WiM , too, needs less examples for simplelist processing predicates. However, for more complex tasks it has not been veri�ed.One can argue that the used bias in WiM is too strong. It is true that the upper bound of headargument depth plays the role. However, it is just an upper bound. As Markus+ uses shiftingof bias, starting with the simplest head of a clause, a high value of this bound implies only a lesse�cient computation, (e.g. after member(X,[X|Z] :- true, the clause member(X,[Y,X|Z]) :- trueis generated, which is unacceptable because of the absence of recursion in the found solution). Actualy,a bias of WiM is not stronger than that of CRUSTACEAN .Current research is focusing on:� a synthesis of more complex predicates;� multiple predicate synthesis where assumptions on di�erent predicates appear;� abducing more complex assumptions, eg. non-recursive clauses.We intend to exploit integrity constraints [11] as a generalization of negative examples, and incompletespeci�cations like properties [16, 15]), as well as algorithm design knowledge (namely the second-orderschema to guide synthesis) and domain knowledge.

7 ConclusionWe described three approaches to a logic program synthesis { schema-driven synthesis, programtransformation, and assumption-based interactive synthesis { and argued that more attention shouldbe payed to them in an ILP research on automatic programming. The schema-driven synthesis seemsto be overcomming the most of existing ILP synthesizers by its capability to learn more complexpredicates, even if some of background knowledge predicates are unknown. Existence of powerfulltransformation techniques could allow us to focus on a synthesis of simple programs, which can laterbe transformed into more e�cient ones. Di�erent kinds of human-computer interaction can overcomesome of program synthesis drawbacks in a natural way. We believe that joining these three approacheswill allow us to match the task of automatic logic programming better.AcknowledgmentsWe would like to thank Norbert Fuchs for lot of discussion and for his comments on the earlier versionof this paper. Thanks of the second author are due to Al��pio Jorge for fruitful discussions. Thanksto those two of three referees who realy read the previous version of this contribution.References[1] Deville Y. and Lau K.-K.: Logic program synthesis: A survey. Special Volume on Ten Years ofLogic Programming, Journal of Logic Programming, 1994.[2] Aha D.W., Lapointe S., Ling C.X., and Matwin S.: Inverting implication with small trainingsets. In Bergadano F., De Raedt L. (eds): Proc. of ECML'94, Catania, pages 31-48. LNCS 784,Springer Verlag, 1994.[3] Angluin D.: Queries and concept learning. Machine Learning 2(4):319{342, April 1988.[4] Bergadano F. and Gunetti D.: An interactive system to learn functional logic programs. Proc.of IJCAI'93, Chamb�ery, pp. 1044{1045.[5] Biermann A.W.: Dealing with search. In Biermann A.W., Guiho G., and Kodrato� Y. (eds):Automatic Program Construction Techniques, pp. 375{392. Macmillan, 1984.[6] Biermann A.W.: Automatic programming. In Shapiro S.C. (ed.): Encyclopedia of Arti�cialIntelligence, pp. 59{83. John Wiley, 1992. (Second, extended edition.)[7] Bondarenko A., Toni F., and Kowalski R.A.: An assumption-based framework for non-monotonicreasoning. In Perreira L.M. and Nerode A. (eds): Proc. of the 2nd Int'l Workshop on LogicProgramming and Non-Monotonic Reasoning, Lisbon, pp. 171{189. MIT Press, 1993.[8] Br�azdil P. and Jorge A.M.: Learning by re�ning algorithm sketches. To appear in Proc. ofECAI'94, Amsterdam, 1994.[9] Bruynooghe M. and de Schreye D.: Some thoughts on the role of examples in program transfor-mations and its relevance for EBL. In K.P. Jantke (ed): Proc. of the AII'89. LNCS 397:60{77,Springer-Verlag, 1989.[10] Burstall R.M. and Darlington J.: A transformation system for developing recursive programs.Journal of the ACM 24:44{67, 1977.[11] De Raedt L.: Interactive Theory Revision: An Inductive Logic Programming Approach.AcademicPress, 1992.[12] Dershowitz N. and Lee Y.-J.: Logical debugging. Journal of Symbolic Computation 15(5-6):745{773, May/June 1993.[13] Deville Y.: Logic Programming: Systematic Program Development. Addison Wesley, 1990.[14] Drabent W., Nadjm-Tehrani S., and Maluszynski J.: Algorithmic debugging with assertions. In:H. Abramson and M.H. Rogers (eds): Meta-Programming in Logic Programming: Proceedingsof META'88, pp. 501{521. MIT Press, 1988.[15] Flener P.: Logic Algorithm Synthesis from Examples and Properties. Ph.D. Thesis, Universit�eCatholique de Louvain, Louvain-la-Neuve (Belgium), June 1993. To be published by KluwerAcademic Publishers, 1994.[16] Flener P. and Deville Y.: Logic program synthesis from incomplete speci�cations. Journal ofSymbolic Computation, 15(5{6):775{805, May/June 1993.[17] Flener P. and Popel��nsk�y L.: On the use of inductive reasoning in program synthesis: Preju-dice and prospects. To appear in: Fribourg F. and Turini F. (eds): Proc. of LOPSTR'94 andMETA'94, Pisa. LNCS, Springer-Verlag, 1994.

[18] Hagiya M.: Programming by example and proving by example using higher-order uni�cation.In: M.E. Stickel (ed): Proc. of CADE'90. LNCS 449:588{602, Springer-Verlag, 1990.[19] Grobelnik M.: Markus: An optimized Model Inference System. Proc. of the ECAI'92 Workshopon Logical Approaches to Machine Learning, Vienna, 1992.[20] Grobenik M.: Induction of Prolog programs with Markus. In Deville Y.(ed.): Proceedings ofLOPSTR'93, pp.57-63. Workshops in Computing Series, Springer Verlag, 1994.[21] Grobelnik M.: Declarative Bias in Markus ILP system.Working notes of the ECML'94 Workshopon Declarative Bias, Catania, 1994. (chairperson Rouveirol C.)[22] Kakas A.C., Kowalski R.A., and Toni F.: Abductive logic programming. Journal of Logic andComputation 2(6):719{770, 1993.[23] Le Blanc G.: BMWk Revisited. In Bergadano F., De Raedt L. (eds): Proc. of ECML'94, Catania,pages 183-197. LNCS 784, Springer Verlag, 1994.[24] Ling X.C.: Inductive learning from good examples. In Proc. of IJCAI'91, Sydney, pages 751-756,Morgan Kaufmann, 1991.[25] Muggleton S. (ed): Inductive Logic Programming. Volume APIC-38, Academic Press, 1992.[26] Popel��nsk�y L.: Interactive assumption-based learning. TR Dept. of Comp. Sci., Masaryk Univer-sity, Brno, 1994.[27] Shapiro Y.: Algorithmic Program Debugging.MIT Press, 1983.[28] Smith D.R.: The synthesis of LISP programs from examples: A survey. In: Biermann A.W.,Guiho G., and Kodrato� Y. (eds): Automatic Program Construction Techniques, pages 307{324.Macmillan, 1984.[29] Smith D.R.: Top-down synthesis of divide-and-conquer algorithms. Arti�cial Intelligence27(1):43{96, 1985.[30] Smith D.R.: KIDS: A semi-automatic program development system. IEEE Transactions onSoftware Engineering 16(9):1024{1043, September 1990.[31] �St�ep�ankov�a O. and �St�ep�anek P.: Transformations of logic programs. Journal of Logic Program-ming 1:489{501, 1984.[32] �St�ep�ankov�a O. and �St�ep�anek P.: Developing logic programs: Computing through normalizing.Proc. of Computer Science and Logic LICS'87, Karlsruhe. LNCS 329:304{321, Springer-Verlag,1988.[33] Tamaki H., Sato T.: Unfold/fold Transformations of Logic Programs. In Proc. of the 2nd Int.Logic Programming Conference ICLP'84, Uppsala 1984, S.A. Tarnlund (ed.), pp.127-138[34] Z��dek J.: Development of Logic Programs. MS Thesis, CTU Prague, 1994.

