
A New Delarative Bias for ILP:Constrution ModesEsra Erdem1 and Pierre Flener21 Dept of Computer Sienes 2 Dept of Information SieneThe University of Texas at Austin Uppsala University, Box 513Austin, TX 78712, USA S{751 20 Uppsala, Swedenesra�s.utexas.edu Pierre.Flener�dis.uu.seAbstrat. Indutive logi programming (ILP) systems use some delar-ative bias to onstrain the hypothesis spae. We introdue a new delara-tive bias, alled onstrution modes, apturing the required dataow of arelation, and design a language for expressing suh onstrution modes.Their semantis is aptured via the notion of admissibility. Experimentswith the ILP systems synapse and dialogs have established the use-fulness of onstrution modes. Sine the new bias is orthogonal to theexisting searh biases, it an be used in onjuntion with the existingbiases.1 IntrodutionIn indutive logi programming (ILP) [10℄, a hypothesis H is to be inferredfrom assumed-to-be-inomplete information (or: evidene) E and bakgroundknowledge B suh that B ^H j= E, where H , E, B are logi programs. Variousmethods are applied to onstrain the hypothesis spae. A relevant method isthe provision of some delarative bias, whih is any form of additional inputinformation that restrits the hypothesis spae (see [11℄ for a survey). One of thekinds of delarative bias that urrent ILP systems use is searh bias, determiningwhih part of the hypothesis spae is searhed, and how it is searhed. Examplesare input mode, type, and multipliity delarations; they are ombined into thesingle onept of mode in the ILP system progol [9℄. Consider, for example,the progol modes for the inferene of a hypothesis/program for append:modeh(1; append(+list;+list;�list))modeh(�; append(�list;�list;+list))modeb(1; append(+list;+list;�list))modeb(�; append(�list;�list;+list))modeb(1;+list = �integer � �list)modeb(1;�list = +integer �+list) (Mappend)Here, list denotes a type. The expression +list denotes a ground termof type list, whereas �list denotes a variable of type list. Then,append(+list;+list;�list) expresses that atoms of relation append have three

parameters, where the �rst two parameters may be ground lists and the thirdparameter a list variable. The �rst line above expresses that suh atoms may ap-pear in the heads of hypothesis lauses, and that there is one orret instane ofsuh atoms in the intended interpretation of append. The seond line expressesthat atoms of relation append, where the �rst two parameters are variable listsand the third parameter a ground list, may also appear in the heads of hy-pothesis lauses, and that there is an inde�nite number of orret instanes ofsuh atoms. Similarly, the third and fourth lines indiate the atoms of relationappend that may appear in the bodies of hypothesis lauses. The expression+list = �integer � �list says that equality (=) may our in atoms of the formL = H �T , where L is a ground list, H an integer variable, and T a list variable.The �fth and sixth lines express that equality may only appear in the bodies ofhypothesis lauses, in atoms of the form L = H �T , and that there is one orretinstane if either L or both H and T are ground at all-time, with the otherparameters being variables then.Suh mode delarations drastially redue the hypothesis spae, as onlylauses satisfying them will be onsidered. However, suh mode delarations areoperational, as they only apture run-time properties of the atoms in lauses. In-deed, they do not apture the syntati and semanti stati relationships amongthe formal parameters of the relation for whih a program is to be inferred.We introdue a new searh bias, alled onstrution modes, that apturesthese stati relationships in a delarative way.For instane, onsider the following program:ompose(H;V; Y) odd(H); Y = Vompose(H;V; Y) even(H); Y = H � V (Pompose)In both lauses, the �rst two parameters are mandatorily used to onstrut thethird parameter. This is represented by the onstrution mode:ompose(ons; ons; res)where ons denotes the parameters used to onstrut the parameter denoted byres.A onstrution mode does not only apture some information about the syn-tati onstrution of the parameters, but also aptures some information abouttheir semanti onstrution. For instane, in the �rst lause of Pompose, param-eter Y is equal to V provided H is odd. Here, V partiipates syntatially inonstruting Y , whereas H partiipates semantially in onstruting Y . In theseond lause, bothH and V partiipate syntatially in onstruting Y , whereasH also partiipates semantially. The information about the syntati and se-manti onstrution of parameters is aptured by the well-de�ned semantis ofonstrution modes via the onept of \admissibility."Besides, a onstrution mode gives information not only about onstru-tion, but also about de-onstrution (or: de-struturing). Consider the relationintersetion, where intersetion(X;Y; Z) i� list Z is the intersetion of lists X2

and Y . Here the �rst two parameters of intersetion(X;Y; Z) are de-onstrutedinto Z. This is represented by the onstrution mode:intersetion(des; des; res)where des denotes the parameters that are de-strutured into the parameterdenoted by res.Note that what is meant by (de-)onstrution is thus not operational butstati: a onstrution mode aptures the intrinsi relationship between the pa-rameters, independently of any run-time onsiderations. Informally, a onstru-tion mode will thus state whih parameters are (de-)onstruted from whihother parameters, and also expresses whether suh (de-)onstrution is manda-tory or optional. The onstrution modes apture the required dataow of eahinvolved relation. Among other things, this is how onstrution modes di�erfrom \relational lih�es" of [13℄. Relational lihes apture the dataow amongthe atoms of a lause whereas onstrution modes apture the dataow amongthe parameters of an atom.It is important to note that, under some onditions, the onept of onstru-tion modes introdued in this paper follows from our earlier work presented in [2℄;the onept of onstrution modes introdued in this paper is more general.Organization of this Paper. This paper is organized as follows. In Setion 2, weformally de�ne our new notion of onstrution mode, and we design a languagefor expressing suh onstrution modes. In Setion 3, we de�ne admissibilitywrt a onstrution mode, whih aptures what it means for a de�nite lause tosatisfy the onstrution modes given for the relations appearing in it. Then, inSetion 4, we show how onstrution modes have been suessfully used in ILPsystems. Finally, in Setion 5, we review related work, outline future work, andonlude.Notation. In expressions (i.e., literals or terms) appearing in logi programsor spei�ations, symbols starting with upperase letters designate variables,whereas all other symbols designate either funtions or relations, the distintionbeing always lear from ontext. All these symbols may be subsripted withnatural numbers or mathematial variables (ranging over natural numbers). Un-quanti�ed variables are assumed to be universally quanti�ed over the entireformula in whih they our. The empty list nil is also denoted by [℄, and thenon-empty list H �T of head H and tail(-list) T (using the binary in�x type on-strutor �) is also denoted by [H jT ℄. Similarly, the �xed-length listX1 �: : :�Xn �nilis also denoted by [X1; : : : ; Xn℄. When we want (or need) to group several termsinto a single term, we represent this as a tuple, using angled brakets. For in-stane, hf(a; 22); g(X)i is a term representing the ouple built of the two termsf(a; 22) and g(X). 3

2 Constrution Modes: A New Delarative BiasInformally, a onstrution mode for a relation states whih parameters are (de-)onstruted from whih other parameters, and also expresses whether suh (de-)onstrution is mandatory or optional. For instane, in append atoms, the thirdparameter is mandatorily onstruted from the �rst two parameters. Contrary toinput modes, there is no notion of di�erent usages of a relation aording to on-strution modes. Indeed, onstrution modes are a stati notion, whereas inputmodes are an operational notion. However, a onstrution mode may still not beunique for a given relation, beause there may be several ways of expressing itsdataow. For instane, in reverse atoms, the seond parameter is mandatorilyonstruted from the �rst parameter, or vie-versa. After introduing furthernotation used, we inrementally de�ne the notion of onstrution mode.2.1 Syntati ConstrutionLet us �rst de�ne some notions of syntati onstrution.De�nition 2.1 (Leaves and verties of a term)The leaves of a term t, denoted by leaves(t), are the set of variables and funtionsappearing in t.The verties of a term t, denoted by verties(t), are the multi-set of variablesand funtions appearing in t.For instane, leaves([1; B; 1℄) = f1; B; �; nilg, and leaves([ajT ℄) = fa; �; Tg =verties([ajT ℄), whereas verties([1; B; 1℄) = f1; 1; B; �; �; �; nilg.De�nition 2.2 (Syntati onstrution)Term s is syntatially obtained from term t if leaves(t) � leaves(s). We denotethis by t � s.Term s syntatially ontains term t if verties(t) v verties(s), where v de-notes multi-set inlusion. We denote this by t v s.For instane, ha; b; i is syntatially obtained from ha; b; bi, beauseleaves(ha; b; bi) = fa; bg � fa; b; g = leaves(ha; b; i). However, ha; b; i does notsyntatially ontain ha; b; bi, beause verties(ha; b; bi) = fa; b; bg 6v fa; b; g =verties(ha; b; i).For atoms of a given relation, one an express syntati onstrution on-straints between their parameters: this will be one of the roles of onstrutionmodes (de�ned below).The reason why we onsider funtions of arity higher than 0 (rather thanjust onstants) in leaves and verties is that we want to ahieve fats suh asf(a; b) 6v g(a; b). Similarly, the reason why we sometimes onsider multi-sets(rather than just sets) is that we want to ahieve that [a; b; b℄ 6v [a; b℄. Finally,note that the two notions of syntati onstrution are muh more general thanthe sub-term (i.e., sub-tree) notion, and this additional generality is ruial inmany ases. For instane, in delete(d; [g; e; d℄; [g; e℄), the verties of [g; e℄ are asub-multi-set of the verties of [g; e; d℄, but [g; e℄ is not a sub-tree of [g; e; d℄.4

2.2 Semanti ConstrutionTo apture more than just syntati onstrution, whih takes plae inside asingle atom, we have to extend this notion to semanti onstrution, over de�-nite lauses. Indeed, body atoms may perform some omputations of semantionstrution of some parameters in the head atom, using relations other thanequality. Suh atoms annot be partially evaluated into the head of the lause,unlike equality atoms. For instane, in min(X;Y; Z) X � Y; Z = X , one anpartially evaluate Z = X into the head min(X;Y; Z), yielding min(X;Y;X) X � Y , but one then annot further partially evaluateX � Y intomin(X;Y;X).Also, parameter Y does not syntatially ontribute to onstruting resultX (thethird parameter), but it does so semantially (via X � Y).2.3 Constrution ModesWe an now introdue our new onept of onstrution modes.De�nition 2.3 (Constrution modes)Let r be a relation of arity n, and the mi (1 � i � n) be non-empty subsets ofthe set fons1; : : : ; onsn; des1; : : : ; desn;may1; : : : ;mayn;may�; res1; : : : ; resngsuh that:{ for every i,j in 1::n, we have that resj is in mi i� there is some k 6= i in 1::nsuh that onsj 2 mk or desj 2 mk or mayj 2 mk;{ for every j in 1::n, there is at most one i in 1::n suh that resj 2 mi.Then r(m1; : : : ;mn) is a onstrution mode for relation r, and mi is a onstru-tion mode for the ith parameter of r.For instane, ompose(fons1g; fons1g; fres1g) is a onstrution mode,meant to express that the third parameter is a result parameterthat must be onstruted from the �rst two parameters. Contrast thiswith the progol modes modeh(1; ompose(+integer;+list;�list)) andmodeh(1; ompose(�integer;�list;+list)), to see that ompletely di�erentinformation is onveyed. For onveniene, we often drop the indexes jof mayj , onsj , desj , resj when the onstrution modes for all param-eters have the same index. Similarly, eah singleton onstrution modefmg for a parameter will often be denoted by m. So the onstru-tion mode above an also be written as ompose(ons; ons; res). Also,unionInter(fons1; des2g; fons1; des2g; res1; res2) is a onstrution mode forunionInter(A;B;U; I) (whih holds i� lists U and I are the union and inter-setion, respetively, of lists A and B), expressing that result U is onstrutedfrom A and B, whereas result I is de-onstruted from A and B. Note thatr(may1; ons1) is not a onstrution mode, beause no parameter is being desig-nated as the result of onstrution from the two given parameters. Also, r(res1)is not a onstrution mode, beause it does not indiate from what parame-ters the given result parameter must or may be (de-)onstruted. Moreover,5

...

...

may 2 may

may

n

*

1 may

cons cons consdes des des1 1 2 2 n nFig. 1. Partial generality order on parameter modesr(ons1; res1; res1) is not a onstrution mode, beause a result parameter an-not possibly be in two plaes at the same time. Finally, r(may�;may�) is aonstrution mode.Sine we do not further onsider other modes in the ore of this paper, weoften simply speak about modes here.In a �rst approximation (and for syntati onstrution only), the intendedsemantis of a onstrution mode is as follows:{ mode resj means the parameter in the orresponding position is result pa-rameter number j, to be (de-)onstruted from other (non-result) parame-ters;{ mode onsj means all of the verties of the parameter in the orrespondingposition are mandatory in syntatially onstruting the parameter in theorresponding position of resj ;{ mode desj means some of the verties of the parameter in the orrespondingposition are mandatory in syntatially onstruting the parameter in theorresponding position of resj (hene the parameter is de-onstruted intothe result);{ modemayj means the parameter in the orresponding position is optional forsyntatially (de-)onstruting the parameter in the orresponding positionof resj ;{ modemay� means the parameter in the orresponding position is optional forsyntatially (de-)onstruting any of the parameters in the orrespondingpositions of all resj .We will re�ne (for semanti onstrution) and formalize all this in the following,via the onept of admissibility (in Setion 3 below).Note that mode may� generalizes every mayj , and that eah mayj itselfgeneralizes onsj and desj . Figure 1 illustrates this partial generality order. Sothe mode reverse(ons1; res1) ould be rewritten as reverse(may1; res1), butthe ensuing loss of knowledge might damage the preision of any omputations6

based on modes. It is thus always preferable to use the least general onstrutionmode, aording to the partial order of the Figure 1.A mode may not be unique, though: for instane, reverse(res1; ons1) isan alternative mode to reverse(ons1; res1). However, this does not mean thatthere are several possible usages of the reverse relation aording to its onstru-tion modes: ontrary to the operational input modes, suh as reverse(+;�) orreverse(�;+), whih delare the possible usages of a program for a relation,onstrution modes are a stati notion and only delare the dataow intrinsito the relation, independently of any usage, even if there may well be severaldi�erent ways of stating it.Some relations do not have any result parameters. For instane, odd(N) andX � Y are just tests; this is aommodated here by setting their modes toodd(may�) and � (may�;may�).The de�nition of onstrution modes itself an be further generalized, intro-duing for instane a mode nd (for: neither ons nor des), expressing that theparameter in the orresponding position may not be used for (de-)onstrutingany of the result parameters. We do not onsider suh extensions in this intro-dutory paper, but the orresponding generalizations are straightforward. Ourobjetive here is merely to establish some simple onepts. The key issue is thatmodes an be pre-determined for any relation, given enough knowledge aboutit. It is important to note that the onept of onstrution modes intro-dued in this paper signi�antly extends the one presented in [2℄. For in-stane, in [2℄, sine the onstrution mode mustj is used instead of onsjand desj , and sine the modes for the parameters of a relation an be oneof fmustj;mayj ; resjg, the onstrution mode for the relation unionInter be-omes unionInter(may;may; res; res). Note that this does not give as useful in-formation as unionInter(fons1; des2g; fons1; des2g; res1; res2) does. It is alsoimportant to note that the onept of admissibility is extended in this paper aswell. This is explained in the next setion.3 AdmissibilityIn a �rst version, the onept of admissibility aptures what it means for anatom to satisfy a onstrution mode for its relation. After re�ning a de�nitionfor this onept, based purely on syntati onstrution, we will generalize itand de�ne what it means for a de�nite lause to satisfy a onstrution modefor the relation in its head, and add onsiderations of semanti onstrution. Weonlude this setion by disussing some properties of admissibility.3.1 Syntati Admissibility of an Atom wrt a Constrution ModeLet r(m1; : : : ;mn) be a mode m for a relation r of arity n. Without loss ofgenerality, let the indexes appearing in m run from 1 to k inlusive, wherek designates the number of result parameters in m. Let r(t1; : : : ; tn) be the7

onsidered atom. For every j in 1::k, let Consj = hti j onsj 2 mii. Similarly forMayj , May�, Resj . Also, for every j in 1::k, for every i in 1::n, let Desij = ti ifdesj 2 mi, and Desij = undefined otherwise.For instane, let the onstrution mode ber(may�; fons1; des2g; fons1; des2g; res1; res2) and let the atom ber(1; [a℄; b; [a; b℄; hi). We then have that n = 5, k = 2, Cons1 = h[a℄; bi,Cons2 = hi, Desi1 = undefined for all i in 1::5, Des22 = [a℄, Des32 = b,Desi2 = undefined for all i in f1; 4; 5g, May1 = May2 = hi, May� = h1i,Res1 = h[a; b℄i, and Res2 = hhii.Aording to the given informal approximate semantis of modes, for admis-sibility of atom r(t1; : : : ; tn) wrt mode m, we �rst need to express that everyparameter in the orresponding position of onsj is mandatory in syntatiallyonstruting the parameter in the orresponding position of resj . Here, we shouldthus use syntati ontainment as atual instane of syntati onstrution. For-mally: 81 � j � k : Consj v Resj (1)For instane, this is the ase for the r atom and mode above. Note that Consjgroups together all parameters with mode onsj , so that this single-iteratedondition suÆes, beause eah resj parameter must be onstruted from all itsonsj parameters. (If the union of some sets is a subset of a given set S, thenthese sets are themselves subsets of S.) Also note that k may be 0, suh as in� (may�;may�); ondition (1) then trivially holds.Similarly, we need to express that every parameter in the orresponding po-sition of desj is mandatorily syntatially de-onstruted into the parameterin the orresponding position of resj . In other words, the desj parameters, ifany, are mandatorily syntatially onstruted from at least the resj parameter.Formally:81 � j � k : 81 � i � n : Desij 6= undefined! Resj v Desij (2)For instane, this is the ase for the r atom and mode above. Note that we herehave to write a double-iterated ondition, beause eah desj parameter mustindividually be onstruted from the resj parameter. (If a set S is a subset of aunion of sets, then S is not neessarily a subset of eah of these sets.)Last, we need to express that every parameter in the orresponding posi-tion of mayj is optional for syntatially (de-)onstruting the parameter in theorresponding position of resj , and that every parameter in the orrespond-ing position of may� is optional for syntatially (de-)onstruting any of theparameters in the orresponding positions of all resj . By themselves, these re-quirements lead to no formula, beause of the optional nature of this syntati(de-)onstrution. But we an re�ne the given approximate semantis by alsorequiring that the parameter in the orresponding position of resj an only besyntatially onstruted from the parameters in the orresponding positions ofmayj , may�, onsj . Here, we should use \is syntatially obtained from" as a-tual instane of syntati onstrution, beause syntati ontainment might be8

too strong in some ases (suh as the example below). Formally:81 � j � k : Resj � hMayj ;May�; Consji (3')So no leaves may be \invented" when building eah Resj . For instane, this isthe ase for the r atom and mode above. Note that this relationship does nothold when using syntati ontainment (v) instead of �.However, this requirement is a bit too strong, as new leaves do some-times appear in parameters with mode resj . Indeed, onstrutors of the in-dutively de�ned type of suh a parameter may appear: for instane, on-stant 0 and unary funtor s are type onstrutors for Peano numbers,whereas onstant nil and binary funtor � are type onstrutors for lists.The atom addP lateau(a; [℄; [a; s(0)℄) does not satisfy ondition (3') foraddP lateau(may1; ons1; res1), beause 0 and s are \invented" by the parame-ter with mode res1. Sine suh onstrutors annot really be onsidered new ifthe indutively de�ned type is known, we should add them to the right-hand sideof (3'). Sine we do not know how many times they may be \invented," we addthem one and use leaf set inlusion (�) rather than vertex multiset inlusion(v). Hene:81 � j � k : Resj � hMayj ;May�; Consj ; nil; �; 0; s; : : : i (3)We thus here do not allow non-type-onstrutor leaves to be invented by resjparameters, and leave suh extensions as future work.Hene the following overall de�nition:De�nition 3.1 (Atom admissibility)An atom r(t1; : : : ; tn) is admissible wrt a mode m for r if onditions (1), (2), (3)are satis�ed.This onludes the re�nement of a de�nition of syntati atom admissibility.Let us now swith our attention to semanti lause admissibility.3.2 Semanti Admissibility of a Clause wrt a Constrution ModeLet r(t1; : : : ; tn) B be a de�nite lause, where B is a onjuntion of atoms,alled the body of the lause, and r(t1; : : : ; tn) is alled the head of the lause.It is ruial that body B does not ontain any equality atoms, beause oth-erwise insuÆient struture would be in the parameters in the head. For in-stane, instead of insert(X; [Y jL℄; R) X � Y;R = [X;Y jL℄, we preferinsert(X; [Y jL℄; [X;Y jL℄) X � Y .De�nition 3.2 (Proper and reonilable lauses)We refer to an equality-free de�nite lause as a proper lause.Two proper lauses are reonilable if they de�ne the same relation.9

For de�ning the semanti admissibility of a proper lause wrt a onstrutionmode, we have to distinguish between its head atom and its body atoms.For the head atom, we �rst want its ons parameters to be atually usedin onstruting the result parameters. Condition (1) only veri�es syntati on-strution, but some of the verties of the ons parameters might only be usedin the body B so as to ahieve semanti onstrution. So ondition (1) must beadapted as follows: 81 � j � k : Consj v hResj ;B0i (4)where B0 is a tuple built of the atoms (seen as terms) of B. Similarly, we wantthe des parameters to be atually de-onstruted into the result parameters.Condition (2) only veri�es syntati de-onstrution, but some of the verties ofthe des parameters might only be used in the body B so as to ahieve semantide-onstrution. So ondition (2) must be adapted as follows:81 � j � k : 81 � i � n : Desij 6= undefined! Resj v hDesij ;B0i (5)Last, we want the result parameters to be onstruted only from the ons andmay parameters, as well as from the prede�ned type onstrutors. Condition(3) only veri�es syntati onstrution, but some of the leaves of the resultparameters might only be omputed in the body B, by semanti onstrutionthus. So ondition (3) must be adapted as follows:81 � j � k : Resj � hMayj ;May�; Consj ;B0; nil; �; 0; s; : : : i (6)For instane, the head of the lause min(X;Y;X) X � Y satis�es ondi-tions (4), (5), (6) for min(ons1; ons1; res1), but not ondition (1), beause Ydoes not syntatially ontribute to onstruting result X , though it does sosemantially (through the test X � Y), as testi�ed by the fat that (4) holds.Conditions (4), (5), (6) an ertainly be re�ned even further, in many di�er-ent ways, but we leave this for future work. Indeed, a �ne balane between theexpressiveness of onstrution modes (i.e., the preision of the approximation ofthe intended relation that they ahieve) and the speed of veri�ation of admissi-bility has to be struk. The urrent de�nitions have evolved from a few years ofexperimentation and have been suessfully deployed in two prototype systems(see Setion 4).For the body atoms now, other than their partiipation in onditions (4), (5),(6) above, it is neessary to verify whether they are eah admissible (aordingto De�nition 3.1) wrt their own onstrution modes. This only establishes theirsyntati admissibility, but there is nothing else that an be done sine they arenot the head atoms of proper lauses.Now we an �nally propose the following de�nition of lause admissibility:De�nition 3.3 (Clause admissibility and lause set admissibility)A proper lause r(t1; : : : ; tn) B is admissible wrt a mode m for r if onditions(4), (5), (6) are satis�ed, and if the atoms of B are eah admissible wrt theirown modes.A set of reonilable lauses is admissible wrt a mode m for the relation in theirheads if eah of its lauses is admissible wrt m.10

It is important to note that the onept of admissibility introdued above ismore general than the one presented in [2℄ in that it not only aptures a moregeneral de�nition of the onstrution modes but also onsiders the funtors sand : as invented parameters besides the onstants nil and 0.3.3 Properties of AdmissibilityAdmissibility has some interesting properties, as established next. They onlyhold for (sets of) proper lauses whose bodies only involve atoms for test relations(whose modes only involve the may� mode), so that their body atoms are alltrivially admissible.In the following, �-subsumption [12℄ designates a partial generality orderbetween lauses (by de�nition, a lause g �-subsumes a lause s if there exists asubstitution � suh that g� � s, assuming lauses are seen as literal sets), andlg�(C) denotes the least general lause, under �-subsumption, that �-subsumesall lauses in lause-set C.Lemma 3.1 (Preservation of admissibility under �-subsumption)If proper lause is admissible wrt a mode m for the relation in its head, and if �-subsumes proper lause d, then d is also admissible wrt m.Proof. Let � be a witness substitution under whih �-subsumes d, i.e., � � d.Supposing has the struture r(t) B, for some tuple t and body B, this meansthat d has the struture r(t)� B�;D, for some atom onjuntion D. Sine isadmissible wrt mode m for r, the lause � is also admissible wrt m, by the ruleof universal instantiation. Sine d is known to be a proper lause and sine itsonly di�erene with � is D, the sets in the right-hand sides of onditions (4),(5), (6) an only beome larger, whereas their left-hand side sets are unhanged;so the truth of these onditions is maintained for d. So we an onlude that dis also admissible wrt m. �We an now prove a theorem establishing a suÆient riterion for deidingwhether a lause set is admissible or not.Theorem 3.1 (SuÆient riterion for lause set admissibility)Let C be a non-empty set of reonilable lauses, and let m be a mode for therelation in their heads. If lg�(C) is admissible wrt m, then C is admissible wrtm.Proof. Let lg�(C) be admissible wrtm. Sine C is made of reonilable lauses forr, it follows from the least generalization, under �-subsumption, of two lausesthat lg�(C) itself is a proper lause for r. Also, by de�nition, lg�(C) �-subsumes alllauses in C. So let d be an arbitrary lause in C; we have that lg�(C) �-subsumesd. By Lemma 3.1, d is admissible wrt m. Sine d was hosen arbitrarily, we anonlude that all lauses of C are admissible wrt m, i.e., that C is admissible wrtm. �11

The onverse of this theorem is not true. For instane, the setinsert(1; [2℄; [1; 2℄) insert(4; [3℄; [3; 4℄) (Pinsert)is admissible wrt insert(ons; ons; res), but its least generalization, under �-subsumption, namely insert(X; [Y ℄; [K;M ℄) , is not admissible wrt thatmode.Suh properties of admissibilitymay be exploited in ILP systems that featureonstrution modes. The sample properties above ould for instane be exploitedif suh an ILP system is based on �-subsumption.4 Appliations of Constrution ModesWe laim that onstrution modes may be suessfully used as a delarative(searh) bias in any ILP system, in addition to any other biases already usedthere, beause of the orthogonality and thus omplementarity of our new bias.We have experimented with the usage of a simpler version of onstrutionmodes in two (related) ILP systems, namely synapse [5, 3℄ and dialogs [4℄.Both are shema-guided ILP systems dediated to the inferene of reursive(logi) programs, and have grown out of the tradition pioneered (in funtionalprogramming) by the thesys system [16℄ and its generalizationBMWk [8℄. Theresults of our experiments with synapse and dialogs, as also reported in [2℄,established that, with the onstrution modes, the resulting programs were moreaurate. After explaining what \shema-guided ILP system" means, we showhow onstrution modes an be usefully deployed on suh systems.A hypothesis/program shema [7℄ is a template program �xing the dataowand ontrol-ow of instane programs, plus a set of onstraints (within a bak-ground theory, alled the framework) on how the plaeholders of the template anbe instantiated. For instane, among the many possible forms of logi programs,there are the divide-and-onquer programs with one reursive all. They workas follows: if a distinguished formal parameter, alled the indution parameter,say X , has a minimal value, then one an diretly solve for the orrespond-ing other formal parameter, alled the result parameter, say Y ; otherwise, X isdeomposed into a smaller value T (aording to a well-founded order �) bysplitting o� a quantity H , a sub-result V orresponding to T is omputed by areursive all, and an overall result Y is omposed from H and V . Formally, thisproblem-independent dataow and ontrol-ow an be aptured in the followingtemplate, or open program, for r:r(X;Y) minimal(X); solve(X;Y)r(X;Y) :minimal(X); deompose(X;H; T); r(T; V); ompose(H;V; Y)(d)12

The plae-holders, or open relations, are minimal, solve, deompose, andompose. The involved relations have the following formal spei�ations:ir(X)! (r(X;Y)$ or(X;Y)) (Sr)ir(X)! (minimal(X)$:ide(X)) (Smin)ir(X) ^ :ide(X)! (solve(X;Y)$ or(X;Y)) (Ssolve)ide(X)! (deompose(X;H; T)$ ode(X;H; T)) (Sde)ode(X;H; T) ^ or(T; V)! (ompose(H;V; Y)$ or(X;Y)) (Somp)where the newly introdued symbols ir, or, ide, ode must satisfy the followingonstraints: ide(X)! 9H;T : ode(X;H; T) (C1)ide(X) ^ ode(X;H; T)! ir(T) ^ T � X (C2)well founded order(�) (C3)Spei�ation Sr exhibits ir and or as the input and output onditions of r, whilespei�ation Sde exhibits ide and ode as the input and output onditions ofdeompose. Note that the input and output onditions of the remaining openrelations are only expressed in terms of ir, ide, or, and ode. The three onstraintsrestrit deompose to sueed at least one if its input ondition (on X) holds,and then to yield a value T that satis�es the input ondition of r (so that areursive all to r is legal) and that is smaller than X aording to �, whihmust be a well-founded relation (so that reursion terminates). Program d isorret wrt spei�ation Sr (subjet to the other spei�ations), within the (hereomitted) framework.Now, a losed program for delOdds, where delOdds(L;R) holds i� R isinteger-list L without its odd elements, is an instane of the shema above underthe substitution minimal(X) X = [℄solve(X;Y) Y = [℄deompose(X;H; T) X = [HdjT ℄; H = [Hd℄ompose(H;V; Y) odd(H); Y = Vompose(H;V; Y) even(H); Y = [H jV ℄ (�)This substitution aptures the problem-dependent omputations of a delOddsprogram.Shema-guided ILP systems, suh as the ones mentioned above, use a hy-pothesis/program shema as delarative (language) bias [11℄. The shema is of-ten restrited to its template, with the spei�ations, onstraints, and frameworkbeing omitted thus. Suh systems are often dediated to the inferene of reursiveprograms, and even have some hardwired divide-and-onquer shema (a notableexeption being dialogs, whih is parameterized on shemas). An up-to-dateoverview of ILP systems, whether shema-guided or not, that are dediated tothe inferene of reursive logi programs is in [6℄, together with a omparison onthis task with seleted general-purpose ILP systems. Shema-guided ILP systemsdediated to the inferene of reursive programs are instanes of the following13

(informal) program template, whih infers a program Pr for relation r givenevidene Er for it:1. Shema-biased reation of an open reursive programOr that has two lausesfor r, namely a non-reursive one for a base ase and a reursive one for astep ase. The reursive lause for r refers to an open relation q that issupposed to ombine the partial results (stemming from the reursive alls)into the overall results.2. Abdutive generation of evidene Eq for q by running the open program Oron evidene Er.3. Indutive generalization of the abdued positive evidene E+q and analysis ofthe resulting losed program Pq for q: if aeptable, exit; otherwise, onje-ture neessary prediate invention [14℄ and reursively invoke the system onthe abdued evidene Eq , yielding another losed program Pq for q. In eitherase, the (�nal) program Pq is then added to open program Or in order toget a losed program Pr for r.The plae-holders here are the shema-biased open program reation, the ab-dutive evidene generation, the indutive evidene generalization, and the a-eptability test.For instane, when the template is d, then the role of q is usually playedby ompose (or deompose, by duality). For instane, onsider the followingevidene for delOdds:delOdds([℄; [℄) delOdds([1℄; [℄) delOdds([2℄; [2℄) delOdds([3; 4℄; [4℄) delOdds([6; 7; 8℄; [6; 8℄) delOdds([5℄; [5℄) (EdelOdds)Suppose Step 1 reates the following open program, whose (only) open relationis ompose:delOdds(X;Y) minimal(X); solve(X;Y)delOdds(X;Y) :minimal(X); deompose(X;H; T); delOdds(T; V); ompose(H;V; Y)minimal(X) X = [℄solve(X;Y) Y = [℄deompose(X;H; T) X = [HdjT ℄; H = [Hd℄ (OdelOdds)Suppose Step 2 abdues (with the help of the spei�er and/or bakground knowl-edge) the following evidene for the open relation ompose:ompose(1; [℄; [℄) odd(1)ompose(2; [℄; [2℄) even(2)ompose(3; [4℄; [4℄) odd(3)ompose(6; [8℄; [6; 8℄) even(6) ompose(5; [℄; [5℄) (Eompose)14

Suppose Step 3 indues the least generalization under �-subsumption of thepositive evidene: the result, namely ompose(H;V; Y) , is not aeptable,in the sense that the overall result Y is not onstruted from H and the partialresult V . In other words, it is over-general. However, reursive invoation of thesystem on all the abdued evidene will not eventually yield a �nal program fordelOdds that is orret wrt its informal spei�ation above. In fat, the omposerelation should be de�ned as follows (whih is equivalent to the version in thebeginning of this paper): ompose(H;Y; Y) odd(H)ompose(H;V; [H jV ℄) even(H) (Pompose)The synapse and dialogs systems overome this aw of suh ILP systemsby using onstrution modes. Indeed, from general programming knowledge,it is possible to state in advane that the onstrution mode of ompose isompose(may; ons; res), no matter what the relation r is. Based on this insight,a more re�ned method for Step 3 was developed, and even enhaned in [2℄, alledthe Program Closing Method. Basially, the idea is to divide (not neessarilypartition) the positive evidene set E+q into maximal-sized liques (or: ompletelyonneted omponents), onsidering that there is an ar between two lauses ofE+q whenever their least generalization under �-subsumption is admissible (wethen say they are ompatible), and to perform the lassial approah to Step 3for eah suh lique. In our example, this gives two liques, namely:ompose(1; [℄; [℄) odd(1)ompose(3; [4℄; [4℄) odd(3) (C1ompose)and ompose(2; [℄; [2℄) even(2)ompose(6; [8℄; [6; 8℄) even(6) (C2ompose)whose least generalizations under �-subsumption indeed are the two lauses ofPompose.Without onstrution modes, this result an only be ahieved under otherapproahes to avoiding over-generality, whih are usually based on the (massive)presene of negative evidene (whih must thus not be overed by any andidatehypothesis). Our approah has the pleasant advantage that the user need notpresent that muh negative evidene, and need not even present the onstrutionmode for the open relations in hypothesis/program templates, as they an bepredetermined!5 ConlusionWe have introdued onstrution modes as a new searh bias for ILP systems.A onstrution mode aptures the required dataow of a relation, by expressingwhih parameters are (de-)onstruted from whih other parameters, as well aswhether suh (de-)onstrution is mandatory or optional for eah partiipating15

parameter. The semantis of a onstrution mode is formalized by the notion ofadmissibility of a de�nite lause wrt that mode, apturing both syntati andsemanti ways of parameter (de-)onstrution. Constrution modes have beensuessfully employed in some ILP systems.In terms of related work, there are many alternative (and omplementary) no-tions of mode. The modes in the doumentation of the primitives of the prologlogi programming language are input modes, whih indiate the form (groundor variable, for instane) of eah parameter upon alling a primitive. They werededued from the programs for these primitives so as to help a posteriori speifythe onditions of usage of these primitives. Deville [1℄ has proposed that inputmodes be part of a priori spei�ation information, so that they our in thede�nition of orretness of a program. He also introdued output modes, whihindiate the form of eah parameter upon ompletion of a all. He ombinedinput modes, output modes, and multipliity information (whih indiates theminimum and maximum number of orret answers to a all) into a new oneptalled diretionality, whih is part of spei�ations along with types. This ideawas (partially) piked up for the merury logi programming language [18℄,whih requires type, input mode, and multipliity delarations to be added tothe lauses of a program. Suh delarations allow the ompiler to infer an order-ing of the lauses and of the body atoms in eah lause for eah input mode, suhthat the orresponding alls terminate orretly. The modes of the ILP systemprogol [9℄, already disussed in Setion 1, also inlude type, input mode, andmultipliity delarations.The ILP system sieres [17℄ is not really shema-guided (in the sense above),but it features a tehnique not unlike our Program Closing Method and itsoneptual apparatus. Indeed, it also omputes the least generalization under�-subsumption of evidene (whih must however be unit lauses); it onstrutslauses that �t argument dependeny graphs (a kind of primitive shemas thatpresribe the dataow but not the ontrol-ow, nor any spei�ations, on-straints, or framework); and it uses input-mode delarations (but no onstru-tion modes) to guide this onstrution towards non-overgeneral lauses. However,there is no notion of admissibility and ompatibility, and hene no possibilityof division of the evidene into liques, i.e., no induability of multi-lausal pro-grams for the open relations.The ILP system indio [15℄ is not at all shema-guided. However, it fea-tures an interesting method for onjeturing the heads of possible lauses, heneproviding already muh of the disriminating information that otherwise has tobe disovered together with the haraterizing information when starting frommost-general lause heads. The method �rst partitions (i.e., it does not divide)the evidene (whih must be unit lauses) into subsets aording to the funtors(e.g., type onstrutors) appearing in it; then it omputes the least generaliza-tion under �-subsumption of eah obtained subset so as to produe a series oflause heads, from whih a top-down lause speialization proess an then bestarted. This method is obviously related to, but muh more speialized than,our Program Closing Method. 16

In terms of future work, we have already mentioned interesting extensionsto the de�nitions of onstrution modes (see Setion 2) and admissibility (seeSetion 3). Of ourse, (re�nements of) our suggested onstrution modes andadmissibility and properties thereof may be used (maybe in onjuntion withprogol modes) by other researhers, and we look forward to seeing suh appli-ations of our proposal in the ILP literature.AknowledgmentsWe thank Baudouin Le Charlier and Pierre-Yves Shobbens (both at the Uni-versity of Namur, Belgium), Neip Faz�l Ayan (University of Maryland, USA),and the Mahine Learning Group at the University of Texas at Austin, USA,for their helpful suggestions on a preliminary version of this paper. The referees'omments have also signi�antly ontributed to the quality of this paper.Referenes1. Y. Deville. Logi Programming: Systemati Program Development. Addison-Wesley, 1990.2. E. Erdem and P. Flener. Completing open logi programs by onstrutive indu-tion. International J. of Intelligent Systems 14(10):995-1019, Ot. 1999.3. P. Flener. Logi Program Synthesis from Inomplete Information. Kluwer, 1995.4. P. Flener. Indutive logi program synthesis with dialogs. In S. Muggleton (ed),Pro. of ILP'96, pp. 175{198. LNAI 1314, Springer-Verlag, 1997.5. P. Flener and Y. Deville. Logi program synthesis from inomplete spei�ations.J. of Symboli Computation 15(5{6):775{805, May/June 1993.6. P. Flener and S. Y�lmaz. Indutive synthesis of reursive logi programs: Ahieve-ments and prospets. J. of Logi Programming 41(2-3):141-195, Nov./De. 1999.7. P. Flener, K.-K. Lau, M. Ornaghi, and J. Rihardson. An abstrat formalisation oforret shemas for program synthesis. To appear in J. of Symboli Computation,May 2000.8. J.-P. Jouannaud and Y. Kodrato�. Charaterization of a lass of funtions synthe-sized from examples by a Summers-like method using the Boyer-Moore-Wegbreitmathing tehnique. In Pro. of IJCAI'79, pp. 440{447.9. S. Muggleton. Inverse entailment and progol. New Generation Computing 13:245{286, 1995.10. S. Muggleton and L. De Raedt. Indutive logi programming: Theory and methods.In J. of Logi Programming 19{20:629{679, 1994.11. C. N�edelle et al. Delarative bias in indutive logi programming. In L. De Raedt(ed), Advanes in Indutive Logi Programming, pp. 82{103. IOS Press, 1996.12. G.D. Plotkin. A note on indutive generalization. In B. Meltzer and D. Mihie(eds), Mahine Intelligene 5:153-163. Edinburgh University Press, Edinburgh(UK), 1970.13. G. Silverstein, and M. Pazzani. Relational lih�es: Constraining onstrutive in-dution during relational learning. Proeedings of IWML'91, pp. 203{207. MorganKaufmann, 1991.14. I. Stahl. Prediate invention in indutive logi programming: An overview. In P.B.Brazdil (ed), Pro. of ECML'93, pp. 313{322. LNAI 667, Springer-Verlag, 1993.17

15. I. Stahl, B. Tausend, and R. Wirth. Two methods for improving indutive logiprogramming systems. In P. Brazdil (ed), Pro. of ECML'93, pp. 41{55. LNAI667, Springer-Verlag, 1993.16. P.D. Summers. A methodology for LISP program onstrution from examples. J.of the ACM 24(1):161{175, Jan. 1977.17. R. Wirth and P. O'Rorke. Constraints for prediate invention. In S. Muggleton (ed),Indutive Logi Programming, pp. 299{318. Volume APIC-38, Aademi Press,1992.18. Z. Somogyi, F. Henderson, and T. Conway. The exeution algorithm of Merury:An eÆient purely delarative logi programming language. J. of Logi Program-ming 29(1{3):17{64, Ot./De. 1996.

18

