
Completing Open Logic Programs by Constructive InductionEsra ErdemDepartment of Computer SciencesThe University of Texas at AustinAustin, TX 78712, USAEmail: esra@cs.utexas.edu Pierre FlenerDepartment of Information ScienceUppsala UniversityBox 311, S-751 05 Uppsala, SwedenEmail: pierref@csd.uu.seAbstractWe consider part of the problem of schema-biased inductive synthesis of recursive logic pro-grams from incomplete speci�cations, such as clausal evidence (for instance, but not necessar-ily, ground positive and negative examples). After synthesizing the base clause and introducingrecursive call(s) to the recursive clause, it remains to combine the overall result from the partialresults obtained through recursion, so as to complete the recursive clause. Evidence for thiscombination relation can be abduced from the initially given evidence for the top-level relation.A program for this combination relation can be anything, from a single clause performing auni�cation (such as for lastElem) to multiple guarded clauses performing uni�cations (suchas for �ltering programs) to recursive programs (such as for naive reverse). Existing meth-ods cannot induce guarded clause programs for this combination relation from the abducedevidence. Some existing methods cannot even detect that the combination program itselfmay have to be recursive and thus they then do not recursively invoke themselves the overallrecursive program synthesizer. We introduce our Program Completion Method as a suitableextension and generalization of the existing methods.1 IntroductionWe consider part of the problem of inductive synthesis of recursive programs from incompletespeci�cations [9]. This is a machine learning problem, and we consider it in the logic programmingframework, taking thus an ILP (Inductive Logic Programming) approach [18]. Moreover, notethat we only focus on the learning of recursive programs, which is what we call inductive programsynthesis. This is an important problem because necessarily invented predicates have recursiveprograms [20]. Yet most general-purpose ILP techniques are outperformed on this task by special-purpose recursion synthesizers [9], so that the latter seem preferable (as auxiliary tools) in casenecessary predicate invention is detected or conjectured. Every now and then, inductive synthesiz-ers appear, having the following basic synthesis algorithm [9], given evidence for a top-level relationr (for instance, but not necessarily, in the form of ground positive and negative examples):1. Schema-biased 1 creation of an open [10] recursive program that has two clauses for r, namelya non-recursive one for a base case and a recursive one for a step case. The program is openin the sense that its recursive clause for r refers to a relation q combining the partial results(stemming from the recursive calls) into the overall results, which relation is still unde�ned(i.e., it has no clauses yet).2. Abductive generation of evidence for q by running the open program on the evidence for r.3. Inductive generalization of the abduced positive evidence and analysis of the result: if \ac-ceptable", use it as a de�nition of q, thus �nishing the synthesis; otherwise, conjecturenecessary predicate invention [20] and recursively invoke the basic synthesis algorithm on theabduced positive and negative evidence, yielding a program for q, which, added to the initialprogram, provides a program for r. In any case, this amounts to closing the open program.1A schema is a program encoding the control ow and dataow of a class of programs (e.g., divide-and-conquer)by abstracting away their speci�c computations and data structures [10].1

Some synthesizers of this category are Thesys [22], BMWk [14, 17], Synapse [8, 5], Lopster [15],Cilp [16], Crustacean [1], MetaInduce [13], Dialogs [7, 24], etc (see Section 5.1 for details).In order to illustrate this basic synthesis algorithm and to expose its potential weak spots, let usstudy a few sample runs. However, in this paper, we will almost completely ignore the mechanicsof Steps 1 and 2: there are various ways of achieving the results reported hereafter (or similarones) and we invite the reader to accept them as such, because our focus will be mostly on Step 3.Example 1 Starting from the informal speci�cation:lastElem(E;P; L) i� the last element of list L is E,and list P is the corresponding pre�x of Lthe speci�er could give the following speci�cation by examples:lastElem(a; []; [a])lastElem(b; [c]; [c; b]) :lastElem(g; [h]; [g; h])lastElem(d; [f; e]; [f; e; d])Suppose Step 1 creates the open program (the unde�ned relation is called cons for convenience,since it is similar to the cons in Lisp):lastElem(E; []; [E]) lastElem(E; [HP jTP]; L) lastElem(E; TP; TL); cons(HP; TL;L)Suppose Step 2 abduces the following examples for the unde�ned relation:cons(c; [b]; [c; b]) :cons(h; [g]; [g; h])cons(f; [e; d]; [f; e; d])Suppose Step 3 induces the least generalization under �-subsumption (denoted by lg�, see Sec-tion 2.2) of the positive examples: the result cons(A; [BjT]; [A;BjT]) is \acceptable" and can thusbe unfolded into the second clause, yielding the �nal program:lastElem(E; []; [E]) lastElem(E; [HP jTP]; [HP;BjT]) lastElem(E; TP; [BjT])which is correct with respect to (wrt) the informal speci�cation above. 2Example 2 Starting from the informal speci�cation:reverse(L;R) i� list R is the reverse of list Lthe speci�er could give the following speci�cation by examples:reverse([]; [])reverse([a]; [a])reverse([b; c]; [c; b]) :reverse([g; h]; [g; h])reverse([d; e; f]; [f; e; d])Suppose Step 1 creates the open program (the unde�ned relation is called lastElem for conve-nience):reverse([]; []) reverse([HLjTL]; R) reverse(TL; TR); lastElem(HL; TR;R)Suppose Step 2 abduces the following examples for the unde�ned relation:lastElem(a; []; [a])lastElem(b; [c]; [c; b]) :lastElem(g; [h]; [g; h])lastElem(d; [f; e]; [f; e; d])Suppose Step 3 induces the lg� of the positive examples: the result lastElem(A; T; [BjV]) is not\acceptable". Recursive invocation of the basic synthesis algorithm on the abduced examples yieldsthe scenario of Example 1, whose �nal program, added to the clauses for reverse above, yields a�nal program for reverse that is correct wrt the informal speci�cation above. 22

So far, we have shown two successful runs of the basic synthesis algorithm, the latter featuring arecursive invocation of this algorithm. It remains however to clarify the criterion of \acceptability"of an lg�. There are many de�nitions for this, and we will come back to it in Section 3. Basically,one would want the \output" terms of the lg� to be constructed from its \input" terms: forinstance, in cons(A; [BjT]; [A;BjT]), \output" term [A;BjT] is constructed using \input" termsA and [BjT], whereas in lastElem(A; T; [BjV]), \output" term [BjV] is not constructed using\input" terms A and T . Also, one would want the lg� not to cover any abduced negative evidencefor the unde�ned relation.Interlude: A divide-and-conquer schema. In all runs shown here, the schema underlyingStep 1 is a divide-and-conquer schema, a quite general expression of which is as follows:r(X;Y; Z) solve(X;Y; Z)r(X;Y; Z) decompose(X; �!HX; �!TX); % �!HX= HX1; : : : ; HXhr(TX1; TY1; Z); : : : ; r(TXt; TYt; Z); % �!TX= TX1; : : : ; TXtcompose(�!HX; �!TY ; Y; Z) % �!TY= TY1; : : : ; TYtParameter X of r is the induction parameter (as it is decomposed for recursive calls), parameterY is the optional result parameter (as it is constructed from the partial results TYi obtainedthrough recursion), and parameter Z is the optional passive parameter (as it is not decomposedfor recursive calls, but serves to solve the base case and/or to compose the partial results TYi ofthe step case into Y). An even more general expression of this schema would parameterize thenumbers of induction, result, and passive parameters [5]. Also, in the examples above, Step 1 ofthe basic synthesis algorithm instantiated the h, t, r, solve, and decompose place-holders, so thatthe unde�ned relation actually was the compose place-holder. Using another strategy [10] on thesame schema, Step 1 could have instantiated h, t, r, solve, and compose, so that the unde�nedrelation actually is decompose. In either strategy, the instantiation of decompose (resp. compose)at Step 1 can be performed by simple re-use from a repository of \classical" such operators, theremaining compose (resp. decompose) being then instantiated at Steps 2 and 3. Since most divide-and-conquer programs have either a \classical" decompose or a \classical" compose, these twostrategies cover a lot of ground. Of course, other schemas and strategies can underlie Step 1, suchas the accumulator schema [6].Let us continue now and show an unsuccessful run of the basic synthesis algorithm.Example 3 Starting from the informal speci�cation:delOddElems(L;R) i� list R is integer-list L without its odd elementsthe speci�er could give the following speci�cation by clausal evidence (note the arrows now):delOddElems([]; []) delOddElems([1]; []) delOddElems([5]; [5])delOddElems([2]; [2]) delOddElems([3; 4]; [4]) delOddElems([6; 7; 8]; [6; 8]) Suppose Step 1 creates the open program (the unde�ned relation is called combine for convenience):delOddElems([]; []) delOddElems([HLjTL]; R) delOddElems(TL; TR); combine(HL; TR;R)Suppose Step 2 abduces (with the help of the speci�er and/or background knowledge) the followingclausal evidence for the unde�ned relation: 3

combine(1; []; []) odd(1) combine(5; []; [5])combine(2; []; [2]) even(2)combine(3; [4]; [4]) odd(3)combine(6; [8]; [6; 8]) even(6)Suppose Step 3 induces the lg� of the left-hand (positive) evidence: the result combine(X;T; V) is not \acceptable". However, recursive invocation of the basic synthesis algorithm on all theabduced evidence will not yield a �nal program that is correct wrt the informal speci�cationabove. In fact, the combine relation should be de�ned as follows:combine(I; L; L) odd(I)combine(I; L; [I jL]) even(I)Note that each of these clauses is the lg� of some subset of the left-hand evidence. Also noticethat combine is thus de�ned as the conjunction of several guarded clauses, with bodies involvingrelations other than combine (namely guards, or tests), rather than as a unit clause (like cons inExample 1) or as two clauses, one of which being recursive (like lastElem in Example 2). 2Objectives and organization of this paper. Basing Step 3 of the basic synthesis algorithm onthe computation of the lg� of all the abduced positive evidence (when it just consists of examples)thus rests on two restrictive assumptions:1. the unde�ned relation is de�nable by a single clause;2. the unde�ned relation is de�nable by using only uni�cation.The combination of these assumptions amounts to saying that the unde�ned relation is de�nableby a unit clause. However, as Example 3 shows, this is not always the case. In this paper, we willmostly address Assumption 1, namely by showing how a multi-clausal (i.e., conjunctive) de�nitionof the unde�ned relation can be inductively inferred. This basically requires a re-de�nition of theconcept of lg�: since unique, over-general lg�s, such as the one in Example 3, have to be avoided,the idea is to re-de�ne the lg� of a clause set C as being a minimal-sized set of e clauses ci, wheree � jCj, such that each ci is the classical least generalization (under �-subsumption) of some subsetCi of C, and such that the union of the Ci is C (i.e., Sei=1 Ci must form a cover of C). The clauses ineach Ci must be two by two \compatible", in the sense that they construct their result parametersin the same way. \Compatibility" of two clauses is achieved if their classical lg� also constructsits result parameters in the same way: we approximate this by requiring that this lg� constructsits result parameters in an \admissible" way, namely by respecting certain dataow constraintscaptured in what we call a \construction mode". The generalizing clauses ci ought to be minimalin number, because otherwise equality, for instance, would be an acceptable implementation ofthe re-de�ned operator (the chosen subsets would then all be singleton sets containing one ofthe clauses of C), so that no generalization would then have been performed. Since we do notconstrain the Ci to form a partition of C, a clause of C may participate in several Ci: this featuremay favorably increase the generality of the ci (within the bounds of admissibility) compared toan approach by simple partitioning, because the Ci may thus be larger; also, this feature does notincrease the number of Ci compared to an approach by simple partitioning, because every partitionis a cover and we look for a minimal cover (i.e., a cover with the smallest number of subsets).Such lg� clauses are non-recursive if the clauses in C are non-recursive, but it may happen that thede�ned predicate does not have a correct non-recursive de�nition (given the current backgroundknowledge): this is an undecidable property [20] and thus needs to be approximated by a heuristic,which we call the \acceptability" criterion.In the rest of this paper, we will �rst give, in Section 2, precise meanings to the words betweendouble quotes. Then, in Section 3, we can design a powerful new method for Step 3, called theProgram Closing Method. It turns out that this method also lifts Assumption 2, but this requiresthat Step 2 provides evidence for the unde�ned relation that already contains all relations otherthan equality, or that a Step 4 be added to really close the program by adding the missing guardliterals. Our method can handle clausal evidence rather than just examples. We aim at makingour de�nitions and method as general as possible, so that they can be plugged into any inductivesynthesizer of the considered kind, whether existing or forthcoming: therefore, independence of the4

schema underlying Step 1, independence of the place-holder representing the unde�ned relation,and independence of the mechanisms for Steps 1 and 2 will be achieved. In Section 4, we extendthis method so that it can cope with non-deterministic programs. In Sections 5 and 6, we reviewrelated work and outline future work, respectively, and �nally we conclude in Section 7.2 Basic ConceptsAfter introducing the notation used (in Section 2.1), we de�ne the basic concepts underlying ourProgram Closing Method, namely generality (in Section 2.2), construction modes (in Section 2.3),admissibility (in Section 2.4), and compatibility (in Section 2.5). This allows us to introduce ourre-de�nition of the concept of least generalization of a clause set (in Section 2.6).2.1 The NotationIn expressions (i.e., literals or terms) appearing in logic programs, symbols starting with uppercaseletters designate (individual) variables, whereas all other symbols designate either functions orrelations, the distinction (if needed) being always clear from context. All these symbols may besubscripted with natural numbers or mathematical variables (ranging over natural numbers).When we want (or need) to group several terms into a single term, we represent this as a tuple,using angled brackets. For instance, hf(a; 22); g(X;Y; Z)i is a term representing the couple builtof the two terms f(a; 22) and g(X;Y; Z).When we do not want to (or cannot) �x the arity of a relation symbol, we use a \: : :"ellipsis notation in conjunction with subscripted variables (ranging from 1) as long-hand,and a vector notation as short-hand. For instance, atom r(X; ~Y ; ~Z) is an abbreviation forr(X;Y1; : : : ; Yy; Z1; : : : ; Zz), where mathematical variables y and z must be introduced in the con-text, and can be particularized to any natural number.2.2 GeneralityFor the sake of our Program Closing Method, a very simple generality order will su�ce, namely�-subsumption [19]. Let us �rst repeat its de�nition.De�nition 1 (Term/literal generality)A term g is more general than a term s if there exists a substitution � such that s = g�. Similarlyfor literals, provided they have the same sign, the same relation symbol, and the same arity.The least generalization of two terms s and t, denoted by lgt(s; t), is a term g that is more generalthan s and t, but less general than any other term u that is more general than s and t; it isalways de�ned and is any new variable if s and t have di�erent function symbols or di�erentarities. Similarly for the least generalization of two literals a and b; it is denoted by lgl(a; b) andis unde�ned if a and b have di�erent signs, di�erent relation symbols, or di�erent arities.For instance, term/atom f(X; 4; Y) is more general than term/atom f(2; 4; Z), with� = fX=2; Y=Zg. The least generalization of terms/atoms f(1; E; s; []; L; [a; b]) andf(1; [a; b]; X; [d];M;E) is term/atom f(1; Q;W; T; Y;R). Note that Q and R are di�erent variablesymbols, even though both generalize terms E and [a; b] (though in di�erent orders): otherwisethe two given terms/atoms would not be more speci�c than their least generalization.We can now de�ne a simple order of generality for clauses [19]. We assume that clauses areseen as sets of (positive and negative) literals. In this paper, we only consider de�nite clauses,rather than full clauses.De�nition 2 (Clause �-subsumption)A clause g �-subsumes a clause s if there exists a substitution � such that g� � s.We also say that g is more general than s under �-subsumption.For instance, the clause combine(I; L; [I jL]) even(I) �-subsumes the clausecombine(X; [HLjTL]; [X;HLjTL]) even(X); list(TL) with � = fI=X;L=[HLjTL]g.5

When a clause g �-subsumes a clause s, then g is more general than s, in the sense thatg j= s. However, when g is more general than s, then g does not necessarily �-subsume s [19].This may happen when g and s are recursive. For instance, take g as p(f(X)) p(X) and sas p(f(f(X))) p(X). So �-subsumption is only an approximation of a generality order, but acorrect one, and even a su�cient one for our purposes (as we do not consider recursive clauses).As a partial order, the �-subsumption relation induces a lattice on the clause set, with the emptyclause as the unique top element. A constructive de�nition of the least upper-bound-operator forthis lattice emerges as a property [19]:Property 1 (Least generalization, under �-subsumption, of two clauses)The least generalization under �-subsumption (or lg�) of two clauses c and d, denoted by lg�(c; d),is the unique (up to variable renaming) clause flgl(l;m) j l 2 c ^m 2 dg.For instance, the lg� of the clauses combine(2; []; [2]) even(2) and combine(6; [8]; [6; 8]) even(6) is combine(I; L; [I jL]) even(I).We also need to compute the least generalization of a non-empty set of clauses. Again, aconstructive de�nition of this operator emerges as a property:Property 2 (Least generalization, under �-subsumption, of a clause set)The least generalization under �-subsumption of a non-empty set C = D [fcg of clauses, denotedby lg�(C), is lg�(lg�(D); c) if D is non-empty, and c otherwise.2This is what we here call the classical de�nition of this concept. One of its problems is thatthe single clause that �-subsumes all the clauses in the set C is often too general, as illustrated inExample 3. In Section 2.6, we will propose a re-de�nition of this concept.2.3 Construction ModesInformally, a construction mode [3] for a relation states which parameters are constructed fromwhich other parameters, and also expresses whether such construction is mandatory or optional.For instance, in append, the third parameter is mandatorily constructed from the �rst two pa-rameters. Contrary to the well-known input modes (or call modes), there is no notion of di�erentusages of a relation according to construction modes. Indeed, construction modes are a declarativenotion, whereas input modes are an operational notion. However, a construction mode may notbe unique for a given relation, because there may be several ways of expressing its dataow. Forinstance, in reverse, the second parameter is mandatorily constructed from the �rst parameter,or vice-versa.De�nition 3 (Construction modes)A construction mode m for a relation r of arity n is a total function from the set f1; 2; : : : ; ng intothe set fmay;must; resg, such that res is in the range of m i� may or must is in the range of m.We say that m(i) is the mode of the ith parameter of r.A construction mode m is here written in the more suggestive form r(m(1); : : : ;m(n)). Sincewe do not consider input modes in this paper, we often simply speak about modes here.For instance, combine(must;must; res) is a construction mode, meant to express that thethird parameter is a result that must be constructed from the �rst two parameters. Note thatp(may;must) is not a mode, because no parameter is being designated as the result of constructionfrom the two given parameters. Also, q(res) is not a mode, because it does not indicate from whatparameters the given result parameter must or may be constructed.The intended semantics of a construction mode is thus as follows:� mode res means the parameter in the corresponding position is the result parameter to beconstructed from the other parameters;� mode must means the parameter in the corresponding position is mandatory in constructingthe parameter in the corresponding position of res;2Note that the outer, binary occurrence of lg� refers to the operator used in the previous property. We thus usethe same name (though with di�erent arities) for both operators, assuming that no confusion will arise.6

� mode may means the parameter in the corresponding position is optional for constructingthe parameter in the corresponding position of res.We will formalize all this in the following, via the concept of admissibility. But let us �rst see afew other examples of construction modes.Example 4 Let us come back to the divide-and-conquer schema of Section 1. Using generalknowledge of the divide-and-conquer design methodology, it is possible to conjecture that, ingeneral, the construction mode of compose(�!HX; �!TY ; Y; Z) iscompose(�!may; �!must; res;may)where �!may denotes may; : : : ;may with h occurrences of may, and �!must denotes must; : : : ;mustwith t occurrences of must. (Remember that h is the number of heads HXi, and that t is thenumber of tails TXi, hence also the number of tails TYi.)The tails TYi being obtained through recursion, they must all somehow be used to constructY , because some of the recursive calls would otherwise have been useless.The heads HXi need not always be used to construct Y , as it all depends on the particular rela-tion. For instance, the mode for combine(HL; TR;R) (see Example 3) is combine(must;must; res),the mode for lastElem(HL; TR;R) (see Example 2) is lastElem(must;must; res), and the modefor cons(HP; TL;L) (see Example 1) is cons(must;must; res). Also consider the program forlength(L;N) that expresses N as a Peano number and that has L as induction parameter: itsinstance of compose is addOne(HL; TN;N) (de�ned by the clause addOne(; X; s(X))) withmode addOne(may;must; res). So there is no �xed mode for the heads of the induction parameter,and their most general mode thus is may.The passive parameter Z also need not always be used to construct Y . For instance,for insert(I; L;R), when L is the induction parameter, R the result parameter, and I thepassive parameter, the instance of compose is cons0(HL; TR;R; I) (de�ned by the clausecons0(H;T; [H jT];)) with mode cons0(must;must; res;may). However, for plateau(N;E; P)(which holds i� non-empty list P has exactly N elements, all equal to term E), when N isthe induction parameter, P the result parameter, and E the passive parameter, the instanceof compose is cons00(HN;TP; P;E) (de�ned by the clause cons00(; T; [H jT]; H)) with modecons00(may;must; res;must). So there also is no �xed mode for the passive parameter, and itsmost general mode thus also is may.Similarly, one can argue that, in general, the construction mode of decompose(X; �!HX; �!TX) isdecompose(res; �!must; �!must)that the mode of solve(X;Y; Z) is solve(may; res;may)and that the mode of r(X;Y; Z) is r(may; res;may)All this can be even further generalized, namely for a more general divide-and-conquer schemacovering arbitrary n-ary relations rather than the unary, binary, and ternary relations covered bythe schema given above. One would then have a vector ~X of x induction parameters, a vector ~Yof y result parameters, and a vector ~Z of z passive parameters, such that n = x+ y + z � 1. Theresulting general modes for its place-holders become quite complicated to express (one must haverecourse to tupling terms into a single term), but are beyond the scope of this paper, our objectivehere being merely to establish some simple concepts. 2The key issue is that construction modes can easily be pre-determined for the place-holdersof any schema, no matter how complex they get, and that they can then be simply injected asarguments into the Program Closing Method described in Section 3. This means that, for thebasic synthesis algorithm, the provider of evidence for the top-level relation r does not have to7

provide the mode for the open relation q, because it is already pre-computed once-and-for-all bythe provider of the used schema.Let us �nish this sub-section with some useful notation. Let m be a mode for a relation r,and let r(t1; : : : ; tn) be the head of some de�nite clause. Then let Must = hti j m(i) = musti.Similarly for May and Res.For instance, let the construction mode be combine(must;must; res) and let the clause becombine(6; [8]; [6; 8]) even(6). We then have that Must = h6; [8]i, May = hi, and Res = h[6; 8]i.2.4 Admissibility of a Clause wrt a Construction ModeThe concept of admissibility captures what it means for a de�nite clause to satisfy a constructionmode for its relation. First, we introduce a few necessary concepts towards its de�nition.Let r(t1; : : : ; tn) B be a de�nite clause, where B is a conjunction of atoms, called the bodyof the clause, and r(t1; : : : ; tn) is called the head of the clause. It is crucial that body B does notcontain any equality atoms, because otherwise insu�cient structure would be in the parametersin the head. For instance, instead of insert(X; [Y jL]; R) X � Y;R = [X;Y jL], we preferinsert(X; [Y jL]; [X;Y jL]) X � Y .De�nition 4 (Proper and reconcilable clauses)We refer to an equality-free de�nite clause as a proper clause.Two proper clauses are reconcilable if they de�ne the same relation.We also need some concepts for term inspection:De�nition 5 (Leaves and vertices of a term)The leaves of a term t, denoted by leaves(t), are the set of the variables and constants in t.The vertices of a term t, denoted by vertices(t), are the multi-set of the variables and functions(including the constants) in t.For instance, leaves(1 �B � 1 �nil) = f1; B; nilg, and leaves(a �T) = fa; Tg, whereas vertices(1 �B � 1 � nil) = f1; �; B; �; 1; �; nilg, and vertices(a � T) = fa; �; Tg.Now, here is our (here suitably simpli�ed) de�nition of admissibility [3]:De�nition 6 (Clause admissibility and clause set admissibility)A proper clause r(t1; : : : ; tn) B is admissible wrt a mode m for r if the following conditions hold:vertices(Must) v vertices(hRes;B0i)leaves(Res) � leaves(hMay;Must;B0; 0; nil; : : :i)where v denotes multi-set inclusion, and B0 is a tuple built of the atoms (seen as terms) of B.A set of reconcilable clauses is admissible wrt a mode m for the relation in their heads if each ofits clauses is admissible wrt m.For instance, the clause min(X;Y;X) X � Y is admissible wrt min(must;must; res), theclause insert(X; [Y jL]; [X;Y jL]) X � Y is admissible wrt insert(must;must; res), and theclause addP lateau(a; []; [a; s(0)]) is admissible wrt addP lateau(may;must; res). However,the clause insert(X; [Y]; [X;Z]) is not admissible wrt insert(must;must; res).Note that the two conditions are more general than sub-term (i.e., sub-tree) checking. Thisadditional generality is crucial in many cases. For instance, in atom efface(d; [g; e; d]; [g; e]), thevertices of [g; e] are a sub-multi-set of the vertices of [g; e; d], but [g; e] is not a sub-tree of [g; e; d].2.5 CompatibilityIntuitively, compatibility of two clauses is meant to express that these two clauses perform theirresult construction in the same way. Since this is a rather hard to de�ne notion, we want toapproximate it by requiring that the least generalization of these two clauses also performs theresult construction in the same way. Even this is hard to capture, but it can also be approximated,namely by requiring that this least generalization not be overly general. For instance, admissibilityof a proper clause wrt a construction mode for the relation in its head is such an over-generalitycriterion. Hence the following (here suitably simpli�ed) de�nition [4]:8

De�nition 7 (Clause compatibility and clause set compatibility)Two reconcilable clauses c and d are compatible (with each other) wrt a mode m for the relationin their heads if lg�(c; d) is admissible wrt m. We also say that c is compatible with d wrt m, andvice-versa.A non-empty set C of reconcilable clauses is compatible wrt a mode m for the relation in theirheads if any two clauses in C are compatible wrt m.For instance, the clauses combine(2; []; [2]) even(2) and combine(6; [8]; [6; 8]) even(6)are compatible wrt combine(may;must; res), because their lg�, namely combine(I; L; [I jL]) even(I), is admissible wrt that mode.Note that a singleton set is trivially compatible wrt any mode. When a mode m has beenclearly stated in context, we often drop the quali�er \wrt mode m", both for admissibility and forcompatibility. The compatibility relation is symmetric, but it is neither reexive nor transitive,and even should not be so [4].2.6 A Re-De�nition of the Least Generalization of a Clause SetAs argued in Section 1, the concept of least generalization of a clause set ought to be re-de�nedsuch that it yields a minimal-sized set of clauses (rather than a single clause), each of which beingnot too general. We have by now precisely de�ned all the vague concepts (namely constructionmode, admissibility, and compatibility) at the end of the introduction, so that we are now able topropose our re-de�nition, such that it �ts all our requirements:De�nition 8 (Least generalization, under �-subsumption, of a clause set, wrt a constructionmode)The least generalization under �-subsumption of a non-empty set C of clauses wrt a constructionmode m, denoted by lg�(C;m), is the set of classical least generalizations under �-subsumption ofthe node cliques of the graph with node set C and edge set induced by the compatibility relationwrt m.For instance, the least generalization wrt combine(must;must; res) of the four (left-hand)combine clauses in Example 3 is indeed made of the two clauses mentioned in that example.We have elsewhere given an e�cient approximation algorithm solving this NP-complete problem(for any over-generality criterion) [4].3 The Program Closing MethodGiven:� an open logic program R for a relation r, with no clauses for some relation q,� a set E of reconcilable non-recursive clauses for q, called the evidence set,� a construction mode m for q,the objective of the Program Closing Method is to infer a closed program R0 = R[Q for r, whereQ is a logic program for q that is more general than E (in the sense that Q j= E).Of course, we do not want Q to be equal to E , nor to cover all syntactically possible atoms forq. What is wanted is rather that Q covers an \extension" of E , such that this \extension" coincideswith the unknown intended relation q.This problem statement is not quite the same as the one of the general ILP task (whereR is empty), because it may not \solve" the ILP problem, nor the disjunctive predicate learningproblem, by itself, but only as an auxiliary to more powerful and intricate techniques. We here onlytarget highly constrained situations, where the open relation is of the kind where some parameteris indeed mandatorily constructed from some parameters and optionally from others, and such thatthe corresponding construction mode is known in advance (say by pre-determination based on anunderlying program schema). 9

The �rst step of the Program Closing Method is to assume that Q = lg�(E+;m), where E+ isthe positive evidence of E .For instance, from the positive cons evidence in Example 1 and the mode cons(must;must; res),this yields the single clause cons(A; [BjT]; [A;BjT]) as least generalization, which is accept-able (as it gives rise to a partially correct and complete program for lastElem). Also, fromthe positive combine evidence in Example 3 and the mode combine(must;must; res), this yieldsthe two clauses combine(I; L; L) odd(I) and combine(I; L; [I jL]) even(I) as least gener-alization, which is also acceptable. But, from the positive lastElem evidence in Example 2and the mode lastElem(must;must; res), this yields the three clauses lastElem(a; []; [a]) ,lastElem(b; [c]; [c; b]) , and lastElem(d; [f; e]; [f; e; d]) , i.e., the very input evidence, andthis is not acceptable, because adding these clauses to the reverse ones will not yield a completeprogram for reverse (though a partially correct one).Hence, the initial assumption is not always acceptable. Indeed, sometimes it is necessary toreject it and instead invoke an entire new synthesis of a recursive program from the evidence forq. Note that the given abduced evidence is always non-recursive, and also note that the leastgeneralization (under �-subsumption) of non-recursive clauses cannot be recursive, even for ourre-de�nition of this concept. Rejection plus auxiliary synthesis corresponds to necessary predicateinvention, `necessary' in the sense that a recursive program Q for q cannot be eliminated byunfolding for occurrences of q in R (inducing such a Q is also called constructive induction). Ifthe result Q is deemed acceptable, then relation/predicate q is `unnecessary' in the sense thatthe non-recursive program Q can be eliminated by unfolding for occurrences of q in R. Now,it is in general undecidable whether predicate invention is necessary (via rejection) or not (viaacceptance) [20]. So a heuristic is needed to judge the output of this �rst computation of theProgram Closing Method, and we call this heuristic the acceptability criterion.Our proposed acceptability criterion is as follows. The program Q induced so far is acceptableif the following conditions hold:1. program Q does not cover any of the negative evidence for q;2. the number of clauses in Q is \not too large."The �rst condition is obvious, as it avoids over-generalization. (It could by the way be pushed intothe compatibility criterion, but that would mean much more non-coverage checks than the proposedunique �nal check.) Note that both lg�(E+;m) and the acceptability criterion can be evaluatedin the absence of negative evidence. The proposed work is thus suitable for the current trend onlearning from positive evidence only, as negative evidence is hard to come by in some applicationsettings. The second condition needs to be re�ned for each particular synthesis technique. Forinstance, if only carefully chosen evidence is presented to it, say e clauses, then \not too large"could mean \less than e�2". An alternative way of expressing this idea is to require that no cliquehas only one element (remember that each clause of Q is the lg� of some clique).Example 5 Let E be the following evidence set for insert:insert(1; []; [1]) (E1)insert(3; [4]; [3; 4]) (E2)insert(4; [2]; [2; 4]) (E3)insert(6; [5; 7]; [5; 6; 7]) (E4)insert(5; [1; 3]; [1; 3; 5]) (E5)insert(7; [3; 6; 8]; [3; 6; 7; 8]) (E6)and let the construction mode be insert(must;must; res). Then we get the following three cliques:E1 = fE1; E2g, E2 = fE3; E4g, and E3 = fE5; E6g, and their least generalization is:insert(X;L; [X jL]) insert(X; [Y jL]; [Y;X jL]) insert(X; [Y; ZjL]; [Y; Z;X jL]) But this program does not satisfy our acceptability criterion, because the number of clauses is notless than 3 (which is half the size of the evidence set). In this program, the ith clause achieves10

insertion of a number into the ith position of a list of numbers, but this program is not as generalas we want because it does not cover insertion of a number into the ith position of a list of numberswhere i > 3. This cannot be done with a �nite non-recursive program (unless suitable relationsare available), so the initial assumption is inadequate and detecting this is what the acceptabilitycriterion is for. 2The second step of the Program Closing Method is thus to keep the program Q of the �rst stepif the acceptability criterion is satis�ed, and otherwise to recompute it as Q = ISRLP (E), whereISRLP is some inductive synthesizer of recursive logic programs (which can of course be the sameas the one that gave rise to the open program that needed completion in the �rst place).4 The Case of Non-Deterministic ProgramsThe (positive) evidence abduced by Step 2 of the basic synthesis algorithm is not always in theform of proper clauses, and the Program Closing Method is then inapplicable as it stands. Forthe divide-and-conquer schema, such is the case when the top-level relation r is non-deterministicgiven particular values for the chosen induction parameter and passive parameter (if any): therecursive call to the top-level relation for a tail of the induction parameter (obtained throughdecompose) may then yield (upon backtracking) several values for the chosen result parameter,but only one of them is actually adequate to construct (through compose) a result correspondingto the un-decomposed induction parameter. Several such values lead to a disjunction of abducedevidence, or to overly general abduced evidence with variables instead of more speci�c terms inthe head.Example 6 Consider the following speci�cation:perm(L; P) i� list P is a permutation of list LIf Step 1 generates the open program (using L as the induction parameter):perm(L; P) L = []; P = []perm(L; P) L = [HLjTL]; perm(TL; TP); compose1(HL; TP; P)then, from the evidence perm([a; b; c]; [c; a; b]) , at best the following disjunctive evidence forcompose1 could be abduced by Step 2:compose1(a; [b; c]; [c; a; b]) _ compose1(a; [c; b]; [c; a; b]) because there are two correct instances of the recursive call perm([b; c]; TP), namelyperm([b; c]; [b; c]) and perm([b; c]; [c; b]). But only the latter clause is actually adequate for con-structing a program for compose1 so that the query perm([a; b; c]; [c; a; b]) can be proved, becauseif the former were chosen, then compose1 would involve the same problem as perm itself, namelypermuting a list. 2Example 7 Now consider the following speci�cation:length(L;N) i� list L has N elementsIf Step 1 generates the open program (using N as the induction parameter):length(L;N) N = 0; L = []length(L;N) N > 0; TN is N � 1; HN = ; length(TL; TN); compose2(HN;TL;L)then, from the evidence length([a; b; c]; 3) , at best the following over-general evidence forcompose2 could be abduced by Step 2:compose2(A; [B;C]; [a; b; c]) because length([B;C]; 2) summarizes all the instances of the recursive call length(TL; 2). Butonly one instance of this clause, namely compose2(a; [b; c]; [a; b; c]) , is actually adequate forconstructing a program for compose2 so that the query length([a; b; c]; 3) can be proved. 211

Example 8 Finally, consider the following speci�cation:prefix(L; P) i� list P is a pre�x of list LIf Step 1 generates the open program (using L as the induction parameter):prefix(L; P) L = ; P = []prefix(L; P) L = [HLjTL]; prefix(TL; TP); compose3(HL; TP; P)then, from the evidence prefix([a; b; c]; [a; b]) , at best the following disjunctive evidence forcompose3 could be abduced by Step 2:compose3(a; []; [a; b]) _ compose3(a; [b]; [a; b]) _ compose3(a; [b; c]; [a; b]) because there are three correct instances of the recursive call prefix([b; c]; TP), namelyprefix([b; c]; []), prefix([b; c]; [b]), and prefix([b; c]; [b; c]). But only the second clause is actu-ally adequate for constructing a program for compose3 so that the query prefix([a; b; c]; [a; b])can be proved, because if one of the other clauses were chosen, then compose3 would haveto do strange things. Indeed, notice that only the second clause is admissible wrt modecompose3(may;must; res). 2Essentially, in all these examples, a set of evidence clauses for the open relation q is abducedfor each piece of evidence for the top-level relation r. Overall, a set of sets of clauses is thusabduced. In order for the clique cover algorithm to be applicable, each of these abduced setsneeds to be trimmed down to a single clause, by choosing a particular clause in the set and byinstantiating, if necessary, its variables. In order for this trimming to be maximally constrained(note that there is an in�nity of instantiations of a clause), we require the resulting clause to beadmissible wrt the mode of the open relation, which is why we call it an admissible alternative.Note that the clique cover algorithm itself does not require the input clauses to be admissible,because such a pre-condition is not necessary to its functioning (remember that it just uses theadmissibility criterion in order to �nd compatible subsets). However, the admissibility criterionturns out to be very useful here as well, since, in all our practical experiments so far, it rendersthe number of such admissible alternatives �nite. We conjecture that this is (almost) always thecase. Our solution presented below only works when such �niteness is the case, since it iteratesover all combinations of admissible alternatives. Clearly, the de�nition of admissibility is crucialhere: the more restrictive it is, i.e., the fewer clauses it declares admissible, the fewer admissiblealternatives a given clause set will have, and the fewer combinations have to be examined. Hencethe following de�nition:De�nition 9 (Admissible alternatives of a clause set)Clause A is an admissible alternative of clause set C wrt mode m if A is a most general instanceof some element of C and if A is admissible wrt m.For instance, in Example 6, both compose1 clauses are admissible alternatives of the ab-duced clause set. In Example 7, the admissible alternatives of the abduced clause set arecompose2(a; [b; c]; [a; b; c]) , compose2(a; [c; b]; [a; b; c]) , compose2(b; [a; c]; [a; b; c]) ,compose2(b; [c; a]; [a; b; c]) , compose2(c; [a; b]; [a; b; c]) , and compose2(c; [b; a]; [a; b; c]) .In Example 8, only the second compose3 clause is an admissible alternative of the abduced clauseset. Notice thus the non-determinism of the concept.Generating admissible alternatives for a given clause set thus amounts to �rst selecting oneof its clauses and then, if this is possible, minimally specializing it, through instantiation of itsvariables, such that it becomes admissible, according to the two (multi-)set inclusion constraintsin De�nition 6. Judging from the examples above, this may look like quite a formidable task,both in programming e�ort and in having it executed quickly. Fortunately, both aspects of thistask can be very elegantly addressed by using a set constraint (logic) programming language, suchas Cojunto [11], because the formulation of the task in such a language is virtually identicalto the formulation given above (due to the very high expressiveness of these languages), and12

yet it is extremely e�cient (due to the powerful underlying constraint solvers, which avoid asimple generate-and-test approach). Tighter constraints in De�nition 6 may reduce the numberof admissible alternatives in a problem-independent way. For instance, type constraints could beadded, thus preventing for instance the instantiation of a variable of type List to a number.Now, the key insight towards a generalized Program Closing Method is as follows: if, for someabduced clause sets, inadequate admissible alternatives are chosen, then there will be few compat-ibilities among them, hence small cliques, and therefore many cliques; conversely, if there are fewcliques, then these cliques are large, hence there are many compatibilities among the clauses, andtherefore all these clauses are adequate admissible alternatives. The idea is thus to iterate over thelg� algorithm for each of the �nitely many combinations of admissible alternatives, one for eachabduced clause set, and to select the clique cover with the fewest cliques so as to evaluate it foracceptability. Hence the following algorithm:Algorithm Program Closing MethodInputs:{ an open logic program R for a relation r, with no clauses for some relation q{ a set E of sets Ei of reconcilable non-recursive clauses for q{ a construction mode m for q.Output:{ a closed program R0 = R[Q for r,where Q is a logic program for q induced from evidence E wrt mode m.initialize the current minimal cover size: M 1;while M > 1 and there is an uninvestigated set Sj of admissible alternatives, one from each Ei, dobegincompute a candidate solution: Gj lg�(Sj ;m);if jGj j < M thenbegin fa better minimal cover is foundgstore the currently best minimal cover size: M jGj j;store the currently best set of admissible alternatives: M Sj ;store the currently best solution: Q Gjendend ;if : acceptable(Q) thenstart a new synthesis from the best set of admissible alternatives: Q ISRLP (M);return R [QLet e be the number of Ei, and let a be the average number of admissible alternatives of the Eiwrt m. Then the time complexity of this algorithm is exponential in e, namely ae, which is clearlyexpensive when e gets large (even though our clique cover algorithm is extremely fast, as reportedin [4]). We thus recommend using this algorithm only when e is small.In terms of experimentation with this Program Closing Method, we can report on very satis-factory results (based on a Dialogs-like approach [7] to Steps 1 and 2). Indeed, if given minimallysu�cient (even to a human synthesizer) top-level evidence, this Program Closing Method can assistwith the successful synthesis of programs for all (and similar) relations mentioned in the examplesof this paper.Example 9 Take the following evidence for length (see Example 7):length([]; 0) length([d]; 1) length([e; f]; 2) length([a; b; c]; 3) Suppose Step 1 somehow generates the open program R:length(L;N) N = 0; L = []length(L;N) N > 0; TN is N � 1; HN = ; length(TL; TN); compose2(HN;TL;L)13

and Step 2 somehow abduces the following set E of evidence sets for compose2:fE1 : fcompose2(D; []; [d]) g;E2 : fcompose2(E; [F]; [e; f]) g;E3 : fcompose2(A; [B;C]; [a; b; c]) ggBy the chosen divide-and-conquer schema (see Section 1 and Example 4), the construction modem is compose2(may;must; res). Initially, the size M of the current minimal cover is 1. At eachiteration j, one admissible alternative each from E1 through E3 is picked to form a candidate setSj . In this case, there are maximum 1 � 2 � 6 = 12 iterations, because there are 1 (respectively2 and 6) admissible alternatives of E1 (respectively E2 and E3) (see above for those of E3). At the�rst iteration, suppose the candidate set S1 is:compose2(d; []; [d]) compose2(f; [e]; [e; f]) compose2(a; [b; c]; [a; b; c]) The �rst candidate solution G1 is thus the lg� of S1 wrt the mode above, namely:compose2(H;T; [H jT]) compose2(f; [e]; [e; f]) As jG1j = 2 < M , a better minimal cover is found, so M is set to 2 and Q is set to the currentlybest solution G1. At the second iteration, suppose the candidate set S2 is:compose2(d; []; [d]) compose2(e; [f]; [e; f]) compose2(a; [b; c]; [a; b; c]) The second candidate solution G2 is thus the lg� of S2 wrt the mode above, namely:compose2(H;T; [H jT]) As jG2j = 1 < M , a better minimal cover is found, so M is now set to 1 and Q is now set to thecurrently best solution G2. As the size of this cover is 1, and as there cannot be a cover of sizeless than 1, the loop produces G2 as the best solution Q. Since it is also acceptable (because itsnumber of clauses is less than half the number of elements in E), the set R[Q is returned, whichis indeed a totally correct program for length. 25 Related WorkThere are two kinds of related work. First, in Section 5.1, we review inductive synthesis techniquesthat more or less follow the basic synthesis algorithm of Section 1, by showing how they deviate fromthat algorithm as well as in what sense the Program Closing Method presented here generalizes thecorresponding methods in these techniques, and could thus be plugged into them to increase theirpower (i.e., the size of the class of relations for which programs can be successfully synthesized), ifnot to correct their aws. Then, in Section 5.2, we compare our Program Closing Method to othermethods, which have been proposed independently of particular synthesis techniques.5.1 Related Synthesis TechniquesThis paper is a considerable extension of the second author's previous work on the Synapsesynthesis technique [8, 5], and is based on the advances reported by the �rst author [2]. Synapsefeatures a slight variation of the basic synthesis algorithm, and starts from positive examples as wellas properties (expressed by non-recursive de�nite clauses) as speci�cation of the top-level relation.It is biased by a (hardwired) divide-and-conquer schema, which is however more informative thanthe one in Section 1, in the sense that the compose place-holder is split into a conjunction oftwo place-holders, namely processCompose for combining partial results into overall results, anddiscriminate for discriminating between alternative instances of the former. The key di�erencewith the basic synthesis algorithm is that its Step 2 only abduces examples of processCompose,so that a Step 4 needs to be added to abduce the instances of discriminate, which is done by a14

Proofs-as-Programs Method, using the properties. The program closing method of Synapse, calledthe MSG Method, is a precursor to the version presented here, in the sense that the de�nition ofadmissibility is considerably more powerful now: less evidence is now considered admissible, andwe now also handle clausal evidence, and hence forms of semantic construction. The de�nitions ofconstruction mode and compatibility, as well as the algorithm for computing least generalizations,have also undergone signi�cant improvements.The Dialogs synthesis technique [7] now [24] exploits many advances presented here. It alsofeatures a slight variation of the basic synthesis algorithm, as it starts from no speci�cation at alland collects its (positive) evidence by querying the speci�er. The key di�erence with the basicsynthesis algorithm is that its Step 1 does not instantiate the solve place-holder, so that its Step 2simultaneously abduces evidence of solve and of compose, and that its Step 3 decides which piecesof this evidence are used to instantiate which of these place-holders. Non-deterministic relationscannot be handled, but this can easily be achieved by adding the remaining advances reportedhere.The MetaInduce synthesis technique [13] exactly follows the basic synthesis algorithm, usingthe divide-and-conquer schema of Section 1, and starts from positive and negative examples of thetop-level relation. Examples 1 to 3 can be acted out by this technique, including the erroneousdecision about the lg� of Example 3, due to the absence of the concepts of construction mode,admissibility, and compatibility. Its acceptability criterion simply is that the (unique) lg� shouldnot cover any negative evidence and that the variables of the res parameter are a subset of thevariables of the two must parameters. There is thus no concept of may parameters, and the non-consideration of constants and functors sometimes leads to wrong decisions. Non-deterministicrelations cannot be handled.The Cilp synthesis technique [16] follows the basic synthesis algorithm, except that its Step 3is based on the concept of sub-uni�cation, rather than anti-uni�cation, and that it is its Step 3that instantiates the solve place-holder, rather than its Step 1. The underlying schema is lessinformative than the one in Section 1, in the sense that it has fewer place-holders and does notprescribe the dataow; therefore, a heuristic analysis (based on input-mode declarations) needs tobe done to �gure out the necessary parameters of the compose place-holder, instead of precompilingthis once and for all at the schema-level with more precise constraints on the dataow. Thetechnique cannot induce multi-clausal instances of compose, and its acceptability criterion reducesto the over-generalization check (by rejecting programs that cover some negative evidence) (ofcourse, it is sub-uni�cation that allowed many simpli�cations of this criterion). Non-deterministicrelations cannot be handled.The Crustacean synthesis technique [1] is a successor of the Lopster technique [15], in thesense that a few features have been improved. However, it cannot perform necessary predicateinvention, so that its Step 3 never calls Crustacean recursively. Crustacean is basically apredecessor of Cilp and thus inherits the drawbacks of Cilp.The Thesys synthesis technique [22] is a precursor to all these techniques, but it is set inthe functional programming paradigm (and non-deterministic relations can thus not be handled).In case of an unacceptable lg� at its Step 3, it does not call itself recursively for the necessarypredicate invention, but rather tries to avoid this by generalizing the given examples and re-tryingfrom scratch (also see [6]). For instance, Thesys cannot infer a functional program for reversecorresponding to the naive (quadratic) reverse program of Example 2, but instead infers a non-naive (linear) reverse program based on di�erence lists (i.e., based on the introduction of anaccumulator parameter). However, such an accumulator introduction is not always possible; forinstance, in the absence of background knowledge, synthesizing a product functional/relationalprogram leads to the necessary invention of a sum function/relation, which cannot be avoidedthrough generalization of product. Thesys was the �rst schema-biased inductive synthesizer, andit has been extended, revised, and reformulated over the years as the BMWk technique [14, 17],and was also transposed to a higher-order logic framework [12].Many other techniques of inductive synthesis of recursive programs, although they are not allschema-biased, are reviewed in [9]. 15

5.2 Related MethodsThe Sieres learning technique [23] is not really schema-biased and thus does not really follow thebasic synthesis algorithm. However, it features a few components not unlike our Program ClosingMethod and its conceptual apparatus. Indeed, it also computes the lg� of evidence (which musthowever be unit clauses); it constructs clauses that �t argument dependency graphs (a kind ofprimitive schemas that prescribe the dataow but not the control ow); and it uses input-modedeclarations to guide this construction towards non-over-general clauses. However, there is nonotion of compatibility, and hence no possibility of division of the evidence into cliques, i.e., noinducability of multi-clausally de�ned relations.The Indico learning technique [21] is not at all an instance of the basic synthesis algorithm.However, it features an interesting method for conjecturing the heads of possible clauses, henceproviding already much of the discriminating information that otherwise has to be discoveredtogether with the characterizing information when starting from most-general clause heads. Themethod �rst partitions (i.e., it does not divide) the evidence (which must be unit clauses) intosubsets according to the functors (e.g., type constructors) appearing in it; then it computes thelg� of each obtained subset so as to produce a series of clause heads, from which a top-downclause specialization process can then be started. This method is obviously related to, but morespecialized than, our clique �nding mechanism.6 Future WorkThe ProgramClosing Method presented here is already very powerful (as it generalizes and correctsall \competing" methods known to the authors), but it can nevertheless be extended in variousways, which we examine now. We have already mentioned the existence of a more general de�nitionof construction modes (and hence of admissibility and compatibility) in [3, 4] (where we even discussenhancements thereof), so that more powerful recursive schemas can be supported.Recursive evidence. As of now, the Program Closing Method is restricted to abduced evidencein the form of non-recursive (reconcilable) clauses. There is no theoretical obstacle to also allowingrecursive clauses as evidence (except for the mentioned inadequacy of computing the least gener-alization under �-subsumption of two recursive clauses). In fact, our restriction to non-recursiveclauses was rather motivated by a pragmatic choice: if the abduced evidence were recursive, thenthe evidence for the top-level relation would most likely also have been recursive; but that wouldin turn mean that the speci�er would have to provide such recursive evidence; but it seems (tous) that doing so is tantamount to already writing the program itself and that the speci�er wouldthen most likely not need an inductive synthesizer to write the program.Number of unde�ned relations. The basic synthesis algorithm assumes there is only oneunde�ned relation by the time Step 2 is reached, hence that the top-level relation can be de�ned interms of a chain (rather than a tree) of invented predicates. (Note that, upon recursive invocationof the basic synthesis algorithm, a di�erent schema can be selected at each level.) However, suchis not always the case, as shown by the approach of Dialogs [7, 24]. It would thus be interestingto investigate in full generality how to adapt the Program Closing Method when its evidence isabout multiple unde�ned relations.Background knowledge. An almost certain criticism of our work is that we compute general-izations in the absence of background knowledge (not to mention our usage of the \old-fashioned"�-subsumption order for generality). However, note that we assume that the abduced evidencefor the unde�ned relation already contains all the necessary relations, so that the responsibility ofdiscovering them does not lie with the Program Closing Method, but with its clients, whether theyachieve this by interaction with an oracle (as inDialogs [7, 24]), or by extraction from the evidencefor the top-level relation (as in Synapse [8, 5]), or by some form of background knowledge usage(as in the vast majority of inductive synthesizers). (Also remember that �-subsumption su�ces for16

non-recursive clauses, which are su�cient here, as argued earlier.) So our choices are rather jus-ti�ed, but one can of course investigate the use of background knowledge and/or a stronger orderof generality in order to push the mentioned assumption inside the Program Closing Method.7 ConclusionWe have considered part of the problem of schema-biased inductive synthesis of recursive logicprograms from incomplete speci�cations, such as clausal evidence. The techniques that followthe outlined basic synthesis algorithm usually have a problem with their �nal step, which is thesynthesis of a program for the relation combining the overall result from the partial results obtainedthrough recursion. Evidence for this combination relation can be abduced from the initially givenevidence for the top-level relation. A program for this combination relation can be anything,from a single clause performing a uni�cation (such as for lastElem) to multiple guarded clausesperforming uni�cations (such as for �ltering programs) to recursive programs (such as for naivereverse). Existing methods cannot induce guarded clause programs for this combination relationfrom the abduced evidence. Some existing methods cannot even detect that the combinationprogram itself may have to be recursive and thus they then do not invoke some recursion synthesizer(say themselves).We have introduced our Program Completion Method as a suitable extension and correctionof the existing methods. It is based on our re-de�nition of the concept of least generalization of aclause set [4], namely that it is itself a set of clauses (rather than a single clause), each such clausebeing the classical least generalization of a subset of the given clause set. Membership of a clausein such a subset is subject to its being compatible with all the other clauses, compatibility meaningthat the classical least generalization does not become too general according to some over-generalitycriterion. Since we are here in a highly constrained situation where the combination relation isknown in advance to have a certain dataow between its parameters, we have chosen admissibilitywrt a construction mode as a suitable over-generality criterion [3]. Basically, a construction modefor a relation states which parameters are constructed from which other parameters, also expressingwhether such construction is mandatory or optional. For any recursive program schema, theconstruction mode of the relation combining the overall result from the partial results obtainedthrough recursion can be pre-determined, at the schema level, so that it will be suitable for allparticular programs �tting that schema. Our approach has the advantage of also working in theabsence of negative evidence, so that over-generality is not only measured in terms of non-coverageof such negative evidence.AcknowledgmentsWe thank Baudouin Le Charlier and Pierre-Yves Schobbens (both at the University of Namur,Belgium), Necip Faz�l Ayan (Ankara, Turkey), and the Machine Learning Group at the Universityof Texas at Austin, for their helpful suggestions on a preliminary version of this paper.References[1] D.W. Aha, S. Lapointe, C.X. Ling, and S. Matwin. Inverting implication with small trainingsets. In F. Bergadano and L. De Raedt (eds), Proc. of ECML'94, pp. 31{48. LNAI 784,Springer-Verlag, 1994.[2] E. Erdem. An MSG Method for Inductive Logic Program Synthesis. Senior Project Final Re-port, Ankara (Turkey), May 1996.[3] E. Erdem and P. Flener. A New Declarative Bias for ILP: Construction Modes. In preparation.[4] E. Erdem and P. Flener. A New Heuristic to Use Least Generalizations in ILP. In preparation.[5] P. Flener. Logic Program Synthesis from Incomplete Information. Kluwer, 1995.17

[6] P. Flener. Predicate invention in inductive program synthesis. Technical Report, 1995.(http://www.csd.uu.se/�pierref/pub/TRpredInv.ps.z)[7] P. Flener. Inductive Logic Program Synthesis with Dialogs. In S. Muggleton (ed), Proc. ofILP'96, pp. 175{198. LNAI 1314, Springer-Verlag, 1997.[8] P. Flener and Y. Deville. Logic program synthesis from incomplete speci�cations. J. of Sym-bolic Computation 15(5{6):775{805, May/June 1993.[9] P. Flener and S. Y�lmaz. Inductive synthesis of recursive logic programs: Achievements andprospects. Accepted for publication in J. of Logic Programming.[10] P. Flener, K.-K. Lau, and M. Ornaghi. On correct program schemas. In N.E. Fuchs (ed), Proc.of LOPSTR'97, pp. 128{147. LNCS 1463, Springer-Verlag, 1998.[11] C. Gervet. Cojunto: Constraint logic programming with �nite set domains. In M. Bruynooghe(ed), Proc. of ILPS'94, pp. 339{358. The MIT Press, 1994.[12] M. Hagiya. Programming by example and proving by example using higher-order uni�cation.In M.E. Stickel (ed), Proc. of CADE'90, pp. 588{602. LNCS 449, Springer-Verlag, 1990.[13] A. Hamfelt and J. Fischer Nilsson. Inductive metalogic programming. In S. Wrobel (ed), Proc.of ILP'94, pp. 85{96. GMD-Studien Nr. 237, Sankt Augustin (Germany), 1994.[14] Y. Kodrato� and J.-P. Jouannaud. Synthesizing LISP programs working on the list levelof embedding. In A.W. Biermann, G. Guiho, and Y. Kodrato� (eds), Automatic ProgramConstruction Techniques, pp. 325{374. Macmillan, 1984.[15] S. Lapointe and S. Matwin. Sub-uni�cation: A tool for e�cient induction of recursive pro-grams. In Proc. of ICML'92, pp. 273{281. Morgan Kaufmann, 1992.[16] S. Lapointe, C.X. Ling, and S. Matwin. Constructive inductive logic programming. In S. Mug-gleton (ed), Proc. of ILP'93, pp. 255{264. Technical Report IJS-DP-6707, J. Stefan Institute,Ljubljana (Slovenia), 1993.[17] G. Le Blanc. BMWk revisited: Generalization and formalization of an algorithm for detect-ing recursive relations in term sequences. In F. Bergadano and L. De Raedt (eds), Proc. ofECML'94, pp. 183{197. LNAI 784, Springer-Verlag, 1994.[18] S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods. J. ofLogic Programming 19{20:629{679, May/July 1994.[19] G.D. Plotkin. A note on inductive generalization. In B. Meltzer and D. Michie (eds), MachineIntelligence 5:153-163. Edinburgh University Press, Edinburgh (UK), 1970.[20] I. Stahl. Predicate Invention in ILP: An Overview. Technical Report 1993/06, Fakult�at Infor-matik, Universit�at Stuttgart (Germany), 1993.[21] I. Stahl, B. Tausend, and R. Wirth. Two methods for improving inductive logic programmingsystems. In P. Brazdil (ed), Proc. of ECML'93, pp. 41{55. LNAI 667, Springer-Verlag, 1993.[22] P.D. Summers. A methodology for LISP program construction from examples. J. of the ACM24(1):161{175, Jan. 1977.[23] R. Wirth and P. O'Rorke. Constraints for predicate invention. In S. Muggleton (ed), InductiveLogic Programming, pp. 299{318. Volume APIC-38, Academic Press, 1992.[24] S. Y�lmaz. Inductive Synthesis of Recursive Logic Programs. M.Sc. thesis, Ankara (Turkey),1997. (http://www.csd.uu.se/�pierref/pub/SerapMSc.ps.z)
18

