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Abstract

We consider part of the problem of schema-biased inductive synthesis of recursive logic pro-
grams from incomplete specifications, such as clausal evidence (for instance, but not necessar-
ily, ground positive and negative examples). After synthesizing the base clause and introducing
recursive call(s) to the recursive clause, it remains to combine the overall result from the partial
results obtained through recursion, so as to complete the recursive clause. Evidence for this
combination relation can be abduced from the initially given evidence for the top-level relation.
A program for this combination relation can be anything, from a single clause performing a
unification (such as for lastElem) to multiple guarded clauses performing unifications (such
as for filtering programs) to recursive programs (such as for naive reverse). Existing meth-
ods cannot induce guarded clause programs for this combination relation from the abduced
evidence. Some existing methods cannot even detect that the combination program itself
may have to be recursive and thus they then do not recursively invoke themselves the overall
recursive program synthesizer. We introduce our Program Completion Method as a suitable
extension and generalization of the existing methods.

1 Introduction

We consider part of the problem of inductive synthesis of recursive programs from incomplete
specifications [9]. This is a machine learning problem, and we consider it in the logic programming
framework, taking thus an ILP (Inductive Logic Programming) approach [18]. Moreover, note
that we only focus on the learning of recursive programs, which is what we call inductive program
synthesis. This is an important problem because necessarily invented predicates have recursive
programs [20]. Yet most general-purpose ILP techniques are outperformed on this task by special-
purpose recursion synthesizers [9], so that the latter seem preferable (as auxiliary tools) in case
necessary predicate invention is detected or conjectured. Every now and then, inductive synthesiz-
ers appear, having the following basic synthesis algorithm [9], given evidence for a top-level relation
r (for instance, but not necessarily, in the form of ground positive and negative examples):

1. Schema-biased ! creation of an open [10] recursive program that has two clauses for r, namely
a non-recursive one for a base case and a recursive one for a step case. The program is open
in the sense that its recursive clause for r refers to a relation ¢ combining the partial results
(stemming from the recursive calls) into the overall results, which relation is still undefined
(i.e., it has no clauses yet).

2. Abductive generation of evidence for ¢ by running the open program on the evidence for 7.

3. Inductive generalization of the abduced positive evidence and analysis of the result: if “ac-
ceptable”, use it as a definition of ¢, thus finishing the synthesis; otherwise, conjecture
necessary predicate invention [20] and recursively invoke the basic synthesis algorithm on the
abduced positive and negative evidence, yielding a program for ¢, which, added to the initial
program, provides a program for r. In any case, this amounts to closing the open program.

LA schema is a program encoding the control flow and dataflow of a class of programs (e.g., divide-and-conquer)
by abstracting away their specific computations and data structures [10].



Some synthesizers of this category are THESYS [22], BM Wk [14, 17], SYNAPSE [8, 5], LOPSTER [15],
CILP [16], CRUSTACEAN [1], METAINDUCE [13], D1ALOGS [7, 24], etc (see Section 5.1 for details).
In order to illustrate this basic synthesis algorithm and to expose its potential weak spots, let us
study a few sample runs. However, in this paper, we will almost completely ignore the mechanics
of Steps 1 and 2: there are various ways of achieving the results reported hereafter (or similar
ones) and we invite the reader to accept them as such, because our focus will be mostly on Step 3.

Example 1 Starting from the informal specification:

lastElem(E, P, L) iff the last element of list L is E,
and list P is the corresponding prefix of L

the specifier could give the following specification by examples:
lastElem(a,] ], [a])
lastElem(b,[c], [c, b]) —lastElem(g, [h], [g, h])
lastElem(d, [f, €], [f,e,d])

Suppose Step 1 creates the open program (the undefined relation is called cons for convenience,
since it is similar to the cons in Lisp):

lastElem(E,[ ],[E]) +
lastElem(E,[HP|TP],L) < lastElem(E,TP,TL),cons(HP,TL, L)

Suppose Step 2 abduces the following examples for the undefined relation:

cons(c, [b], [c, b]) —cons(h, [g], [9, h])
cons(f,[e,d],[f,e,d])
Suppose Step 3 induces the least generalization under #-subsumption (denoted by lgf, see Sec-

tion 2.2) of the positive examples: the result cons(A, [B|T],[A, B|T]) is “acceptable” and can thus
be unfolded into the second clause, yielding the final program:

lastElem(E,[ ], [E]) +
lastElem(E,[HP|TP],[HP, B|T]) < lastElem(E,TP,[B|T])

which is correct with respect to (wrt) the informal specification above. O
Example 2 Starting from the informal specification:
reverse(L, R) iff list R is the reverse of list L

the specifier could give the following specification by examples:

reverse([ ],[])

reverse([a], [a])

reverse([b, c], [c, b]) —reverse([g, ], [g, h])
reverse([d, e, f],[f,e,d])

Suppose Step 1 creates the open program (the undefined relation is called lastElem for conve-
nience):

reverse([ ],[]) +
reverse([HL|TL], R) < reverse(TL,TR),lastElem(HL,TR, R)

Suppose Step 2 abduces the following examples for the undefined relation:

lastElem(a,| ], [a])
lastElem(b,[], [c,b]) —lastElem(g, [h],[g, h])

lastElem(d,[f, €], [f,e,d])

Suppose Step 3 induces the lgf of the positive examples: the result lastElem(A, T, [B|V]) is not
“acceptable”. Recursive invocation of the basic synthesis algorithm on the abduced examples yields
the scenario of Example 1, whose final program, added to the clauses for reverse above, yields a
final program for reverse that is correct wrt the informal specification above. O



So far, we have shown two successful runs of the basic synthesis algorithm, the latter featuring a
recursive invocation of this algorithm. It remains however to clarify the criterion of “acceptability”
of an 1gf. There are many definitions for this, and we will come back to it in Section 3. Basically,
one would want the “output” terms of the 1gf to be constructed from its “input” terms: for
instance, in cons(A, [B|T],[A, B|T]), “output” term [A, B|T] is constructed using “input” terms
A and [B|T], whereas in lastElem(A,T,[B|V]), “output” term [B|V] is not constructed using
“input” terms A and T'. Also, one would want the 1gf not to cover any abduced negative evidence
for the undefined relation.

Interlude: A divide-and-conquer schema. In all runs shown here, the schema underlying
Step 1 is a divide-and-conquer schema, a quite general expression of which is as follows:

r(X,Y,Z) «
solve(X,Y, Z)
r(X,Y,Z) «
— — —
decompose(X, HX ,TX), % HX=HX,,...,HX},
—
r(TX1,TY:, Z), .., r(T X0, TY:, Z), % TX=TX,,...,TX;
— —
compose(HX,TY Y, Z) NTY=TY1,...,TY;

Parameter X of r is the induction parameter (as it is decomposed for recursive calls), parameter
Y is the optional result parameter (as it is constructed from the partial results T'Y; obtained
through recursion), and parameter Z is the optional passive parameter (as it is not decomposed
for recursive calls, but serves to solve the base case and/or to compose the partial results 7'Y; of
the step case into Y). An even more general expression of this schema would parameterize the
numbers of induction, result, and passive parameters [5]. Also, in the examples above, Step 1 of
the basic synthesis algorithm instantiated the h, t, r, solve, and decompose place-holders, so that
the undefined relation actually was the compose place-holder. Using another strategy [10] on the
same schema, Step 1 could have instantiated h, t, r, solve, and compose, so that the undefined
relation actually is decompose. In either strategy, the instantiation of decompose (resp. compose)
at Step 1 can be performed by simple re-use from a repository of “classical” such operators, the
remaining compose (resp. decompose) being then instantiated at Steps 2 and 3. Since most divide-
and-conquer programs have either a “classical” decompose or a “classical” compose, these two
strategies cover a lot of ground. Of course, other schemas and strategies can underlie Step 1, such
as the accumulator schema [6].

Let us continue now and show an unsuccessful run of the basic synthesis algorithm.
Example 3 Starting from the informal specification:
delOddElems(L, R) iff list R is integer-list L without its odd elements

the specifier could give the following specification by clausal evidence (note the arrows now):

delOddElems([ ],[])

delOddElems([1],[]) < + delOddElems([5], [5])
delOddElems([2],[2]) <

delOddElems([3,4],[4]) «

delOddElems([6,7,8],[6, 8]) <

Suppose Step 1 creates the open program (the undefined relation is called combine for convenience):

delOddElems([ ],[]) «
delOddElems([HL|T L], R) < delOddElems(TL,TR),combine(HL,TR, R)

Suppose Step 2 abduces (with the help of the specifier and/or background knowledge) the following
clausal evidence for the undefined relation:



combine(1,[],[]) < odd(1) « combine(5,[ ], [5])
combine(2,] ],[2]) « even(2)

combine(3, 4], [4]) < odd(3)

combine(6, [8],[6, 8]) + even(6)

Suppose Step 3 induces the lgf of the left-hand (positive) evidence: the result combine(X,T,V) +
is not “acceptable”. However, recursive invocation of the basic synthesis algorithm on all the
abduced evidence will not yield a final program that is correct wrt the informal specification
above. In fact, the combine relation should be defined as follows:

combine(I,L,L) + odd(I)
combine(I, L, [I|L]) < even(I)

Note that each of these clauses is the 1gf of some subset of the left-hand evidence. Also notice
that combine is thus defined as the conjunction of several guarded clauses, with bodies involving
relations other than combine (namely guards, or tests), rather than as a unit clause (like cons in
Example 1) or as two clauses, one of which being recursive (like lastElem in Example 2). O

Objectives and organization of this paper. Basing Step 3 of the basic synthesis algorithm on
the computation of the g of all the abduced positive evidence (when it just consists of examples)
thus rests on two restrictive assumptions:

1. the undefined relation is definable by a single clause;
2. the undefined relation is definable by using only unification.

The combination of these assumptions amounts to saying that the undefined relation is definable
by a unit clause. However, as Example 3 shows, this is not always the case. In this paper, we will
mostly address Assumption 1, namely by showing how a multi-clausal (i.e., conjunctive) definition
of the undefined relation can be inductively inferred. This basically requires a re-definition of the
concept of 1g#: since unique, over-general lgfs, such as the one in Example 3, have to be avoided,
the idea is to re-define the lgf of a clause set C as being a minimal-sized set of e clauses ¢;, where
e < |C|, such that each ¢; is the classical least generalization (under #-subsumption) of some subset
C; of C, and such that the union of the C; is C (i.e., |J;_, C; must form a cover of C). The clauses in
each C; must be two by two “compatible”, in the sense that they construct their result parameters
in the same way. “Compatibility” of two clauses is achieved if their classical 1gf also constructs
its result parameters in the same way: we approximate this by requiring that this 1gf constructs
its result parameters in an “admissible” way, namely by respecting certain dataflow constraints
captured in what we call a “construction mode”. The generalizing clauses ¢; ought to be minimal
in number, because otherwise equality, for instance, would be an acceptable implementation of
the re-defined operator (the chosen subsets would then all be singleton sets containing one of
the clauses of C), so that no generalization would then have been performed. Since we do not
constrain the C; to form a partition of C, a clause of C may participate in several C;: this feature
may favorably increase the generality of the ¢; (within the bounds of admissibility) compared to
an approach by simple partitioning, because the C; may thus be larger; also, this feature does not
increase the number of C; compared to an approach by simple partitioning, because every partition
is a cover and we look for a minimal cover (i.e., a cover with the smallest number of subsets).
Such lg# clauses are non-recursive if the clauses in C are non-recursive, but it may happen that the
defined predicate does not have a correct non-recursive definition (given the current background
knowledge): this is an undecidable property [20] and thus needs to be approximated by a heuristic,
which we call the “acceptability” criterion.

In the rest of this paper, we will first give, in Section 2, precise meanings to the words between
double quotes. Then, in Section 3, we can design a powerful new method for Step 3, called the
Program Closing Method. It turns out that this method also lifts Assumption 2, but this requires
that Step 2 provides evidence for the undefined relation that already contains all relations other
than equality, or that a Step 4 be added to really close the program by adding the missing guard
literals. Our method can handle clausal evidence rather than just examples. We aim at making
our definitions and method as general as possible, so that they can be plugged into any inductive
synthesizer of the considered kind, whether existing or forthcoming: therefore, independence of the



schema underlying Step 1, independence of the place-holder representing the undefined relation,
and independence of the mechanisms for Steps 1 and 2 will be achieved. In Section 4, we extend
this method so that it can cope with non-deterministic programs. In Sections 5 and 6, we review
related work and outline future work, respectively, and finally we conclude in Section 7.

2 Basic Concepts

After introducing the notation used (in Section 2.1), we define the basic concepts underlying our
Program Closing Method, namely generality (in Section 2.2), construction modes (in Section 2.3),
admissibility (in Section 2.4), and compatibility (in Section 2.5). This allows us to introduce our
re-definition of the concept of least generalization of a clause set (in Section 2.6).

2.1 The Notation

In expressions (i.e., literals or terms) appearing in logic programs, symbols starting with uppercase
letters designate (individual) variables, whereas all other symbols designate either functions or
relations, the distinction (if needed) being always clear from context. All these symbols may be
subscripted with natural numbers or mathematical variables (ranging over natural numbers).

When we want (or need) to group several terms into a single term, we represent this as a tuple,
using angled brackets. For instance, (f(a,22),9(X,Y,Z)) is a term representing the couple built
of the two terms f(a,22) and ¢g(X,Y, Z).

When we do not want to (or cannot) fix the arity of a relation symbol, we use a
ellipsis notation in conjunction with subscripted variables (ranging from 1) as long-hand,
and a vector notation as short-hand. For instance, atom r(X,?,Z) is an abbreviation for
r(X,Y1,...,Y,,Z1,...,Z.), where mathematical variables y and z must be introduced in the con-
text, and can be particularized to any natural number.
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2.2 Generality

For the sake of our Program Closing Method, a very simple generality order will suffice, namely
f-subsumption [19]. Let us first repeat its definition.

Definition 1 (Term/literal generality)

A term g is more general than a term s if there exists a substitution o such that s = go. Similarly
for literals, provided they have the same sign, the same relation symbol, and the same arity.

The least generalization of two terms s and ¢, denoted by lgt(s,t), is a term g that is more general
than s and ¢, but less general than any other term w that is more general than s and ¢; it is
always defined and is any new variable if s and ¢ have different function symbols or different
arities. Similarly for the least generalization of two literals a and b; it is denoted by lgl(a,b) and
is undefined if @ and b have different signs, different relation symbols, or different arities.

For instance, term/atom f(X,4,Y) is more general than term/atom f(2,4,72), with
o = {X/2,Y/Z}. The least generalization of terms/atoms f(1,E,s,[ ],L,[a,b]) and
f(1,[a,b],X,[d], M, E) is term/atom f(1,Q,W,T,Y, R). Note that ) and R are different variable
symbols, even though both generalize terms E and [a,b] (though in different orders): otherwise
the two given terms/atoms would not be more specific than their least generalization.

We can now define a simple order of generality for clauses [19]. We assume that clauses are
seen as sets of (positive and negative) literals. In this paper, we only consider definite clauses,
rather than full clauses.

Definition 2 (Clause #-subsumption)
A clause g 8-subsumes a clause s if there exists a substitution o such that go C s.
We also say that g is more general than s under 0-subsumption.

For instance, the clause combine(l,L,[I|L]) <+ even(I) 6-subsumes the clause
combine(X,[HL|TL],[X,HL|TL)) < even(X),list(T'L) with o = {I/X,L/[HL|TL]}.



When a clause g #-subsumes a clause s, then g is more general than s, in the sense that
g = s. However, when ¢ is more general than s, then g does not necessarily §-subsume s [19].
This may happen when ¢g and s are recursive. For instance, take g as p(f(X)) < p(X) and s
as p(f(f(X))) «+ p(X). So #-subsumption is only an approximation of a generality order, but a
correct one, and even a sufficient one for our purposes (as we do not consider recursive clauses).

As a partial order, the #-subsumption relation induces a lattice on the clause set, with the empty
clause as the unique top element. A constructive definition of the least upper-bound-operator for
this lattice emerges as a property [19]:

Property 1 (Least generalization, under §-subsumption, of two clauses)
The least generalization under 8-subsumption (or lgf) of two clauses ¢ and d, denoted by lgf(c, d),
is the unique (up to variable renaming) clause {lgi(l,m) | l € c A m € d}.

For instance, the 1gf of the clauses combine(2,[ ], [2]) < even(2) and combine(6,[8],[6,8]) <
even(6) is combine(I, L, [I|L]) < even(I).

We also need to compute the least generalization of a non-empty set of clauses. Again, a
constructive definition of this operator emerges as a property:

Property 2 (Least generalization, under §-subsumption, of a clause set)
The least generalization under 6-subsumption of a non-empty set C = D U {c} of clauses, denoted
by 1g0(C), is lgf(Igh(D), c) if D is non-empty, and ¢ otherwise.?

This is what we here call the classical definition of this concept. One of its problems is that
the single clause that #-subsumes all the clauses in the set C is often too general, as illustrated in
Example 3. In Section 2.6, we will propose a re-definition of this concept.

2.3 Construction Modes

Informally, a construction mode [3] for a relation states which parameters are constructed from
which other parameters, and also expresses whether such construction is mandatory or optional.
For instance, in append, the third parameter is mandatorily constructed from the first two pa-
rameters. Contrary to the well-known input modes (or call modes), there is no notion of different
usages of a relation according to construction modes. Indeed, construction modes are a declarative
notion, whereas input modes are an operational notion. However, a construction mode may not
be unique for a given relation, because there may be several ways of expressing its dataflow. For
instance, in reverse, the second parameter is mandatorily constructed from the first parameter,
or vice-versa.

Definition 3 (Construction modes)

A construction mode m for a relation r of arity n is a total function from the set {1,2,...,n} into
the set {may, must,res}, such that res is in the range of m iff may or must is in the range of m.
We say that m(i) is the mode of the i*® parameter of r.

A construction mode m is here written in the more suggestive form r(m(1),...,m(n)). Since
we do not consider input modes in this paper, we often simply speak about modes here.

For instance, combine(must, must,res) is a construction mode, meant to express that the
third parameter is a result that must be constructed from the first two parameters. Note that
p(may, must) is not a mode, because no parameter is being designated as the result of construction
from the two given parameters. Also, ¢(res) is not a mode, because it does not indicate from what
parameters the given result parameter must or may be constructed.

The intended semantics of a construction mode is thus as follows:

e mode res means the parameter in the corresponding position is the result parameter to be
constructed from the other parameters;

e mode must means the parameter in the corresponding position is mandatory in constructing
the parameter in the corresponding position of res;

2Note that the outer, binary occurrence of Igd refers to the operator used in the previous property. We thus use
the same name (though with different arities) for both operators, assuming that no confusion will arise.



e mode may means the parameter in the corresponding position is optional for constructing
the parameter in the corresponding position of res.

We will formalize all this in the following, via the concept of admissibility. But let us first see a
few other examples of construction modes.

Example 4 Let us come back to the divide-and-conquer schema of Section 1. Using general
knowledge of the divide-and-conquer design methodology, it is possible to conjecture that, in

— —
general, the construction mode of compose(HX,TY,Y,Z) is

L, —
compose(may, must, res, may)

where nﬁy denotes may, . .., may with h occurrences of may, and mzzst denotes must, ..., must
with ¢ occurrences of must. (Remember that h is the number of heads HX;, and that ¢ is the
number of tails 7X;, hence also the number of tails T'Y;.)

The tails TY; being obtained through recursion, they must all somehow be used to construct
Y, because some of the recursive calls would otherwise have been useless.

The heads H X; need not always be used to construct Y, as it all depends on the particular rela-
tion. For instance, the mode for combine(H L, TR, R) (see Example 3) is combine(must, must, res),
the mode for lastElem(HL, TR, R) (see Example 2) is lastElem(must, must,res), and the mode
for cons(HP,TL,L) (see Example 1) is cons(must, must,res). Also consider the program for
length(L, N) that expresses N as a Peano number and that has L as induction parameter: its
instance of compose is addOne(HL,TN, N) (defined by the clause addOne(_, X, s(X)) < ) with
mode addOne(may, must,res). So there is no fixed mode for the heads of the induction parameter,
and their most general mode thus is may.

The passive parameter Z also need not always be used to construct Y. For instance,
for insert(I,L,R), when L is the induction parameter, R the result parameter, and I the
passive parameter, the instance of compose is cons'(HL,TR,R,I) (defined by the clause
cons'(H,T,[H|T],-) < ) with mode cons’'(must, must,res, may). However, for plateau(N, E, P)
(which holds iff non-empty list P has exactly N elements, all equal to term E), when N is
the induction parameter, P the result parameter, and E the passive parameter, the instance
of compose is cons" (HN,TP, P, E) (defined by the clause cons”(_,T,[H|T|,H) < ) with mode
cons” (may, must, res, must). So there also is no fixed mode for the passive parameter, and its

most general mode thus also is may.
— —

Similarly, one can argue that, in general, the construction mode of decompose(X, HX,TX) is

—_—  —
decompose(res, must, must)
that the mode of solve(X,Y, 7) is
solve(may, res, may)

and that the mode of r(X,Y, Z) is
r(may, res, may)

All this can be even further generalized, namely for a more general divide-and-conquer schema
covering arbitrary m-ary relations rather than the unary, blnary, and ternary relations covered by
the schema given above. One would then have a vector X of z induction parameters, a vector ¥
of y result parameters, and a vector Z of 2 passive parameters, such that n =z +y + 2z > 1. The
resulting general modes for its place-holders become quite complicated to express (one must have
recourse to tupling terms into a single term), but are beyond the scope of this paper, our objective
here being merely to establish some simple concepts. O

The key issue is that construction modes can easily be pre-determined for the place-holders
of any schema, no matter how complex they get, and that they can then be simply injected as
arguments into the Program Closing Method described in Section 3. This means that, for the
basic synthesis algorithm, the provider of evidence for the top-level relation r does not have to



provide the mode for the open relation ¢, because it is already pre-computed once-and-for-all by
the provider of the used schema.

Let us finish this sub-section with some useful notation. Let m be a mode for a relation r,
and let r(t1,...,t,) be the head of some definite clause. Then let Must = (t; | m(i) = must).
Similarly for May and Res.

For instance, let the construction mode be combine(must, must,res) and let the clause be
combine(6, [8], [6,8]) + even(6). We then have that Must = (6, [8]), May = (), and Res = ([6, 8]).

2.4 Admissibility of a Clause wrt a Construction Mode

The concept of admissibility captures what it means for a definite clause to satisfy a construction
mode for its relation. First, we introduce a few necessary concepts towards its definition.

Let r(t1,...,t,) < B be a definite clause, where B is a conjunction of atoms, called the body
of the clause, and r(ty,...,t,) is called the head of the clause. It is crucial that body B does not
contain any equality atoms, because otherwise insufficient structure would be in the parameters
in the head. For instance, instead of insert(X,[Y|L],R) «< X < Y,R = [X,Y|L], we prefer
insert(X,[Y|L],[X,Y|L]) + X <Y.

Definition 4 (Proper and reconcilable clauses)
We refer to an equality-free definite clause as a proper clause.
Two proper clauses are reconcilable if they define the same relation.

We also need some concepts for term inspection:

Definition 5 (Leaves and vertices of a term)

The leaves of a term ¢, denoted by leaves(t), are the set of the variables and constants in ¢.

The vertices of a term t, denoted by vertices(t), are the multi-set of the variables and functions
(including the constants) in ¢.

For instance, leaves(1- B-1-nil) = {1, B, nil}, and leaves(a-T) = {a, T}, whereas vertices(1 -
B-1-nil)={1,-,B,-,1,-,nil}, and vertices(a - T) = {a,-,T}.
Now, here is our (here suitably simplified) definition of admissibility [3]:

Definition 6 (Clause admissibility and clause set admissibility)
A proper clause r(t1,...,t,) < B is admissible wrt a mode m for r if the following conditions hold:

vertices(Must) C vertices({(Res, B'))
leaves(Res) C leaves({May, Must,B',0,nil,...))

where C denotes multi-set inclusion, and B’ is a tuple built of the atoms (seen as terms) of B.
A set of reconcilable clauses is admissible wrt a mode m for the relation in their heads if each of
its clauses is admissible wrt m.

For instance, the clause min(X,Y, X) + X <Y is admissible wrt min(must, must,res), the
clause insert(X,[Y|L],[X,Y|L]) + X < Y is admissible wrt insert(must, must,res), and the
clause addPlateau(a,[ ],[a,s(0)]) + is admissible wrt addPlateau(may, must,res). However,
the clause insert(X,[Y],[X, Z]) « is not admissible wrt insert(must, must,res).

Note that the two conditions are more general than sub-term (i.e., sub-tree) checking. This
additional generality is crucial in many cases. For instance, in atom ef face(d, [g, e, d], [g, €]), the
vertices of [g, e] are a sub-multi-set of the vertices of [g, e, d], but [g, €] is not a sub-tree of [g, e, d].

2.5 Compatibility

Intuitively, compatibility of two clauses is meant to express that these two clauses perform their
result construction in the same way. Since this is a rather hard to define notion, we want to
approximate it by requiring that the least generalization of these two clauses also performs the
result construction in the same way. Even this is hard to capture, but it can also be approximated,
namely by requiring that this least generalization not be overly general. For instance, admissibility
of a proper clause wrt a construction mode for the relation in its head is such an over-generality
criterion. Hence the following (here suitably simplified) definition [4]:



Definition 7 (Clause compatibility and clause set compatibility)

Two reconcilable clauses ¢ and d are compatible (with each other) wrt a mode m for the relation
in their heads if [gf(c, d) is admissible wrt m. We also say that ¢ is compatible with d wrt m, and
vice-versa.

A non-empty set C of reconcilable clauses is compatible wrt a mode m for the relation in their
heads if any two clauses in C are compatible wrt m.

For instance, the clauses combine(2,[ |, [2]) < even(2) and combine(6,[8],[6,8]) < even(6)
are compatible wrt combine(may, must,res), because their 1gf, namely combine(I,L,[I|L]) +
even(I), is admissible wrt that mode.

Note that a singleton set is trivially compatible wrt any mode. When a mode m has been
clearly stated in context, we often drop the qualifier “wrt mode m”, both for admissibility and for
compatibility. The compatibility relation is symmetric, but it is neither reflexive nor transitive,
and even should not be so [4].

2.6 A Re-Definition of the Least Generalization of a Clause Set

As argued in Section 1, the concept of least generalization of a clause set ought to be re-defined
such that it yields a minimal-sized set of clauses (rather than a single clause), each of which being
not too general. We have by now precisely defined all the vague concepts (namely construction
mode, admissibility, and compatibility) at the end of the introduction, so that we are now able to
propose our re-definition, such that it fits all our requirements:

Definition 8 (Least generalization, under #-subsumption, of a clause set, wrt a construction
mode)
The least generalization under 8-subsumption of a non-empty set C of clauses wrt a construction
mode m, denoted by lgf(C,m), is the set of classical least generalizations under #-subsumption of
the node cliques of the graph with node set C and edge set induced by the compatibility relation
wrt m.

For instance, the least generalization wrt combine(must, must,res) of the four (left-hand)
combine clauses in Example 3 is indeed made of the two clauses mentioned in that example.

We have elsewhere given an efficient approximation algorithm solving this NP-complete problem
(for any over-generality criterion) [4].

3 The Program Closing Method

Given:
e an open logic program R for a relation r, with no clauses for some relation ¢,
e a set &£ of reconcilable non-recursive clauses for ¢, called the evidence set,
e 3 construction mode m for ¢,

the objective of the Program Closing Method is to infer a closed program R' = R U Q for r, where
Q is a logic program for ¢ that is more general than £ (in the sense that Q |= £).

Of course, we do not want Q to be equal to £, nor to cover all syntactically possible atoms for
qg- What is wanted is rather that Q covers an “extension” of £, such that this “extension” coincides
with the unknown intended relation g.

This problem statement is not quite the same as the one of the general ILP task (where
R is empty), because it may not “solve” the ILP problem, nor the disjunctive predicate learning
problem, by itself, but only as an auxiliary to more powerful and intricate techniques. We here only
target highly constrained situations, where the open relation is of the kind where some parameter
is indeed mandatorily constructed from some parameters and optionally from others, and such that
the corresponding construction mode is known in advance (say by pre-determination based on an
underlying program schema).



The first step of the Program Closing Method is to assume that Q = lg#(E™, m), where £7 is
the positive evidence of £.

For instance, from the positive cons evidence in Example 1 and the mode cons(rmust, must, res),
this yields the single clause cons(A, [B|T],[A, B|T]) < as least generalization, which is accept-
able (as it gives rise to a partially correct and complete program for lastElem). Also, from
the positive combine evidence in Example 3 and the mode combine(must, must,res), this yields
the two clauses combine(I,L,L) + odd(I) and combine(I,L,[I|L]) + even(I) as least gener-
alization, which is also acceptable. But, from the positive lastElem evidence in Example 2
and the mode lastElem(must, must,res), this yields the three clauses lastElem(a,][ ],[a]) « ,
lastElem(b,[c],[c,b]) « , and lastElem(d,[f,e],[f,e,d]) < , i.e., the very input evidence, and
this is not acceptable, because adding these clauses to the reverse ones will not yield a complete
program for reverse (though a partially correct one).

Hence, the initial assumption is not always acceptable. Indeed, sometimes it is necessary to
reject it and instead invoke an entire new synthesis of a recursive program from the evidence for
q.- Note that the given abduced evidence is always non-recursive, and also note that the least
generalization (under f-subsumption) of non-recursive clauses cannot be recursive, even for our
re-definition of this concept. Rejection plus auxiliary synthesis corresponds to necessary predicate
invention, ‘necessary’ in the sense that a recursive program Q for ¢ cannot be eliminated by
unfolding for occurrences of ¢ in R (inducing such a Q is also called constructive induction). If
the result Q is deemed acceptable, then relation/predicate ¢ is ‘unnecessary’ in the sense that
the non-recursive program Q can be eliminated by unfolding for occurrences of ¢ in R. Now,
it is in general undecidable whether predicate invention is necessary (via rejection) or not (via
acceptance) [20]. So a heuristic is needed to judge the output of this first computation of the
Program Closing Method, and we call this heuristic the acceptability criterion.

Our proposed acceptability criterion is as follows. The program Q induced so far is acceptable
if the following conditions hold:

1. program Q does not cover any of the negative evidence for ¢;
2. the number of clauses in @ is “not too large.”

The first condition is obvious, as it avoids over-generalization. (It could by the way be pushed into
the compatibility criterion, but that would mean much more non-coverage checks than the proposed
unique final check.) Note that both Igd(£+,m) and the acceptability criterion can be evaluated
in the absence of negative evidence. The proposed work is thus suitable for the current trend on
learning from positive evidence only, as negative evidence is hard to come by in some application
settings. The second condition needs to be refined for each particular synthesis technique. For
instance, if only carefully chosen evidence is presented to it, say e clauses, then “not too large”
could mean “less than e+2”. An alternative way of expressing this idea is to require that no clique
has only one element (remember that each clause of Q is the 1gf of some clique).

Example 5 Let £ be the following evidence set for insert:

insert(1,[],[1]) < (E1)
insert(3,[4],[3,4]) < (E2)
insert(4,[2],[2,4]) < (E3)
insert(6,[5,7],[5,6,7]) « (E4)
insert(5,[1,3],[1,3,5]) « (E5)
insert(7,(3,6,8],[3,6,7,8]) «  (Es)

and let the construction mode be insert(rmust, must,res). Then we get the following three cliques:
& ={Ey, E»}, & ={E3,E}, and £ = {E5, Eg}, and their least generalization is:

insert(X, L, [X|L]) <

insert(X,[Y|L],[Y, X|L]) +

insert(X,[Y, Z|L], Y, Z, X|L]) +
But this program does not satisfy our acceptability criterion, because the number of clauses is not
less than 3 (which is half the size of the evidence set). In this program, the i clause achieves
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insertion of a number into the i*" position of a list of numbers, but this program is not as general
as we want because it does not cover insertion of a number into the i*" position of a list of numbers
where ¢ > 3. This cannot be done with a finite non-recursive program (unless suitable relations
are available), so the initial assumption is inadequate and detecting this is what the acceptability
criterion is for. O

The second step of the Program Closing Method is thus to keep the program Q of the first step
if the acceptability criterion is satisfied, and otherwise to recompute it as @ = ISRLP(E), where
ISRLP is some inductive synthesizer of recursive logic programs (which can of course be the same
as the one that gave rise to the open program that needed completion in the first place).

4 The Case of Non-Deterministic Programs

The (positive) evidence abduced by Step 2 of the basic synthesis algorithm is not always in the
form of proper clauses, and the Program Closing Method is then inapplicable as it stands. For
the divide-and-conquer schema, such is the case when the top-level relation r is non-deterministic
given particular values for the chosen induction parameter and passive parameter (if any): the
recursive call to the top-level relation for a tail of the induction parameter (obtained through
decompose) may then yield (upon backtracking) several values for the chosen result parameter,
but only one of them is actually adequate to construct (through compose) a result corresponding
to the un-decomposed induction parameter. Several such values lead to a disjunction of abduced
evidence, or to overly general abduced evidence with variables instead of more specific terms in
the head.

Example 6 Consider the following specification:
perm(L, P) iff list P is a permutation of list L

If Step 1 generates the open program (using L as the induction parameter):
perm(L,P) <« L=[],P =]
perm(L, P) < L = [HL|TL],perm(TL,TP),compose;(HL, TP, P)

then, from the evidence perm([a,b,c],[c,a,b]) < , at best the following disjunctive evidence for
compose; could be abduced by Step 2:

composey (a, [b, c], [c, a,b]) <
V compose; (a,[c,b], [c, a,b]) +

because there are two correct instances of the recursive call perm([b,c],TP), namely
perm([b,c], [b,c]) and perm([b,c],[c,b]). But only the latter clause is actually adequate for con-
structing a program for compose; so that the query < perm([a, b, c|, [c, a, b]) can be proved, because
if the former were chosen, then compose; would involve the same problem as perm itself, namely
permuting a list. O

Example 7 Now consider the following specification:
length(L, N) iff list L has N elements

If Step 1 generates the open program (using N as the induction parameter):

length(L,N) < N =0,L =[]
length(L,N) < N > 0,TN is N —1,HN = _ ,length(TL,TN), composes(HN,TL, L)

then, from the evidence length([a,b,c],3) «+ , at best the following over-general evidence for
composes could be abduced by Step 2:

composes (A, [B,C],[a,b,c]) +

because length([B,C],2) summarizes all the instances of the recursive call length(T'L,2). But
only one instance of this clause, namely composes(a,[b,cl,[a,b,c]) <, is actually adequate for
constructing a program for composes so that the query <« length([a, b, c|,3) can be proved. O
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Example 8 Finally, consider the following specification:
prefix(L, P) iff list P is a prefix of list L

If Step 1 generates the open program (using L as the induction parameter):

prefiz(L,P) < L=_,P =]
prefic(L, P) <+ L = [HL|TL],prefiz(TL,TP), composes(HL,T P, P)

then, from the evidence prefiz([a,b,c],[a,b]) + , at best the following disjunctive evidence for
composes could be abduced by Step 2:

composes(a, [ ]7 [a, b]) =
V composes(a, [b], [a, b]) +
V composes (a7 [ba C], [a7 b]) «

because there are three correct instances of the recursive call prefiz([b,c],TP), namely
prefiz([b,c],[ ]), prefiz([b,c],[b]), and prefiz([b,c],[b,c]). But only the second clause is actu-
ally adequate for constructing a program for composes so that the query < prefiz([a,b,c|,[a,b])
can be proved, because if one of the other clauses were chosen, then composes would have
to do strange things. Indeed, notice that only the second clause is admissible wrt mode
composes(may, must,res). O

Essentially, in all these examples, a set of evidence clauses for the open relation ¢ is abduced
for each piece of evidence for the top-level relation r. Overall, a set of sets of clauses is thus
abduced. In order for the clique cover algorithm to be applicable, each of these abduced sets
needs to be trimmed down to a single clause, by choosing a particular clause in the set and by
instantiating, if necessary, its variables. In order for this trimming to be maximally constrained
(note that there is an infinity of instantiations of a clause), we require the resulting clause to be
admissible wrt the mode of the open relation, which is why we call it an admissible alternative.
Note that the clique cover algorithm itself does not require the input clauses to be admissible,
because such a pre-condition is not necessary to its functioning (remember that it just uses the
admissibility criterion in order to find compatible subsets). However, the admissibility criterion
turns out to be very useful here as well, since, in all our practical experiments so far, it renders
the number of such admissible alternatives finite. We conjecture that this is (almost) always the
case. Our solution presented below only works when such finiteness is the case, since it iterates
over all combinations of admissible alternatives. Clearly, the definition of admissibility is crucial
here: the more restrictive it is, i.e., the fewer clauses it declares admissible, the fewer admissible
alternatives a given clause set will have, and the fewer combinations have to be examined. Hence
the following definition:

Definition 9 (Admissible alternatives of a clause set)
Clause A is an admissible alternative of clause set C wrt mode m if A is a most general instance
of some element of C and if A is admissible wrt m.

For instance, in Example 6, both compose; clauses are admissible alternatives of the ab-
duced clause set. In Example 7, the admissible alternatives of the abduced clause set are
composes(a, [b,c],[a,b,c]) < , composes(a,]c,b],[a,b,c]) « , composes(b,[a,c],[a,b,c]) « ,
composes (b, [c,al,[a,b,c]) < , composes(c, [a,b],[a,b,c]) < , and composes(c, [, al,[a,b,c]) + .
In Example 8, only the second composes clause is an admissible alternative of the abduced clause
set. Notice thus the non-determinism of the concept.

Generating admissible alternatives for a given clause set thus amounts to first selecting one
of its clauses and then, if this is possible, minimally specializing it, through instantiation of its
variables, such that it becomes admissible, according to the two (multi-)set inclusion constraints
in Definition 6. Judging from the examples above, this may look like quite a formidable task,
both in programming effort and in having it executed quickly. Fortunately, both aspects of this
task can be very elegantly addressed by using a set constraint (logic) programming language, such
as COJUNTO [11], because the formulation of the task in such a language is virtually identical
to the formulation given above (due to the very high expressiveness of these languages), and
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yet it is extremely efficient (due to the powerful underlying constraint solvers, which avoid a
simple generate-and-test approach). Tighter constraints in Definition 6 may reduce the number
of admissible alternatives in a problem-independent way. For instance, type constraints could be
added, thus preventing for instance the instantiation of a variable of type List to a number.

Now, the key insight towards a generalized Program Closing Method is as follows: if, for some
abduced clause sets, inadequate admissible alternatives are chosen, then there will be few compat-
ibilities among them, hence small cliques, and therefore many cliques; conversely, if there are few
cliques, then these cliques are large, hence there are many compatibilities among the clauses, and
therefore all these clauses are adequate admissible alternatives. The idea is thus to iterate over the
lgf algorithm for each of the finitely many combinations of admissible alternatives, one for each
abduced clause set, and to select the clique cover with the fewest cliques so as to evaluate it for
acceptability. Hence the following algorithm:

Algorithm Program Closing Method
Inputs:
— an open logic program R for a relation r, with no clauses for some relation ¢
— a set & of sets &; of reconcilable non-recursive clauses for ¢
— a construction mode m for q.
Output:
— a closed program R' = R U Q for r,
where Q is a logic program for ¢ induced from evidence £ wrt mode m.
initialize the current minimal cover size: M <+ oo;
while M > 1 and there is an uninvestigated set S; of admissible alternatives, one from each &;, do
begin
compute a candidate solution: G; < lgf(S;,m);
if |G| < M then
begin {a better minimal cover is found}
store the currently best minimal cover size: M < |G;];
store the currently best set of admissible alternatives: M « S;;
store the currently best solution: Q « G;
end
end ;
if = acceptable(Q) then
start a new synthesis from the best set of admissible alternatives: Q < ISRLP(M);
return R U Q

Let e be the number of &;, and let a be the average number of admissible alternatives of the &;
wrt m. Then the time complexity of this algorithm is exponential in e, namely a®, which is clearly
expensive when e gets large (even though our clique cover algorithm is extremely fast, as reported
in [4]). We thus recommend using this algorithm only when e is small.

In terms of experimentation with this Program Closing Method, we can report on very satis-
factory results (based on a D1ALOGS-like approach [7] to Steps 1 and 2). Indeed, if given minimally
sufficient (even to a human synthesizer) top-level evidence, this Program Closing Method can assist
with the successful synthesis of programs for all (and similar) relations mentioned in the examples
of this paper.

Example 9 Take the following evidence for length (see Example 7):

length([ ],0)
length([d], 1)
length({e, f1,2) «

length([a,b,c],3) <
Suppose Step 1 somehow generates the open program R:

length(L,N) < N =0,L =[]
length(L,N)« N > 0,TN is N —1,HN = _ length(TL,TN), composes(HN,TL, L)
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and Step 2 somehow abduces the following set £ of evidence sets for composes:

{51 : {composeZ(Da [ ]7 [d]) <_}7
&y : {composes(E, [F|, e, f]) <},
&3 : {composez(A,[B,C], [a,b,c]) «}}

By the chosen divide-and-conquer schema (see Section 1 and Example 4), the construction mode
m is composes(may, must, res). Initially, the size M of the current minimal cover is co. At each
iteration j, one admissible alternative each from &; through &5 is picked to form a candidate set
S;. In this case, there are maximum 1 x 2 x 6 = 12 iterations, because there are 1 (respectively
2 and 6) admissible alternatives of & (respectively & and £3) (see above for those of £3). At the
first iteration, suppose the candidate set Sy is:

composey(d, | |, [d]) +

compose(f, [e], [e, f]) <
composes (a7 [b7 c]: [a7 b, C]) A

The first candidate solution G is thus the [gf of S; wrt the mode above, namely:

composes(H, T, [H|T]) +
composes(f,[e], [e, f]) «

As |Gi]| = 2 < M, a better minimal cover is found, so M is set to 2 and Q is set to the currently
best solution G;. At the second iteration, suppose the candidate set S, is:

composex(d, [ ], [d]) <
composes (e, [f], [e, f]) <
composes(a, [b, c],[a,b,c]) +

The second candidate solution Gs is thus the [gf of S; wrt the mode above, namely:
composes(H, T, [H|T]) +

As |Go] =1 < M, a better minimal cover is found, so M is now set to 1 and Q is now set to the
currently best solution Go. As the size of this cover is 1, and as there cannot be a cover of size
less than 1, the loop produces G, as the best solution Q. Since it is also acceptable (because its
number of clauses is less than half the number of elements in &), the set R U Q is returned, which
is indeed a totally correct program for length. O

5 Related Work

There are two kinds of related work. First, in Section 5.1, we review inductive synthesis techniques
that more or less follow the basic synthesis algorithm of Section 1, by showing how they deviate from
that algorithm as well as in what sense the Program Closing Method presented here generalizes the
corresponding methods in these techniques, and could thus be plugged into them to increase their
power (i.e., the size of the class of relations for which programs can be successfully synthesized), if
not to correct their flaws. Then, in Section 5.2, we compare our Program Closing Method to other
methods, which have been proposed independently of particular synthesis techniques.

5.1 Related Synthesis Techniques

This paper is a considerable extension of the second author’s previous work on the SYNAPSE
synthesis technique [8, 5], and is based on the advances reported by the first author [2]. SYNAPSE
features a slight variation of the basic synthesis algorithm, and starts from positive examples as well
as properties (expressed by non-recursive definite clauses) as specification of the top-level relation.
It is biased by a (hardwired) divide-and-conquer schema, which is however more informative than
the one in Section 1, in the sense that the compose place-holder is split into a conjunction of
two place-holders, namely processCompose for combining partial results into overall results, and
discriminate for discriminating between alternative instances of the former. The key difference
with the basic synthesis algorithm is that its Step 2 only abduces examples of processCompose,
so that a Step 4 needs to be added to abduce the instances of discriminate, which is done by a
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Proofs-as-Programs Method, using the properties. The program closing method of SYNAPSE, called
the MSG Method, is a precursor to the version presented here, in the sense that the definition of
admissibility is considerably more powerful now: less evidence is now considered admissible, and
we now also handle clausal evidence, and hence forms of semantic construction. The definitions of
construction mode and compatibility, as well as the algorithm for computing least generalizations,
have also undergone significant improvements.

The D1ALOGS synthesis technique [7] now [24] exploits many advances presented here. It also
features a slight variation of the basic synthesis algorithm, as it starts from no specification at all
and collects its (positive) evidence by querying the specifier. The key difference with the basic
synthesis algorithm is that its Step 1 does not instantiate the solve place-holder, so that its Step 2
simultaneously abduces evidence of solve and of compose, and that its Step 3 decides which pieces
of this evidence are used to instantiate which of these place-holders. Non-deterministic relations
cannot be handled, but this can easily be achieved by adding the remaining advances reported
here.

The METAINDUCE synthesis technique [13] exactly follows the basic synthesis algorithm, using
the divide-and-conquer schema of Section 1, and starts from positive and negative examples of the
top-level relation. Examples 1 to 3 can be acted out by this technique, including the erroneous
decision about the lgf of Example 3, due to the absence of the concepts of construction mode,
admissibility, and compatibility. Its acceptability criterion simply is that the (unique) lgf should
not cover any negative evidence and that the variables of the res parameter are a subset of the
variables of the two must parameters. There is thus no concept of may parameters, and the non-
consideration of constants and functors sometimes leads to wrong decisions. Non-deterministic
relations cannot be handled.

The CILP synthesis technique [16] follows the basic synthesis algorithm, except that its Step 3
is based on the concept of sub-unification, rather than anti-unification, and that it is its Step 3
that instantiates the solve place-holder, rather than its Step 1. The underlying schema is less
informative than the one in Section 1, in the sense that it has fewer place-holders and does not
prescribe the dataflow; therefore, a heuristic analysis (based on input-mode declarations) needs to
be done to figure out the necessary parameters of the compose place-holder, instead of precompiling
this once and for all at the schema-level with more precise constraints on the dataflow. The
technique cannot induce multi-clausal instances of compose, and its acceptability criterion reduces
to the over-generalization check (by rejecting programs that cover some negative evidence) (of
course, it is sub-unification that allowed many simplifications of this criterion). Non-deterministic
relations cannot be handled.

The CRUSTACEAN synthesis technique [1] is a successor of the LOPSTER technique [15], in the
sense that a few features have been improved. However, it cannot perform necessary predicate
invention, so that its Step 3 never calls CRUSTACEAN recursively. CRUSTACEAN is basically a
predecessor of CILP and thus inherits the drawbacks of CILP.

The THESYS synthesis technique [22] is a precursor to all these techniques, but it is set in
the functional programming paradigm (and non-deterministic relations can thus not be handled).
In case of an unacceptable 1gf at its Step 3, it does not call itself recursively for the necessary
predicate invention, but rather tries to avoid this by generalizing the given examples and re-trying
from scratch (also see [6]). For instance, THESYS cannot infer a functional program for reverse
corresponding to the naive (quadratic) reverse program of Example 2, but instead infers a non-
naive (linear) reverse program based on difference lists (i.e., based on the introduction of an
accumulator parameter). However, such an accumulator introduction is not always possible; for
instance, in the absence of background knowledge, synthesizing a product functional/relational
program leads to the necessary invention of a sum function/relation, which cannot be avoided
through generalization of product. THESYS was the first schema-biased inductive synthesizer, and
it has been extended, revised, and reformulated over the years as the BMWk technique [14, 17],
and was also transposed to a higher-order logic framework [12].

Many other techniques of inductive synthesis of recursive programs, although they are not all
schema-biased, are reviewed in [9].
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5.2 Related Methods

The SIERES learning technique [23] is not really schema-biased and thus does not really follow the
basic synthesis algorithm. However, it features a few components not unlike our Program Closing
Method and its conceptual apparatus. Indeed, it also computes the lgf of evidence (which must
however be unit clauses); it constructs clauses that fit argument dependency graphs (a kind of
primitive schemas that prescribe the dataflow but not the control flow); and it uses input-mode
declarations to guide this construction towards non-over-general clauses. However, there is no
notion of compatibility, and hence no possibility of division of the evidence into cliques, i.e., no
inducability of multi-clausally defined relations.

The INDICO learning technique [21] is not at all an instance of the basic synthesis algorithm.
However, it features an interesting method for conjecturing the heads of possible clauses, hence
providing already much of the discriminating information that otherwise has to be discovered
together with the characterizing information when starting from most-general clause heads. The
method first partitions (i.e., it does not divide) the evidence (which must be unit clauses) into
subsets according to the functors (e.g., type constructors) appearing in it; then it computes the
lgf of each obtained subset so as to produce a series of clause heads, from which a top-down
clause specialization process can then be started. This method is obviously related to, but more
specialized than, our clique finding mechanism.

6 Future Work

The Program Closing Method presented here is already very powerful (as it generalizes and corrects
all “competing” methods known to the authors), but it can nevertheless be extended in various
ways, which we examine now. We have already mentioned the existence of a more general definition
of construction modes (and hence of admissibility and compatibility) in [3, 4] (where we even discuss
enhancements thereof), so that more powerful recursive schemas can be supported.

Recursive evidence. As of now, the Program Closing Method is restricted to abduced evidence
in the form of non-recursive (reconcilable) clauses. There is no theoretical obstacle to also allowing
recursive clauses as evidence (except for the mentioned inadequacy of computing the least gener-
alization under #-subsumption of two recursive clauses). In fact, our restriction to non-recursive
clauses was rather motivated by a pragmatic choice: if the abduced evidence were recursive, then
the evidence for the top-level relation would most likely also have been recursive; but that would
in turn mean that the specifier would have to provide such recursive evidence; but it seems (to
us) that doing so is tantamount to already writing the program itself and that the specifier would
then most likely not need an inductive synthesizer to write the program.

Number of undefined relations. The basic synthesis algorithm assumes there is only one
undefined relation by the time Step 2 is reached, hence that the top-level relation can be defined in
terms of a chain (rather than a tree) of invented predicates. (Note that, upon recursive invocation
of the basic synthesis algorithm, a different schema can be selected at each level.) However, such
is not always the case, as shown by the approach of DiavLoas [7, 24]. It would thus be interesting
to investigate in full generality how to adapt the Program Closing Method when its evidence is
about multiple undefined relations.

Background knowledge. An almost certain criticism of our work is that we compute general-
izations in the absence of background knowledge (not to mention our usage of the “old-fashioned”
f-subsumption order for generality). However, note that we assume that the abduced evidence
for the undefined relation already contains all the necessary relations, so that the responsibility of
discovering them does not lie with the Program Closing Method, but with its clients, whether they
achieve this by interaction with an oracle (as in DIALOGS [7, 24]), or by extraction from the evidence
for the top-level relation (as in SYNAPSE [8, 5]), or by some form of background knowledge usage
(as in the vast majority of inductive synthesizers). (Also remember that #-subsumption suffices for

16



non-recursive clauses, which are sufficient here, as argued earlier.) So our choices are rather jus-
tified, but one can of course investigate the use of background knowledge and/or a stronger order
of generality in order to push the mentioned assumption inside the Program Closing Method.

7 Conclusion

We have considered part of the problem of schema-biased inductive synthesis of recursive logic
programs from incomplete specifications, such as clausal evidence. The techniques that follow
the outlined basic synthesis algorithm usually have a problem with their final step, which is the
synthesis of a program for the relation combining the overall result from the partial results obtained
through recursion. Evidence for this combination relation can be abduced from the initially given
evidence for the top-level relation. A program for this combination relation can be anything,
from a single clause performing a unification (such as for lastElem) to multiple guarded clauses
performing unifications (such as for filtering programs) to recursive programs (such as for naive
reverse). Existing methods cannot induce guarded clause programs for this combination relation
from the abduced evidence. Some existing methods cannot even detect that the combination
program itself may have to be recursive and thus they then do not invoke some recursion synthesizer
(say themselves).

We have introduced our Program Completion Method as a suitable extension and correction
of the existing methods. It is based on our re-definition of the concept of least generalization of a
clause set [4], namely that it is itself a set of clauses (rather than a single clause), each such clause
being the classical least generalization of a subset of the given clause set. Membership of a clause
in such a subset is subject to its being compatible with all the other clauses, compatibility meaning
that the classical least generalization does not become too general according to some over-generality
criterion. Since we are here in a highly constrained situation where the combination relation is
known in advance to have a certain dataflow between its parameters, we have chosen admissibility
wrt a construction mode as a suitable over-generality criterion [3]. Basically, a construction mode
for a relation states which parameters are constructed from which other parameters, also expressing
whether such construction is mandatory or optional. For any recursive program schema, the
construction mode of the relation combining the overall result from the partial results obtained
through recursion can be pre-determined, at the schema level, so that it will be suitable for all
particular programs fitting that schema. Our approach has the advantage of also working in the
absence of negative evidence, so that over-generality is not only measured in terms of non-coverage
of such negative evidence.
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