
SCHEMA-BASED LOGICPROGRAM TRANSFORMATION
a thesissubmitted to the department of computerengineering and information scienceand the institute of engineering and scienceof bilkent universityin partial fulfillment of the requirementsfor the degree ofmaster of science

byHalime B�uy�uky�ld�zAugust 1997

I certify that I have read this thesis and that in my opinion it is fully adequate,in scope and in quality, as a thesis for the degree of Master of Science.Ass't Prof. Pierre Flener (Advisor)I certify that I have read this thesis and that in my opinion it is fully adequate,in scope and in quality, as a thesis for the degree of Master of Science.Ass't Prof. Nihan Kesim C�i�cekliI certify that I have read this thesis and that in my opinion it is fully adequate,in scope and in quality, as a thesis for the degree of Master of Science.Ass't Prof. _Ilyas C� i�cekliApproved for the Institute of Engineering and Science:Prof. Mehmet BarayDirector of Institute of Engineering and Scienceii

ABSTRACTSCHEMA-BASED LOGIC PROGRAM TRANSFORMATIONHalime B�uy�uky�ld�zM.S. in Computer Engineering and Information ScienceSupervisor: Ass't Prof. Pierre FlenerAugust 1997In traditional programming methodology, developing a correct and e�cientprogram is divided into two phases: in the �rst phase, called the synthesisphase, a correct, but maybe ine�cient program is constructed, and in the sec-ond phase, called the transformation phase, the constructed program is trans-formed into a more e�cient equivalent program. If the synthesis phase is guidedby a schema that embodies the algorithm design knowledge abstracting the con-struction of a particular family of programs, then the transformation phase canalso be done in a schema-guided fashion using transformation schemas, whichencode the transformation techniques from input program schemas to outputprogram schemas by de�ning the conditions that have to be veri�ed to have amore e�cient equivalent program.Seven program schemas are proposed, which capture sub-families of divide-and-conquer programs and the programs that are constructed using some gen-eralization methods. The proposed transformation schemas either automatetransformation strategies, such as accumulator introduction and tupling gen-eralization, which is a special case of structural generalization, or simulateand extend a basic theorem in functional programming (the �rst duality lawof the fold operators) for logic programs. A prototype transformation systemis presented that can transform programs, using the proposed transformationschemas.Keywords: logic programming, program development, program transforma-tion, program schema, transformation schema, generalization, duality laws.iii

�OZETTASLA~GA DAYALI MANTIK PROGRAMI D�ON�US�T�URMEHalime B�uy�uky�ld�zBilgisayar ve Enformatik M�uhendisli�gi, Y�uksek LisansTez Y�oneticisi: Yrd. Do�c. Pierre FlenerA�gustos 1997Geleneksel programlamametodolojisinde, do~gru ve etkili program geli�stirme ikia�samaya ayr�l�r: birinci a�samada, sentez a�samas� denir, do~gru, fakat yeterinceetkili olmayabilen bir program yap�l�r, ve ikinci a�samada, d�on�u�st�urme a�samas�denir, yap�lan program daha etkili e�sde~ger bir programa d�on�u�st�ur�ul�ur. E~gersentez a�samas� belirli bir program ailesinin yap�m�n� �ozetleyebilen algoritmaplan bilgisini i�ceren program tasla~g� rehberli~gindeyse, d�on�u�st�urme a�samas�da giren program tasla~g�ndan �c�kan program tasla~g�na tan�mlanm��s d�on�u�s�umtekniklerini daha etkili e�sde~ger bir program elde etmeyi sa~glayacak gerekliko�sullar� tan�mlayarak kodlayan d�on�u�s�um taslaklar� kullanarak yap�labilir.B�ol-ve-fethet ve genelleme metodlar�n� kullanarak sentezlenebilecek pro-gram ailelerini temsil eden yedi program tasla~g� sunuluyor. Sunulan d�on�u�s�umtaslaklar� ya i�cine birike�c sokmak ve yap�sal genellemenin �ozel bir hali olan�co~gullama genellemesi gibi d�on�u�s�um tekniklerinin otomasyonunu sa~glar, ya dafonksiyonel programlaman�n temel teoremlerinden birini (fold operat�orlerininilk ikilik kural�n�) mant�ksal programlamaya geli�stirerek uygular. Sunuland�on�u�s�um taslaklar�n� kullanarak program d�on�u�st�urebilen prototip bir sistemgeli�stirilmi�stir.Anahtar S�ozc�ukler: mant�ksal programlama, program geli�stirme, programd�on�u�st�urme, program tasla~g�, d�on�u�s�um tasla~g�, genelleme, ikilik kurallar�.iv

ACKNOWLEDGMENTSI would like to express my gratitude to Dr. Pierre Flener, due to his su-pervision, suggestions, and understanding throughout the development of thisthesis.I would like to thank Fergus Henderson, Mark Stickel, and Dan Sahlin, fortheir enourmous help in understanding and using Mercury, PTTP, and Mixtus.I would also like to thank the participants of the LOPSTR'97 workshop (es-pecially Yves Deville, Andreas Hamfelt, and Norbert Fuchs) for their valuablecomments and suggestions.I am also indebted to Ass't Prof. Nihan Kesim C�i�cekli and Ass't Prof. _IlyasC� i�cekli for showing keen interest to the subject matter and accepting to readand review this thesis.I would like to thank G�ul�sen Demir�oz, G�okmen G�ok, Bilge Ayd�n, BilgeSay, my drama class friends, my other friends all over the world, and my familyfor their moral support and friendship.I would also like to thank Bilkent University, which enabled this researchenvironment and supported the presentation of this work at LOPSTR'97.
v

Contents1 Introduction 12 Basic Concepts 52.1 Terminology : 52.1.1 Programs and Speci�cations : : : : : : : : : : : : : : : : 52.1.2 Correctness and Equivalence Criteria : : : : : : : : : : : 82.1.3 Transformation : 152.1.4 Program Schemas and Schema Patterns : : : : : : : : : 202.1.5 Transformation Schemas : : : : : : : : : : : : : : : : : : 222.1.6 Problem Generalization : : : : : : : : : : : : : : : : : : 252.2 Related Work : 292.2.1 Strategy-based Transformation Approaches : : : : : : : : 302.2.2 Schema-based Transformation Approaches : : : : : : : : 393 Divide-and-Conquer Logic Program Schemas 474 Problem Generalization Schemas 57vi

4.1 Tupling Generalization : 584.1.1 Tupling Generalization Schemas : : : : : : : : : : : : : : 584.1.2 Complexity Analysis : 684.2 Descending Generalization : 724.2.1 Descending Generalization Schemas : : : : : : : : : : : : 734.2.2 Complexity Analysis : 814.3 Simultaneous Tupling-and-DescendingGeneralization : 844.3.1 Simultaneous Tupling-and-DescendingGeneralization Schemas : : : : : : : : : : : : : : : : : : 854.3.2 Complexity Analysis : 985 Duality Transformation Schemas 1045.1 Duality Schemas : 1065.2 Complexity Analysis : 1086 Evaluation of the Transformation Schemas 1107 Prototype Transformation System 1157.1 Representation Language : 1177.1.1 Schema Pattern Language: Syntax : : : : : : : : : : : : 1177.1.2 Schema Pattern Language: Semantics : : : : : : : : : : : 1207.1.3 Representation of Programs and Transformation Schemas 1237.2 Algorithm of the System : 125vii

7.3 Evaluation of the System : 1288 Conclusions 1308.1 Contributions of This Research : : : : : : : : : : : : : : : : : : 1318.2 Future Work : 132A README File of the Prototype Transformation System 141B Sample Output of the Prototype System 143

viii

List of Figures1.1 Program Development Methodology : : : : : : : : : : : : : : : : 12.1 An SLDNF-tree of P [f p(X; a)g using U : : : : : : : : : : : 387.1 An Undirected Graph Representing the Database of the System 126

ix

List of Tables6.1 Performance Tests Results : 111

x

List of Symbols and AbbreviationsSr : Speci�cation of the relation rIr : Input condition of the relation rOr : Output condition of the relation rS : Program schema (or schema pattern)C : Steadfastness constraints of a program schemat : Number of tails of the induction parameterp : Position of the head in the composition of the result parametere : A special constant existing in program schema patternsfor initializing the compositionLR : Left-to-Right CompositionRL : Right-to-Left CompositionA : Applicability conditions of a transformation schemaO : Post-optimizability conditions of a transformation schemaDC : Divide-and-ConquerTG : Tupling GeneralizationDG : Descending GeneralizationTDG : Simultaneous Tupling-and-Descending Generalization

xi

Chapter 1IntroductionIn traditional programming methodology, developing a correct and e�cientprogram is divided into two phases: in the �rst phase, called the synthesisphase, a correct, but maybe ine�cient program is constructed, and in the sec-ond phase, called the transformation phase, the constructed program is trans-formed into a more e�cient equivalent program. However, it is better to dividelogic program development into 5 steps like Deville did in [16], as in the �gurebelow:
Problem

 Specification some informal language

Horn clause logic

Elaboration

Construction

Implementation

 Logic Program

Prolog, Mercury, ... Program

Transformation

TransformationFigure 1.1. Program Development Methodology1

CHAPTER 1. INTRODUCTION 2The �rst step in Deville's program development methodology is the elabo-ration of a speci�cation of the problem given, and this is the step that can'tbe (semi-)automated, and the step where most of the mistakes in program de-velopment occur. The second step is the construction of a logic program (logicdescription in [16]) from the speci�cation of the problem. There is a consider-able amount of work in literature that try to (semi-)automate this process, andthey have shown improvements in this subject (refer to [18, 23, 22]). The thirdstep is to derive a program from the logic program. This step deals with thecomputational and compiler-speci�c issues that make programming in a givenlanguage di�erent from programming in logic. There are also some works inliterature that automate this step (e.g. the Mercury compiler or abstract in-terpretation systems like Le Charlier's GAIA [35]). The two transformationsteps in program development have the objective of increasing the e�ciency ofprograms. Logic program transformation deals with logic, without any proce-dural aspects, and therefore it will be easier to carry out while preserving thecorrectness. However, transforming programs written in a logic programminglanguage deals with the operational semantics of that language, and must havea suitable introduction of control. Deville proposed this methodology of pro-gram development, since it systematizes the logic programming adage \thinklogically �rst, then consider the procedural behaviour".In this thesis, I only deal with the declarative semantics of programs inprogram transformation. The research results for the logic program transfor-mation step of the above methodology are presented, where some well knownmethods like generalization and the duality laws in functional programmingare used in a schema-guided way.The objective of this research is to pre-compile the logic program transfor-mation techniques that are proposed in the literature, after constructing mostgeneral de�nitions of the notions in the schema-based logic program transfor-mation. I �rst examine the work done in the logic program transformationarea so as to properly de�ne the underlying theory of this research. The def-initions are constructed by extending the proposed ideas and methods in theschema-based logic program transformation literature. These de�nitions anda summary of the related work in logic program transformation are presented

CHAPTER 1. INTRODUCTION 3in Chapter 2. Generalization of the divide-and-conquer programs is workedout in this research. So, the program schemas, which abstract sub-families ofdivide-and-conquer programs are proposed next in Chapter 3.I propose some generalization schemas that pre-compile the generalizationmethods proposed by Deville [16], namely tupling and descending generaliza-tion, in Chapter 4. One more category is added, namely simultaneous tupling-and-descending generalization, which can be thought of as a combination ofthe other two. The generalization schemas are more general than the gener-alization schemas that are proposed by Flener and Deville [20], in the sensethat they deal with the transformation of more generic program families, bybene�ting from the strength of the extended theory.I propose somemore transformation schemas in Chapter 5 that simulate andextend a basic theorem in functional programming (the �rst duality law of thefold operators) to logic programs. These schemas result from the ideas capturedduring the pre-compilation of generalization techniques. The similarity of thiswork with the work done in functional programming helps us to automate thesetransformations easily.Although the transformation schemas proposed in this thesis only dealwith the declarative semantics of programs, they are also evaluated by makingperformance tests on the input and output programs of these transformationschemas in a logic programming language setting. The performance tests ofthe input and output programs of these transformation schemas for some se-lected problems show that the post-optimizability conditions have a key rolein ensuring an e�ciency gain. The results of these performance tests and adetailed discussion are thereof given in Chapter 6.Using the results of the theoretical part of this research and the evaluationof the transformation schemas, a prototype transformation system is developed,which is the main practical objective of this research. This system is explainedin detail in Chapter 7. It is shown that our transformation schemas can reallybe used in a real practical transformation setting.

CHAPTER 1. INTRODUCTION 4There exist a lot of future work directions of this research, since the con-structed theory is new and seems to be powerful enough to pre-compile somemore transformation techniques like loop merging. Some extensions in the the-ory will also help to extend the prototype system so as to become a completetransformation system that can be integrated into a schema-based logic pro-gram development environment. The contributions of this research and thefuture work directions are summarized in Chapter 8.

Chapter 2Basic ConceptsIn this chapter, the most general de�nitions of the notions that are usedthroughout this thesis are presented (Section 2.1), then the related work donein logic program transformation is summarized (Section 2.2).2.1 TerminologyI �rst de�ne the notions; program and speci�cation in Section 2.1.1. Next, thecorrectness and equivalence criteria of programs are presented in Section 2.1.2.The general de�nitions of the notions in program transformation are given inSection 2.1.3. Program schemas and the related notions are de�ned in Sec-tion 2.1.4. I present the de�nition of a transformation schema in Section 2.1.5.Finally, problem generalization methods, which are used in this thesis, arediscussed in Section 2.1.6.2.1.1 Programs and Speci�cationsDe�nition 1 An atom is a �rst-order formula of the form r(t1; : : : ; tn), wherer is a relation symbol of arity n, and t1; : : : ; tn are terms constructed out ofvariables, constants, and function symbols.5

CHAPTER 2. BASIC CONCEPTS 6Example 1 p([HLjTL]; R; [HLjTS]) and q([]; 0) are atoms.De�nition 2 A typed de�nite clause is a formula of the form:8X1 : X1; : : : ;Xn : Xn r(X1; : : : ;Xn) B[X1; : : : ;Xn]where X1; : : : ;Xn are the sorts (or: types) of X1; : : : ;Xn, respectively, atomr(X1; : : : ;Xn) is called the head of the clause, and B[X1; : : : ;Xn] is called thebody of the clause, which is a (possibly empty) conjunction of formulas, whichare either atoms or disjunctions.Example 2 The formula below is a typed de�nite clause:8L : list(int);8S : int: sum(L;S) L = [HLjTL]; sum(TL; TS);S is HL+ TSDe�nition 3 A typed de�nite logic procedure is a �nite set of typed de�niteclauses whose heads have the same relation symbol with the same arity.Example 3 Below is a typed de�nite logic procedure:8L : list(int);8S : int: sum(L;S) L = []; S = 08L : list(int);8S : int: sum(L;S) L = [HLjTL]; sum(TL; TS);S is HL+ TSDe�nition 4 A typed de�nite logic program is the union of a set of typedde�nite procedures.Example 4 Below is a typed de�nite logic program:8A : int;8B : int: int eqq(A;B) A = B8A : int;8B : int;8C : int: add(A;B;C) A is B + C8L : list(int);8E : int: mem(L;E) L = [HLjTL]; int eqq(HL;E)8L : list(int);8E : int: mem(L;E) L = [HLjTL];mem(TL;E)

CHAPTER 2. BASIC CONCEPTS 7Throughout the thesis, the word program (respectively, procedure andclause) is used to mean typed de�nite logic program (respectively, procedureand clause), and I drop the quanti�cations wherever they are either irrelevantor known in context.De�nition 5 A non-primitive relation that appears in the clause bodies of aprogram, but does not appear in any heads of the clauses of that program iscalled an unde�ned (or open) relation, otherwise it is called a de�ned relation.De�nition 6 An open program is a program where some of the relations areunde�ned. If all the relations in the program are de�ned, then the program iscalled a closed program.Example 5 The program below is an open program:sort(L;S) L = []; S = []sort(L;S) L = [HLjTL]; sort(TL; TS); insert(HL;TS;S)since the relation insert=3 is unde�ned in the program. If we construct a newprogram by taking the set union of the program above and the program below:insert(E;L;R) L = []; R = [E]insert(E;L;R) L = [HLjTL];HL � E;R = [EjL]insert(E;L;R) L = [HLjTL];HL < E;insert(E;TL; TR); R = [HLjTR]then the new program is a closed program, assuming = =2, � =2, and < =2 areprimitives.De�nition 7 A clause is said to be recursive i� its head relation also occursin an atom of its body. A program is said to be recursive i� one or more of itsclauses is recursive.De�nition 8 [41] A program is tail recursive i� it has one and only onerecursive subgoal and its last clause has the formr(t) L; r(u)

CHAPTER 2. BASIC CONCEPTS 8where L is deterministic. When the last clause of a program has this form butthe program has more than one recursive subgoal, the procedure is said to besemi-tail recursive.De�nition 9 A formal speci�cation of a program for a relation r of arity 2 isa �rst-order formula written in the format:8X : X : 8Y : Y: Ir(X)) [r(X;Y), Or(X;Y)]where X and Y are the sorts (or types) of X and Y , respectively, Ir(X) de-notes the input condition that must be ful�lled before the execution of theprogram, and Or(X;Y) denotes the output condition that will be ful�lled afterthe execution.Example 6 Below is the formal speci�cation of any program for the problemof sorting an integer list:8L : list(int): 8S : list(int): true) [sort(L;S),permutation(L;S) ^ ordered(S)]where L and S are integer-lists, the input condition of sort(L;S) is true,and the output condition of sort(L;S) is the conjunction permutation(L;S)^ordered(S).I give the de�nition of the formal speci�cation of a relation r of arity 2for pedagogical reasons, the de�nition can be generalized to relations of arityn. Also, for some of the problems worked out in this thesis, sometimes I giveinformal speci�cations, which are rewritings of the formal speci�cations in a\natural" language.2.1.2 Correctness and Equivalence CriteriaIn this section, I give correctness and equivalence criteria by using the notion offramework [21]. Throughout the section, when I write \a relation r", it means

CHAPTER 2. BASIC CONCEPTS 9\a relation r of arity 2", but these de�nitions can be generalized for relationsof arity n. In the de�nitions below, I do not consider mutually recursive pro-grams. However, these de�nitions can be reconstructed for mutually recursiveprograms as well.De�nition 10 (Frameworks [21])A framework F is a full �rst-order logical theory (with identity) with an in-tended model. An open framework consists of:* a (many-sorted) signature of- both de�ned and open sort names;- function declarations, for declaring both de�ned and open constantand function names;- relation declarations, for declaring both de�ned and open relationnames;* a set of �rst-order axioms each for the (declared) de�ned and open func-tion and relation names, the former possibly containing induction schemas;* a set of theorems.Thus, an open framework F is also denoted as F(�), where � are the opennames, or parameters, of F . The de�nition of a closed framework is the sameas the de�nition of an open framework, except that a closed framework has noopen names. Therefore, a closed framework is just an extreme case of an openone, namely where � is empty.The de�nitions of correctness of a logic program and equivalence of twoprograms are given only for programs in closed frameworks.Example 7 (Closed Frameworks) A typical closed framework is (�rst-order)Peano arithmetic NAT [21]: 11The most external universal quanti�ers will be omitted.

CHAPTER 2. BASIC CONCEPTS 10Framework NAT ;sorts: Nat;functions: 0 : ! Nat;s : Nat! Nat;+; � : (Nat;Nat)! Nat;axioms: :0 = s(x) ^ s(a) = s(b)! a = b;x+ 0 = x;x+ s(y) = s(x+ y);x � 0 = 0;x � s(y) = x+ x � y;H(0) ^ (8i:H(i)! H(s(i)))! 8x:H(x):This framework de�nes the abstract data type NAT as follows: the sort Natof natural numbers is constructed freely from the constructors 0 (zero) and s(successor); the freeness axiom for these constructors is the �rst axiom; thefunctions + (sum) and � (product) on Nat are axiomatized by the next fouraxioms (in a primitive recursive manner). Note in particular that the lastaxiom in NAT can be used for reasoning about properties of + and � thatcan't be derived from the other axioms, e.g. associativity and commutativity.This illustrates the fact that in a framework we may have more than just anabstract data type de�nition.De�nition 11 (Correctness of a Closed Program)Let P be a closed program for relation r in a closed framework F . We say thatP is (totally) correct wrt its speci�cation Sr i�, for any ground term t of X suchthat Ir(t) holds, the following condition holds: P ` r(t; u) i� F j= Or(t; u), forevery ground term u of Y.If we replace `i�' by `implies' in the condition above, then P is said to bepartially correct wrt Sr, and if we replace `i�' by `if', then P is said to becomplete wrt Sr.This kind of correctness is not entirely satisfactory, for two reasons. First,it de�nes the correctness of P in terms of the procedures for the relations

CHAPTER 2. BASIC CONCEPTS 11in its clause bodies, rather than in terms of their speci�cations. Second, Pmust be a closed program, even though it might be desirable to discuss thecorrectness of P without having to fully implement it. So, the abstractionachieved through the introduction (and speci�cation) of the relations in itsclause bodies is wasted. This leads us to the notion of steadfastness (alsoknown as parametric correctness) [21] (also see [16]).De�nition 12 (Steadfastness of an Open Program)In a closed framework F , let:� P be an open program for relation r� q1; : : : ; qm be all the unde�ned relation names appearing in P� S1; : : : ; Sm be the speci�cations of q1; : : : ; qm.We say that P is steadfast wrt its speci�cation Sr in fS1; : : : ; Smg i� the (closed)program P [PS is correct wrt Sr, where PS is any closed program such that� PS is correct wrt each speci�cation Sj (1 � j � m)� PS contains no occurrences of the relations de�ned in P .Let's illustrate with an example the reason why we can't rephrase the lastsentence above as:We say that P is steadfast wrt its speci�cation Sr in fS1; : : : ; Smg i�,for any closed programs P1; : : : ; Pm that are correct wrt S1; : : : ; Sm,respectively, and that contain the open programs for q1; : : : ; qm, wehave that the (closed) program P [P1 [: : :[Pm is correct wrt Sr.Example 8 I use propositional logic, since it helps to understand the exampleeasily. Let the open program P be:r p; q

CHAPTER 2. BASIC CONCEPTS 12To show the steadfastness of P , suppose we choose the closed program Pp asp t; st ss uwhere u is a primitive, and Pp is correct wrt Sp. Also suppose we choose theclosed program Pq as q tt vwhere v is a primitive, and Pq is correct wrt Sq. To say that P is steadfast wrtSr in fSp; Sqg, the (closed) program P [Pp [Pq would have to be correct wrtSr. But note that the set union P [Pp [Pq has two di�erent programs forproposition t, which makes the regular set union inapplicable in this context.The steadfastness de�nition yields the following interesting property, whichis actually a high-level recursive algorithm to check the steadfastness of an openprogram.Property 1 In a closed framework F , let:� P be an open program for relation r of the speci�cation Sr� p1; : : : ; pt be all the de�ned relation names appearing in P (including rthus)� q1; : : : ; qm be all the unde�ned relation names appearing in P� S1; : : : ; Sm be the speci�cations of q1; : : : ; qm.For t � 2, the program P is steadfast wrt Sr in fS1; : : : ; Smg i� every Pi (1 �i � t) is steadfast wrt the speci�cation of pi in the set of the speci�cations of all

CHAPTER 2. BASIC CONCEPTS 13unde�ned relations in Pi, where Pi is a program for pi, such that P = Sti=1 Pi.When t = 1, the de�nition of steadfastness is directly used, since the onlyde�ned relation is the relation r. Thus, t = 1 is the stopping case of thisrecursive algorithm.Example 9 I use propositional logic, since it helps to understand the exampleeasily. In a closed framework F , let the open program P be:r p;wp qTo show the steadfastness of P , suppose we choose the closed program PS asq tw vwhere t and v are primitives in F , and PS is correct wrt Sw and Sq. ByDe�nition 12, P is steadfast wrt Sr in fSw; Sqg i� the closed program P [PSis correct wrt Sr in F . By De�nition 11, P [PS is correct wrt Sr in F i� thefollowing condition holds:fr p;w; p q; q t; w vg ` r i� F j= OrBy resolution:fp q; q t; w vg ` p;w i� F j= Op ^ OwThe formula above can be written as:(fp q; q tg ` p i� F j= Op) ^ (fw vg ` w i� F j= Ow)The second part of the conjunction is true, since PS is correct wrt Sw andfw vg is the program of w in PS .By De�nitions 11 and 12, the �rst part of the conjunction means that theprogram Pp below p q

CHAPTER 2. BASIC CONCEPTS 14is steadfast wrt Sp in fSqg i� the closed program Pp [Pq is correct wrt Sp,where Pq is q tand it is correct wrt Sq.If we use the property of steadfastness, for t = 2, the program P is steadfastwrt Sr in fSw; Sqg, i� Pp is steadfast wrt Sp in fSqg. After we prove thesteadfastness of Pp, t reduces to 1 and we directly use De�nition 12 for provingthe steadfastness of Pr wrt Sr in fSp; Swg where P = Pp [Pr. The algorithmsummarizes what we did bottom up in this example for proving steadfastnessof P wrt Sr in fSw; Sqg.Thus, Property 1 proposes an e�cient algorithm to prove the steadfastnessof an open program.For program equivalence, we do not require the two programs to have thesame models, because this would not make much sense in some program trans-formation settings, where the transformed program features relations that werenot in the initially given program. That is why our program equivalence crite-rion establishes equivalence wrt the speci�cation of a common relation (usuallythe root of their call-hierarchies).De�nition 13 (Equivalence of Two Open Programs)In a closed framework F , let P and Q be two open programs for a relation r.We say that P is equivalent to Q wrt the speci�cation Sr i� the following twoconditions hold:(a) P is steadfast wrt Sr in fS1; : : : ; Smg, where S1,: : : , Sm are the speci�ca-tions of p1,: : : , pm, which are all the unde�ned relation names appearingin P(b) Q is steadfast wrt Sr in fS01; : : : ; S0tg, where S 01,: : : , S0t are the speci�ca-tions of q1,: : : , qt, which are all the unde�ned relation names appearingin Q.

CHAPTER 2. BASIC CONCEPTS 15Since the `is equivalent to' relation is symmetric, we also say that P and Q areequivalent wrt Sr.Sometimes, in program transformation settings, there exist some conditionsthat have to be veri�ed related to some parts of the initial and/or transformedprogram in order to have a transformed program that is equivalent to theinitially given program wrt the speci�cation of the top-level relation. Hencethe following de�nition.De�nition 14 (Conditional Equivalence of Two Open Programs)In a closed framework F , let P and Q be two open programs for a relation r.We say that P is equivalent to Q wrt the speci�cation Sr under conditions Ci� P is equivalent to Q wrt Sr provided that C hold.2.1.3 TransformationIn this section, I give the de�nitions of the following concepts: program trans-formation, transformation techniques, transformation strategies, and transfor-mation rules.De�nition 15 A program transformation is the replacement of a subset of theclauses of a program with another clause set such that the resulting program isequivalent to the initial program wrt the speci�cation of the top-level relation.De�nition 16 A transformation rule is a rule that takes an input programand produces another program, which is equivalent to the input program wrtthe speci�cation of the top-level relation.Example 10 An example transformation rule is replacing the clause of a pro-gram that has the conjunction H = []; append(H;T;R) in its body, with aclause that is the same as the previous one, except that it has the literalR = T in place of that conjunction.

CHAPTER 2. BASIC CONCEPTS 16A program transformation process starting from a given initial program P0can also be viewed as a sequence of programs P0; : : : ; Pn, called transformationsequence, such that program Pk+1, with 0 � k < n, is obtained from Pk bythe application of a transformation rule, which may depend on P0; : : : ; Pk.However, the problem is that an e�ciency improvement is not ensured by anundisciplined application of transformation rules one after another. So a betterapproach is using a transformation strategy.De�nition 17 A transformation strategy is some form of a meta-rule thattakes an input program and produces another program, which is equivalentto the �rst one wrt a given semantics, by applying a suitable sequence oftransformation rules.Example 11 The loop merging strategy transforms the \naive" programp(L;R) : : : ; sum(L;S); length(L;N); : : :into the optimized programp(L;R) : : : ; sumLength(L;S;N); : : :and generates a new program for sumLength from those for sum and length.De�nition 18 A transformation technique improves program e�ciency by us-ing a combination of transformation strategies.E�ciency improvement is the main objective of transformation techniques.In the remaining part of this section, I present four basic transformationrules, namely unfolding, folding, de�nition introduction, and goal replacementfor de�nite programs. The de�nitions below are similar to the de�nitions in[41], but they are adapted to our terminology. The reader may refer to [41] formore transformation rules, the variations of the transformation rules below fordi�erent semantics, and their relevant properties.

CHAPTER 2. BASIC CONCEPTS 17De�nition 19 (Unfolding) Let Pk be the program fE1; : : : ; Er; C;Er+1; : : : ;Esg where Ei (1 � i � s) is a clause, and let C be the clause H F;A;G,where A is an atom and F and G are conjunctions of atoms. Suppose that:(1) fD1; : : : ;Dng, with n > 0, is the subset of all clauses in a program Pj ,with 0 � j � k, such that A is uni�able with head(D1); : : : ; head(Dn),with most general uni�ers �1; : : : ; �n, respectively, and(2) Ci is the clause (H F; body(Di); G)�i, for i = 1; : : : ; n.If we unfold C wrt A using D1; : : : ;Dn in Pj , we derive the clauses C1; : : : ; Cnand we get the new program Pk+1 = fE1 : : : ; Er; C1; : : : ; Cn; Er+1; : : : ; Esg. Asimpler terminology, like \to unfold C wrt A using Pj", can also be used.Example 12 Let C = p(X) q(t(X)); s(X) be a clause in Pk and let thede�nition of q in Pj , with 0 � j � k, consist of the following clauses:q(a) q(t(b)) q(t(a)) r(a)Then, by unfolding C wrt q(t(X)) using Pj , the following clauses are derived:p(b) s(b)p(a) r(a); s(a)Thus Pk+1 is obtained by replacing the subset fCg in Pk by the set of derivedclauses above.De�nition 20 (Folding) Let Pk be the program fE1; : : : ; Er; C1; : : : ; Cn; Er+1;: : : ; Esg and let fD1; : : : ;Dng be a subset of clauses in a program Pj , with0 � j � k. Suppose that there exists an atom A such that, for i = 0; : : : ; n:(1) head(Dj) is uni�able with A via a most general uni�er �i,(2) Ci is the clause (H F; body(Dj); G)�i, where F and G are conjunctionsof atoms, and

CHAPTER 2. BASIC CONCEPTS 18(3) for any clause D of Pj not in the subset fD1; : : : ;Dng, head(D) is notuni�able with A.If we fold C1; : : : ; Cn using fD1; : : : ;Dng in Pj , we derive the clause H F;A;G, call it C, and the new program is Pk+1 = fE1; : : : ; Er; C;Er+1; : : : ; Esg.The folding rule is the inverse of the unfolding rule, in the sense that given atransformation sequence P0; : : : ; Pk; Pk+1, where Pk+1 has been obtained fromPk by unfolding, there exists a transformation sequence P0; : : : ; Pk; Pk+1; Pk,where (the last occurrence of) Pk has been obtained from Pk+1 by folding.Example 13 The clausesC1 : p(t(X)) q(X); r(X)C2 : p(u(X)) s(X); r(X)can be folded usingD1 : a(X; t(X)) q(X)D2 : a(X;u(X)) s(X)thereby derivingC : p(Y) a(X;Y); r(X)Notice that by unfolding clause C using fD1;D2g, we get again fC1; C2g.De�nition 21 (De�nition Introduction) Let Pk be the program fE1; : : : ; Eng,a new program Pk+1 can be obtained by the set union of Pk and Pr where Pris a program for relation r such that r does not occur in P0; : : : ; Pk.Example 14 Let Pk be the program:p qp failq By de�nition introduction, Pk+1 will be the program:

CHAPTER 2. BASIC CONCEPTS 19p qp failq newp qi� newp does not occur in P0; : : : ; Pk.De�nition 22 (Goal Replacement) A replacement law is a pair S � T ,where S and T are conjunctions of atoms. Let fX1; : : : ;Xng be the set con-taining the variables both in S and in T (i.e., vars(T) \ vars(S)), and let usconsider the following two clauses:CS : p(X1; : : : ;Xn) SCT : p(X1; : : : ;Xn) Twhere p is any new relation name. We say that S � T is valid wrt the programPk i� the program Pk [CS is equivalent to the program Pk [CT wrt thespeci�cation of the top-level relation. LetC : H F; S;Gbe a clause in Pk such that:1. S � T is a valid replacement law wrt Pk, and2. vars(H;F;G) \ vars(S) = vars(H;F;G) \ vars(T) = fX1; : : : ;Xng.By replacement of S in C using S � T we derive the clauseR : H F; T;Gand we get Pk+1 by replacing C by R in Pk.Example 15 (Goal Replacement [41]) Let Pk be the program below:C1 : sublist(N;X; Y) length(X;N); append(V;X;W); append(W;Z; Y)C2 : append(L;R;Z) L = []; Z = RC3 : append(L;R;Z) L = [HLjTL]; append(TL;R; TZ); Z = [HLjTZ]

CHAPTER 2. BASIC CONCEPTS 20The replacement lawappend(V;X;W); append(W;Z; Y) � append(X;L;M); append(K;M;Y)(which expresses a weak form of associativity of append) is valid wrt Pk. Indeed,if we consider the clauses:CS : p(X;Y) append(V;X;W); append(W;Z; Y)CT : p(X;Y) append(X;L;M); append(K;M;Y)we have that Pk[CS is equivalent to the program Pk[CT wrt the speci�cationof the top-level relation. Thus by goal replacement ofappend(V;X;W); append(W;Z; Y)in C1, we derive the clause:C 01 : sublist(N;X; Y) length(X;N); append(X;L;M); append(K;M;Y)In [9], I use the transformation rules unfolding and folding for proving theequivalence of the input and output programs of the transformations explainedin the remaining chapters of this thesis. The de�nition introduction and goalreplacement rules are used to de�ne the transformation strategies that wereproposed in the literature, as we will see in Section 2.2.1.2.1.4 Program Schemas and Schema PatternsI gave the de�nition of a program in Section 2.1.1, now I will give the de�nitionsof a program schema and a program schema pattern.De�nition 23 In a closed framework F , a program schema for a relation r isa pair hT;Ci, where T is an open program for r, called the template, and C isa set of speci�cations of the open relations of T in terms of each other and theinput/output conditions of the closed relations of T . The speci�cations in C,called the steadfastness constraints, are such that, in F , T is steadfast wrt itsspeci�cation Sr in C.

CHAPTER 2. BASIC CONCEPTS 21Example 16 Let GT be the generate and test program schema for relation rof arity 2, then GT contains the template program:8X : X :8Y : Y: r(X;Y) generator(X;Y); tester(Y)Note that most programs can be classi�ed as GT programs according to thetemplate above, if no semantic constraints on the open relations are given.Informally, the semantics (i.e. meaning) of the template above is that, for agiven input X of type X , the relation generator generates a possible outputY of type Y until Y satis�es the condition speci�ed by the relation tester. Sothe steadfastness constraints of GT are:Ir(X)) [generator(X;Y), Og(X;Y)]Og(X;Y)) [tester(Y), Or(X;Y)]where Ir(X) is the input condition of the relation r, andOr(X;Y) (respectively,Og(X;Y)) is the output condition of the relation r (respectively, generator).De�nition 24 In a closed framework F , a program P for a relation r is aninstance of program schema S = hT;Ci for a relation r if it has the form T [E,where E is a closed program de�ning all the open relations in T , such that Eis totally correct wrt each speci�cation in C (i.e., such that P is totally correctwrt its speci�cation Sr).Example 17 For instance, the closed programr(X;Y) generator(X;Y); tester(Y)generator(X;Y) perm(X;Y)tester(Y) ordered(Y)is an instance of the generate-and-test GT schema in the list framework, as-suming that perm and ordered are primitives.Sometimes, a series of schemas are quite similar, in the sense that theyonly di�er in the number of arguments of some relations, or in the number of

CHAPTER 2. BASIC CONCEPTS 22calls to some relations, etc. For instance, one may want to write a GT schemafor relations having n result arguments. For this purpose, rather than havinga proliferation of similar schemas, I introduce the notions of schema pattern(compare with [10]) and particularization.De�nition 25 A schema pattern is a schema where term, conjunct, and dis-junct ellipses are allowed in the template and in the steadfastness constraints.I do not formally de�ne the ellipsis notation here, assuming that their se-mantics is quite straightforward. For instance, TX1; : : : ; TXt is a term ellipsis,and Vti=1 r(TXi; TYi) is a conjunct ellipsis.Example 18 The following is the template of a GT schema pattern, calledGTP :8X : X :8Y1; : : : ; Yn : Y: r(X;Y1; : : : ; Yn) generator1(X;Y1); tester1(Y1);: : : ;generatorn(X;Yn); testern(Yn)De�nition 26 A particularization of a schema pattern is a schema obtained byeliminating the ellipses, i.e., by binding the (mathematical) variables denotingtheir lower and upper bounds to natural numbers.Example 19 The schema GT is the particularization of GTP for n = 1 (as-suming that indexes are dropped when ellipses reduce to singletons).2.1.5 Transformation SchemasIn Section 2.1.3, I gave the de�nitions of a program transformation and atransformation technique. Now, it is time to give the de�nition of a transfor-mation schema that is the counterpart of the transformation techniques in thestrategy-based approach.

CHAPTER 2. BASIC CONCEPTS 23De�nition 27 A transformation schema encoding a transformation techniqueis a 5-tuple hS1; S2; A;O12; O21i, where S1 and S2 are program schemas (orschema patterns), A is a set of applicability conditions, which ensure the equiv-alence of the templates of S1 and S2 wrt the speci�cation of the top-levelrelation, and O12 (respectively, O21) is a set of optimizability conditions, whichensure the optimizability of the output program schema (or schema pattern)S2 (respectively, S1).The reader may �nd the example below too easy and providing not much ef-�ciency gain as a transformation and little generic as a transformation schema,but I give this example so that the reader will have an intuitive understandingof the notion. Many realistic examples of transformation schemas will be foundin the remaining chapters.Example 20 Let TS be the example transformation schema that is a 5-tuplehS1; S2; A;O12; O21i, where S1 has the template:r(X;Y) id(E); Z = [E]; comp1(Z;X; Y)and the steadfastness constraints of S1 are the speci�cations of the relations r,id, and comp1. Then, S2 has the template:r(X;Y) id(E); Z = [E]; comp2(X;Z; Y)with a subset of the steadfastness constraints of S1 that are the speci�cationsof relations r, id, and comp2.The set A of the applicability conditions of TS contains the formula:Oc1(Z;X; Y),Oc2(X;Z; Y)where Oc1 and Oc2 are the output conditions of comp1 and comp2.O12, which is the set of the optimizability conditions of S2 in TS, is the setcontaining the formula:Z = [E]) [Oc1(Z;X; Y), Y = [EjX]]

CHAPTER 2. BASIC CONCEPTS 24and O21, which is the set of the optimizability conditions of S1 in TS, is theset containing the formula:Z = [E]) [Oc2(X;Z; Y), Y = [EjX]]assuming that the two schemas are de�ned in the list framework.De�nition 28 A transformation schema hS1; S2; A;O12; O21i is correct i� thetemplates of program schemas (or schema patterns) S1 and S2 are equivalentwrt the speci�cation of the top-level relation under the applicability conditionsA. In program transformation, for proving the correctness of a transformationschema hS1; S2; A;O12; O21i, I have to prove the conditional equivalence of T1and T2, which are the templates of S1 = hT1; C1i and S2 = hT2; C2i. I assumethat the template Ti of the input program schema Si = hTi; Cii (where i = 1; 2)is steadfast wrt the speci�cation of the top-level relation, say Sr, in Ci, thenthe correctness of the transformation schema is proven by establishing thesteadfastness of the template Tj of the output program schema (or schemapattern) Sj = hTj ; Cji (where j = 1; 2 and j 6= i) wrt Sr in Cj using theapplicability conditions A.At the program-level, the transformation of a given closed program P fora relation r into a new closed program Q for r then reduces to:(1) selection of an applicable transformation schema hS1; S2; A;O12; O21i,where S1 = hT1; C1i and S2 = hT2; C2i such that P is an instance ofS1 (i.e., P = T1 [E), or an instance of S2 (i.e., P = T2 [E);(2) veri�cation of the applicability of the transformation schema by veri�-cation of whether E satis�es the conditions A, in the considered closedframework F , i.e., whether E `F A;(3) veri�cation of the e�ciency gain by the transformation schema by veri�-cation of whether E satis�es the conditions O12, or O21, in the consideredclosed framework F , i.e., whether E `F O12, or E `F O21;

CHAPTER 2. BASIC CONCEPTS 25(4) computation of Q as an instance of S2, or S1, i.e., Q = T2 [E, or Q =T1 [E;(5) optimization of Q.If schema-guided synthesis of P was performed (e.g., if P is a-priori known tobe a particularization of S1), then Q can be obtained automatically, namely Qwill be the corresponding particularization of S2.2.1.6 Problem GeneralizationNot only in mathematics, but also in many �elds of computer science, such asmachine learning, theorem proving, and so on, generalization techniques areused to ease the process of solving a problem. Here generalization is used totransform a possibly ine�cient program into a more e�cient one, because thegeneralization process may provoke a complexity reduction by loop mergingand because the output program may be (semi-)tail-recursive (which can befurther transformed into an iterative program by an optimizing interpreter).The problem generalization techniques that are used in this thesis are explainedin detail in [16], and using these techniques for synthesizing and/or transform-ing a program in a schema-guided fashion was �rst proposed in [16, 17], andthen extended in [20].Given a program, the generalization process works as follows: �rst thespeci�cation of the initial program is generalized, then a recursive program forthe generalized speci�cation is synthesized, and �nally a non-recursive programfor the initial problem can be written, since the initial problem is a particularcase of the generalized one. The two generalization approaches used here are:1. Structural generalization: The intended relation is generalized by gener-alizing the structure (or: type) of a parameter. If a problem dealing witha term is generalized to a problem dealing with a list of terms, then thisgeneralization is called tupling generalization.2. Computational generalization: The intended relation is generalized soas to express the general state of a computation in terms of what has

CHAPTER 2. BASIC CONCEPTS 26been done and what remains to be done. Ascending and descendinggeneralizations are two particular cases of computational generalization,where in ascending generalization, information about what has alreadybeen done is also needed, but in descending generalization the informationabout what remains to be done is enough.De�nition 29 If output program schema (or schema pattern) of the transfor-mation schema is obtained by any method of generalization described above,then the transformation schema is called a generalization schema.In the remainder of this section, I illustrate the generalization process de-scribed above on two examples; in the �rst one, I use tupling generalization,and in the second one, I use descending generalization.Example 21 (Tupling Generalization) Let sort=2 be our initial problem,and its speci�cation is:sort(L;S) i� integer-list S is the sorted version of integer-list L in ascendingorder.Let's assume that sort=2 program below is constructed as the initial program,which is not very e�cient in time and space, although it is better than mostof the sort=2 programs that can be constructed.sort([]; []) sort([HLjTL]; S) partition(TL;HL; TL1; TL2);sort(TL1; TS1); sort(TL2; TS2);append(TS1; [HLjTS2]; S)with a correct program for partition=4, which has the speci�cation below:partition(L;H; T1; T2) i� integer-list T1 has all the elements of integer-list Lthat are less than integer H, and integer-list T2 has all the remainingelements of L that are greater or equal to H.

CHAPTER 2. BASIC CONCEPTS 27and a correct program for append=3, having the speci�cation:append(L1; L2; L3) i� list L3 is the concatenation of the lists L1 and L2.Using tupling generalization, by generalizing the parameter L in the speci�-cation, the sort=2 problem can be generalized to the sort tupling=2 problem,which has the speci�cation below:sort tupling(Ls; S) i� integer-list S is the concatenation of the sorted versionsof the integer-lists in list Ls.The next step in the generalization process is to synthesize a program forthe generalized speci�cation. Keeping the sort=2 program above in mind, theprogram for sort tupling=2 is:sort tupling([]; []) sort tupling([[]jTLs]; S) sort tupling(TLs; S)sort tupling([[HLjTL]jTLs]; [HLjTS]) partition(TL;HL; TL1; TL2);TL1 = [];sort tupling([TL2jTLs]; TS)sort tupling([[HLjTL]jTLs]; S) partition(TL;HL; TL1; TL2);TL1 6= [];sort tupling([TL1; [HLjTL2]jTLs]; S)also with a correct program for partition=4.Finally, the non-recursive program for the initial problem is:sort(L;S) sort tupling([L]; S)The resulting tupling generalized program is much more e�cient than theinitial program, both in time and space, since the call to append is eliminated,and the generalized program can be made semi-tail recursive, when L is theinput parameter and S is the result parameter.Example 22 (Descending Generalization) Our initial problem is reverse=2,which has the speci�cation below:

CHAPTER 2. BASIC CONCEPTS 28reverse(L;R) i� list R is the reverse of list L.For the reverse=2 problem, a \naive" program can be constructed as below:reverse([]; []) reverse([HLjTL]; R) reverse(TL; TR);HR = [HL]; append(TR;HR;R)with a correct program for append=3, which has the speci�cation as the onegiven in Example 21.The \naive" reverse program given above is not adequate, in the sensethat it is not space e�cient, since it generates too much intermediate datastructures, and it will be time ine�cient, if we don't have a linear-time programfor append. Using descending generalization principles, our initial speci�cationof reverse=2 can be generalized to the speci�cation Sreverse desc, namely:reverse desc(L;R;A) i� list R is the concatenation of list A to the end of thereverse of list L.The reader, who may wonder how I achieve this generalization of the initialspeci�cation, can refer to [16] for details. I will explain other methods fordescendingly generalizing a speci�cation in Sections 2.2.2 and 4.2.1.The next step in the generalization process is to develop a program forSreverse desc, which can be:reverse desc([]; R;R) reverse desc([HLjTL]; R;A) reverse desc(TL;R; [HLjA])Finally, the non-recursive program for the initial problem reverse=2 is:reverse(L;R) reverse desc(L;R; [])The resulting descendingly generalized program is much more e�cient thanthe initial program, both in time and space, since the call to append is elimi-nated, and the generalized program can be made tail recursive, when L is theinput parameter and R is the result parameter.

CHAPTER 2. BASIC CONCEPTS 292.2 Related WorkThe program transformation approach to the development of programs was�rst advocated by Burstall and Darlington [7] for functional programs thatwere written as sets of recursive equations. Burstall and Darlington dividedthe task of developing a correct and e�cient program into two subtasks [7]:1. develop an initial, maybe ine�cient program whose correctness can beeasily veri�ed,2. transform that initial program into a more e�cient program.Their transformation approach is based on the \rules+strategies" approach(i.e. they proposed transformation techniques that use a combination of somebasic transformation strategies based on the transformation rules unfoldingand folding). The extensive use of program transformation is strongly relatedto the development of functional and logic languages, since some simple tools,which will be explained in detail in Sections 2.2.1 and 2.2.2, can be easily usedfor program manipulations in these languages.In this section, I present a summary of what has already been done in thelogic program transformation area. I divided the transformation approachesinto strategy-based approaches and schema-based approaches. However, mostof the researchers in both �elds work on program transformation in a givenprocedural semantics, which is the one of Prolog in most of the cases. I willlater take a di�erent approach, namely program transformation in declarativesemantics. In Section 2.2.1, I present the strategy-based approaches to logicprogram transformation by using the categorization of Pettorossi and Proietti[41]. So, for a more detailed survey of strategy-based approaches to logicprogram transformation, the reader is invited to read [41], and similarly fortransformation approaches in functional programming [42]. In Section 2.2.2,I present the schema-based logic program transformation techniques found inthe literature.

CHAPTER 2. BASIC CONCEPTS 302.2.1 Strategy-based Transformation ApproachesBefore explaining the techniques that were proposed under the strategy-basedapproaches, I will �rst give the de�nitions of an unfolding tree, which representsthe process of unfolding a given clause using a given program, and an unfoldingselection rule, which de�nitions are taken from [41]. Then, I will give thede�nitions of some of the transformation strategies that were given in [41, 42],since they were widely used in the techniques that I will explain.De�nition 30 (Unfolding tree [41]) Let P be a program and let C be aclause. An unfolding tree for P [fCg is a (�nite or in�nite) non-empty labeledtree such that:(i) the root is labeled by the clause C;(ii) if M is a node labeled by a clause D, then:either M has no sons,or M has n(� 1) sons labeled by the clauses D1; : : : ;Dn obtained byunfolding D wrt an atom of its body using P ,or M has one son labeled by a clause obtained by goal replacement fromD.De�nition 31 (Unfolding selection rule [41]) An unfolding selection ruleis a function that, given an unfolding tree and one of its leaves, tells us whetheror not to unfold the clause in that leaf, and, in the a�rmative case, tells usthe atom wrt which that clause should be unfolded.De�nition 32 (Generalization Strategy [42]) Given a clause C of the formH A1; : : : ; Am; B1; : : : ; Bnwe de�ne a new predicate genp by a clause G of the formgenp(X1; : : : ;Xk) GenA1; : : : ; GenAm

CHAPTER 2. BASIC CONCEPTS 31where (GenA1 : : : ; GenAm)� = A1; : : : ; Am, for a given substitution �, andfX1; : : : ;Xkg is a superset of the variables that are necessary to fold using aclause whose body is GenA1; : : : ; GenAm. We then fold C using G and we getH genp(X1; : : : ;Xk)�;B1; : : : ; Bn:We �nally look for the recursive de�nition of the predicate genp. A suitableform of the clause G introduced by the generalization strategy can often beobtained by matching clause C against one of its descendants, say D, in theunfolding tree, which is considered during program transformation. In partic-ular, we will consider the case where:1. D is the clause K E1; : : : ; Em; F1; : : : ; Fr and D has been obtainedfrom C by applying no transformation rules, except rearrangement ofgoals and deletion of duplicate goals in a clause, which preserve the cor-rectness in declarative semantics, to B1; : : : ; Bn;2. for i = 1; : : : ;m, the atom Ei has the same predicate as Ai;3. for i = 1; : : : ;m, the atom Ei is not an instance of Ai;4. the goalGenA1 : : : ; GenAm is the most speci�c generalization ofA1; : : : ; Amand E1; : : : ; Em;5. fX1; : : : ;Xkg is the minimum subset of vars(GenA1 : : : ; GenAm) (wherevars(t) denotes the set of variables occurring in term t), which is neces-sary to fold both C andD using a clause whose body isGenA1; : : : ; GenAm.The loop absorption strategy, which is formally introduced by Proietti andPettorossi [43], can be viewed as a particular case of the generalization strategy,which can be applied if the conditions 1, 2, 4, and 5 hold in the de�nition ofthe generalization strategy, and for i = 1; : : : ;m, Ei is an instance of Ai.The strategies above were also called auxiliary strategies [41], since theycan be used by a more general strategy, called the predicate tupling strategy.De�nition 33 (Predicate Tupling Strategy [42]) This strategy, also calledtupling, for short, consists of selecting some atoms, say A1; : : : ; An, with n � 1,

CHAPTER 2. BASIC CONCEPTS 32occurring in the body of a clause C. We introduce a new predicate newpde�ned by a clause T of the form:newp(X1; : : : ;Xk) A1; : : : ; Anwhere X1; : : : ;Xk are the linking variables in C (i.e., the variables occurring inA1; : : : ; An, and also in the head and in the remaining atoms in the body of C).We then look for the recursive de�nition of the predicate newp by performingsome unfolding, and two more transformation rules (i.e, goal replacement andclause deletions, which were de�ned in [41]) followed by some folding stepsusing clause T . We �nally fold the atoms A1; : : : ; An in the body of C usingclause T .Now, I explain some of the work done in the program transformation �eldusing a strategy-based approach. The techniques can be categorized under thefollowing titles: compiling control, composing programs, changing data repre-sentation, recursion removal, annotations and memoing, and partial evaluation.COMPILING CONTROLPrograms that are written with the left-to-right computation rule of Prolog inmind are often not very e�cient, because of the amount of nondeterminismduring the execution of these programs in Prolog.Compiling control was de�ned as a di�erent approach to program transfor-mation [41], in the sense that a given program is transformed into a programthat behaves under the naive evaluator (i.e. the execution mechanism) of Pro-log as the given program would behave under an enhanced evaluator that usesa better control strategy.The �lter promotion strategy was proposed with a similar idea in functionalprogramming by Bird [4], which is a general method to transform an inputprogram into a more e�cient program by exploiting the recursive structurein the dominant term of an algorithmic expression. In [41], Pettorossi andProietti categorized the transformation technique that was proposed by Sekiand Furukawa [49], as a technique similar to compiling control and the �lter

CHAPTER 2. BASIC CONCEPTS 33promotion strategy, for transforming generate-test programs into more e�cientprograms. However, I will categorize their method under synthesis of programs.In [41], basic techniques of compiling control are characterized as follows:Given a program P1, a set Q of queries, and a computation ruleC, compiling control derives a new program P2 by �rst construct-ing a suitable unfolding tree, say T , and then applying the loopabsorption strategy.COMPOSING PROGRAMSCompositional programming is a popular style of programming, which con-sists of decomposing a given goal in smaller and easier subgoals, then writingprograms to solve these subgoals, and �nally composing these programs inan appropriate way [41]. However, the disadvantage of this style is that thecomposition of the programs that are written to solve the subgoals resultsin ine�cient programs, since this composition does not take into account theinteractions that may occur while evaluating these subgoals.For functional and imperative programs, various transformation methodshave been proposed in the literature, which can be classi�ed under this cat-egory, e.g., �nite di�erencing [40], deforestation [59], and super-compilation[56, 51].Loop merging, in Section 2.1.3, (also called loop fusion by Debray [14]) isone of the transformation techniques that was proposed for improving pro-grams that were written in compositional style. This technique transforms theprogram for a relation that is de�ned as the composition of two independent re-cursive relations into a program where a new relation is introduced, which doesall the computations done by these two recursive relations. Unnecessary vari-able elimination is another technique, proposed by Proietti and Pettorossi [44],for deriving programs without unnecessary variables, and uses the predicatetupling strategy. A variable X of a clause C is unnecessary if at least one ofthe following two conditions holds [44]:

CHAPTER 2. BASIC CONCEPTS 34� X occurs more than once in the body of C (in this case, X is a sharedvariable);� X does not occur in the head of C (in this case, X is an existentialvariable).The loop merging and the unnecessary variable elimination methods avoidmultiple traversals of data structures as well as the construction of intermediatedata structures.CHANGING DATA REPRESENTATIONChoosing the appropriate data representation is an important issue to developan e�cient program, but this is not an easy process in most of the cases,and, further, complex data representations complicate the correctness proofsof programs. Program transformation was proposed as a solution to the prob-lem above. In logic programming, transformation of programs that use listsinto equivalent programs that use di�erence-lists is the best-known example ofprogram transformation by changing data representation.A di�erence-list, denoted by L\R, where L and R are lists, can be usedto represent a third list X, such that the concatenation of X and R is L. Asingle list can be represented by many di�erence-lists. The main advantageof di�erence-lists is that the concatenation of two di�erence-lists can be per-formed in constant time, unlike in the simple list representation, where theconcatenation of two lists takes linear time wrt the length of the �rst list.Programs that use lists are often easier to write and understand than pro-grams that use di�erence-lists. Let us illustrate this on an example for thereverse relation.Example 23 The program for reverse that uses simple lists was given inExample 22. The desired transformation can be achieved by applying thede�nition introduction rule, and introducing a new relation reverse d with thefollowing initial de�nition:reverse d(X;LnR) reverse(X;Y); append(Y;R;L)

CHAPTER 2. BASIC CONCEPTS 35Performing some unfolding and goal replacement steps, a new program forreverse d can be obtained, and �nally, the transformed program, which uses adi�erence-list, can be written as:reverse(L;R) reverse d(L;Rn[])reverse d([]; LnL) reverse d([HLjTL]; LnR) reverse d(TL;Ln[HLjR])In [31], Hansson and T�arnlund proposed a semi-automatic technique toderive a program using di�erence-lists from a program that uses simple lists,by introducing a function that maps a simple list to a di�erence-list. Theirdata structure mapping takes away the append procedure, which is the con-catenation relation de�ned for simple lists. In [62], Zhang and Grant proposedan automatic transformation technique towards di�erence-list manipulation,which applies under control the transformation rules folding and unfolding,and some other transformation techniques. Their technique also made use ofsemantic information on the relations that are used in the program, e.g., as-sociativity. In [39], Marriott and S�ndergaard proposed an automatic threestaged transformation technique that transforms list-processing programs intoprograms that use di�erence-lists by �rst doing data ow analysis of the inputProlog program to determine whether the transformation is applicable to theinput program. In this �rst part of the method, data structure transformationis performed by converting the append calls into variations of append. Then,the most e�cient version of append in that case is chosen for the proceduralsemantics preserving concatenation of di�erence-lists. Finally, the non-logicalcalls added during the previous stages are removed.The new relation, which has to be introduced in all the methods (reverse din our example), can also be viewed as the invention of an accumulator vari-able in the accumulation strategy, which was �rst introduced in [4] for trans-forming functional programs. Simply put, the accumulation strategy achievesthe generalization of the initial problem by the inclusion of an extra param-eter, which is called accumulator. Indeed, in Example 23, the new relationreverse d(X;LnR) can be written as reverse acc(X;L;R), where R is the

CHAPTER 2. BASIC CONCEPTS 36accumulator parameter. The reader may also notice that descending general-ization also comes to the same conclusion with its di�erent underlying idea.Also note that the accumulator strategy and descending generalization providemore than a conversion to di�erence-list representation, since any di�erencestructure can be represented by these methods. I will further discuss this inSections 2.2.2 and 4.2.RECURSION REMOVALAlthough recursion is the main control structure for declarative programs, theextensive use of recursive relations may lead to programs that are ine�cient intime and space. In logic programming, recursion removal means transforminga recursive program into a tail recursive program.In [13], Debray proposed a transformation technique to transform an almost-tail recursive program into a tail recursive one. He de�ned an almost-tail re-cursive clause as a recursive clause where the atoms following the last recursivecall in the body involve only primitive computations. So, a program is saidto be almost-tail recursive i� all its recursive clauses are either tail recursiveor almost-tail recursive, and there has to be at least one almost-tail recursiveclause in that program. His technique introduces an auxiliary relation, like thede�nition introduction in transformation towards di�erence-lists, in the �rststage. Then, the most e�cient recursive program for the new relation is ob-tained by using the unfolding/folding transformation rules. Finally, his methodconverts the new program to a tail recursive version, if it was not already, byusing the syntactic structure of the recursive calls, and the semantic propertiesof the primitive operations, which are called lastly in the recursive clauses, e.g.,associativity, commutativity, and so on.ANNOTATIONS and MEMOINGIn the literature, the transformation techniques that make use of the extra-logical features of logic languages, like cuts, asserts, and so on, are also studiedwidely. These techniques are called program annotations, which was �rst usedto de�ne similar techniques in functional programming. Prolog program trans-formation techniques that are based on the usage of the extra-logical predicates

CHAPTER 2. BASIC CONCEPTS 37of Prolog, the computation, and the search rule of Prolog are explained in detailby Deville [16].A typical technique, which was given in [16, 41], transforms a given Prologprogram into an e�cient annotated program by adding the cut operator, whichis denoted by \!". Let us illustrate this on an example.Example 24 Let the input Prolog program be as follows:r(X) A;C1r(X) not(A); C2where C1 and C2 are conjunctions of atoms, A is an atom, and not(A) denotesthe negation of the atom A. The program above can be transformed (if A hasno side-e�ects) intor(X) A; !; C1r(X) C2The output program is more e�cient than the initial program, since it behaveslike an if-then-else statement.Memoization is another technique that can be classi�ed under programannotations, where the results of the previous transformations are stored in atable for further use.PARTIAL EVALUATIONPartial evaluation [33] (also called partial deduction in the case of logic pro-gramming) is a program transformation technique that takes as input a pro-gram and a query, and produces an output program optimized for all instancesof that query. For a detailed explanation and further references, the reader canrefer to [41]. I will illustrate partial evaluation using the example which wasgiven in [41].Example 25 Let the program P be:

CHAPTER 2. BASIC CONCEPTS 38p([]; Y) p([HjT]; Y) q(T; Y)q(T; Y) Y = bq(T; Y) p(T; Y)and let the query Q be p(X; a). If we use the unfolding strategy U [41],which performs unfolding steps starting from the query p(X; a) until eachleaf of the SLDNF-tree is either a success or a failure or has predicate p, then,�nally, the SLDNF-tree in Figure 2.1 below will be obtained.
p(X, a)

q(T, a)

a=b p(T, a)

{X/[]}

{X/[H|T]}failureFigure 2.1. An SLDNF-tree of P [f p(X; a)g using UAfter collecting the goals and and the substitutions corresponding to the leavesof that tree, the output program of the partial evaluation of the program Pand the query Q is as follows:p([]; a) p([HjT]; a) p(T; a)The �nal program does not contain the clauses for q, since p does not dependon q in the output program.There exist (semi-)automatic partial evaluators that use the idea of partialevaluation to transform programs into more e�cient programs for the casewhere some information about the input parameters of the program is a-priori

CHAPTER 2. BASIC CONCEPTS 39known, e.g., Mixtus [48] (for a summary of Mixtus and its integration detailsinto another transformation system, refer to Chapter 7).2.2.2 Schema-based Transformation ApproachesLogic program schemas have proven useful in various �elds of logic program-ming: teaching logic programming to novices [25], synthesizing logic pro-grams [52, 17, 19, 22], and also transforming logic programs [20, 24, 57, 58, 27].The basic ideas for using schemas for synthesizing and transforming programswere introduced �rst for functional programs, e.g., the transformation schemasfor improving recursive functions [32].The strategy-based approaches to logic program transformation, which wereexplained in Section 2.2.1, are actually sequences of transformation rules thatare not prede�ned. A strategy thus needs a global plan for the application oftransformation rules, since at each point a check must be made whether theapplication of a possible transformation rule will result in the most e�cientprogram at the end. The schema-based approaches to program transforma-tion, on the other hand, consist of a database of prede�ned transformations,which are called transformation schemas. There exist di�erent de�nitions forthe notion of transformation schema [57, 27]. However, our de�nition of atransformation schema in Section 2.1.5 is the most general one, in the sensethat it is possible to represent all the transformation schemas in the literatureup to now by our de�nition.Most of the transformation schemas that I am going to explain are repre-sented as higher-order logic programs. So, the selection of the applicable trans-formation, which is the �rst step of the transformation at the program-level,becomes the most time-consuming step, because of the higher-order matchingthat has to be performed.Since Gegg-Harrison did not give a uni�ed de�nition for transformationschemas in [27], and represented the transformation schemas either as a triple(an input program, an output program, and the conditions, which have tobe satis�ed for achieving that transformation), or as a quadruple (two input

CHAPTER 2. BASIC CONCEPTS 40programs, one output program, and applicability conditions if they exist), Iwill not repeat his de�nitions here. However, it is better to examine the def-inition of the transformation schema that was �rst proposed by Fuchs andFromherz [24], and was then extended by Vasconcelos and Fuchs [57, 58] byalso augmenting the program schema representation, since their representa-tion is more formal and easy to examine, and also because Gegg-Harrison'swork can be represented using their transformation schema de�nition. Belowis their de�nition of transformation schemas (which they called schema-basedtransformation) [57]:A transformation schema T is a quadruple of the formh< G1; : : : ; Gn >;< S1; : : : ; Sn >;< H1; : : : ;Hm >;< T1; : : : ; Tm >iwhere < G1; : : : ; Gn > and < H1; : : : ;Hm > are conjunctions ofsubgoals, and < S1; : : : ; Sn > and < T1; : : : ; Tm > are input andoutput program schemas respectively.The applicability conditions of their transformation schemas are either implic-itly checked, or attached to the program schema representations, since they didnot have a �fth component for them in their transformation schemas. If n = 1and m = 1 in the de�nition above, which means that an individual procedureis transformed into another one, this can be represented in our transformationschema de�nition by taking the input program schema as fC1g [S1 and theoutput program schema as fC2g [T1, where C1 is the clause r(X1; : : : ;Xk) G1(X1; : : : ;Xk), and C2 is the clause rt(X1; : : : ;Xl) H1(X1; : : : ;Xl), wherert is the new relation, which is introduced by the transformation, and k andl are respectively indexes indicating the number of arguments of the relationsr and rt. For the cases where n > 1 and m � 1, since we allow nested pro-grams (where the relations are de�ned as an instance of a program schema inthe extension of these programs), the transformation schema above also canbe represented in our notation, where the input program has as the templatethe single clause r(X1; : : : ;Xk) G1(X1; : : : ;Xk); : : : ; Gn(X1; : : : ;Xk) and theextension fS1; : : : ; Sng, and the output program has as the template the singleclause rt(X1; : : : ;Xl) H1(X1; : : : ;Xl); : : : ;Hm(X1; : : : ;Xl) and the exten-sion fT1; : : : ; Tmg. This will cause us to extend the de�nition of schema-based

CHAPTER 2. BASIC CONCEPTS 41transformations to capture recursive schema-based transformations.In [57], Vasconcelos and Fuchs categorized the work done in the schema-based logic program transformation �eld into three categories, depending onthe integration of the transformation steps in program construction [58]:(1) e�ciency issues are considered during the program construction usingthe programming techniques that are standard logic programming con-structs, and guarantee a good computational behavior of the constructedprograms. For instance, Prolog programming techniques are extensivelystudied in the literature (e.g., [53]);(2) e�ciency issues are considered after the program is constructed, by trans-forming the code of the program (i.e., the second transformation step inDeville's logic program development methodology);(3) e�ciency issues are considered during the synthesis of a program when-ever possible, such that a program is synthesized using a program tech-nique, and the information, which is gained during the synthesis of thelogic program, will be used in transforming the logic program before trans-lating it into a program, which is written in a given language. Actually,this category was born as a result of Deville's methodology in schema-based logic program development (e.g., [19, 1, 20]).I do not give examples of the work done under the �rst category, since thesetechniques fully meld the transformation step in the construction of programs.The transformation schemas that are proposed in this thesis �t into the thirdcategory, since this work is actually an extension of the ideas proposed in [20,1]. Most of the transformation schemas that will be explained in this sectionare examples of the second category. So, if I do not indicate under whichcategory the work can be classi�ed, then this means that the work is underthe second category. Otherwise, I will explicitly indicate to which category thework belongs.I will categorize schema-based approaches using the categorization madein Section 2.2.1 for strategy-based approaches. However, nearly all the papers

CHAPTER 2. BASIC CONCEPTS 42in the schema-based logic program transformation literature can be classi�edunder two categories out of the six categories in Section 2.2.1, namely recur-sion removal and composing programs. There exist some exceptions, e.g., thetransformation schemas proposed by Seki and Furukawa [49] for reducing theamount of nondeterminism of generate-test programs, were classi�ed underthe category compiling control in Section 2.2.1. As I indicated before, I willcategorize their work as a method for synthesizing a program using programschemas.RECURSION REMOVALIn [5], Brough and Hogger proposed two transformation schemas, where thesecond one further improves the output program of the �rst one, if the applica-bility conditions are satis�ed. The �rst transformation schema transforms aninput program, which has to be a member of a subclass of recursive programsfor relations of arity 2, into an output program, which is also recursive and hasa time complexity similar to the input program, by checking the applicabilityconditions, which are the associativity and the closeness property of the com-putation relation, which is the last call in the body of the recursive clause ofthe input program. For instance, the almost-tail recursive programs, de�nedby Debray [13], are a subset of the input programs that can be transformedby this transformation schema. The second transformation schema takes as aninput program the output program of the transformation schema mentionedabove, and transforms it into a tail recursive program if the applicability condi-tions, namely the right-identity and functionality properties of the computationrelation, are satis�ed by the input program.In [6], the same authors proposed two more transformation schemas, wherethe second one is a more generic version of the �rst one, in the sense that the in-put program family that can be transformed by the �rst transformation schemais a sub-family of the input program family that can be transformed by thesecond transformation schema. These schemas were constructed by investigat-ing the analogy between grammars and logic programs, where they assumedthe logic programs were fully declarative (i.e., their transformation schemascan be classi�ed under the third category according to Vasconcelos and Fuchs'

CHAPTER 2. BASIC CONCEPTS 43categorization). The �rst transformation schema, namely forward-simulationtransformation, is the analogue of one of the important rules for grammars,namely the Greibach-Foster transformation, which takes as an input a left-recursive grammar and produces as an output a right-recursive grammar. Thenormalized template of the input logic program schema analogue of the left-recursive grammar in the forward-simulation transformation can be representedin our notation as:r(X) d(X)r(X) r(Y); c(X;Y)Then, the template of the output program schema analogue of the right-recursive grammar is:r(T) d(X); s(X;T)s(T; T) s(Y; T) c(Z; Y); s(X;T)This transformation provides left-recursive elimination (i.e., provides tail re-cursion by introducing an accumulator parameter). The second transformationschema was constructed by also using the analogy above for a class of programsthat are larger than the input program family of the forward-simulation trans-formation.In [27], Gegg-Harrison proposed two transformation schemas for transform-ing single recursive programs into tail recursive programs. The �rst transfor-mation schema is the counterpart of the accumulation strategy in the strategy-based approaches. The applicability condition of the transformation schema isde�ned as the associativity of the computation relation in the input schema,which computes the �nal version of the result parameter. The second transfor-mation schema was proposed to transform a single recursive program, whichhe called a forward-processing program (i.e., a program that processes its inputlist from the head and one of the outputs, which is a number, from its actualvalue down to 0), into another single recursive program, where the numberargument is processed from 0 up to its actual value.

CHAPTER 2. BASIC CONCEPTS 44In [24], Fuchs and Fromherz proposed a transformation schema that simu-lates the accumulation strategy for transforming recursive list-processing pro-grams into tail recursive list-processing programs. In [58], Vasconcelos andFuchs proposed an extension of the transformation schema that was introducedin [24]. The applicability conditions of the transformation schemas above con-sist of the needed declarative properties of the relations, and also the propertiesrelated to the operational semantics of Prolog.In [20], Flener and Deville proposed two transformation schemas that au-tomate the tupling generalization and the descending generalization, which areexplained in Section 2.1.6. So, they called these transformation schemas gener-alization schemas. The tupling generalization schema can transform an inputprogram, which is an instance of a program schema that abstracts a subclassof recursive programs, into an output tail recursive program i� some of theopen relations of the input template satisfy some properties, which are theapplicability conditions, e.g., associativity of the relation that computes theresult parameter. The descending generalization schema transforms a singlerecursive program into a tail recursive program i� the applicability conditionsof the generalization schema are satis�ed. They also indicated the analogybetween the descending generalization schema and the accumulation strategyin strategy-based approaches. So, these generalization schemas mechanize thegeneralization of a restricted sub-family of recursive programs, where this gen-eralization process was thought to be necessarily under human control beforeFlener and Deville's work. The reason is mainly that the generalization pro-cess introduces a new relation, which de�nes the generalized problem, and thisde�nition introduction step (i.e., the eureka discovery step) needs human in-teraction. Flener and Deville showed that this step can be eliminated by usingthe transformation schemas proposed for a restricted sub-family of programs.Using the ideas in [20], Batu pre-compiled some more generalization tech-niques for di�erent families of programs. These generalization schemas can befound in [1]. The generalization schemas that will be presented in this thesis areactually extensions of Flener and Deville's, and Batu's generalization schemasby extending the program schema and the transformation schema representa-tions, and the eureka discovery step is fully eliminated by the generalization

CHAPTER 2. BASIC CONCEPTS 45schemas that we have in this thesis.Note that the transformation schemas that are counterparts of the ac-cumulation strategy can also be classi�ed as `changing data representation',since these transformations represent the transformations towards di�erence-structures implicitly. The descending generalization of the relation reverse,which is given in Example 22, can be achieved by the transformation schemasthat simulate the accumulation strategy, since reverse is a list-processing sin-gle recursive program with append as the composition relation, which satis�esthe applicability conditions of these transformation schemas.COMPOSING PROGRAMSIn [27], Gegg-Harrison proposed a set of transformation schemas that can trans-form a program that is written in a compositional style into a more e�cientprogram by merging the logic programs written for the subgoals, which areinstances of the list-processing recursive program schemas, and they have com-mon arguments.In [58], Vasconcelos and Fuchs presented two transformation schemas in theappendix that were also pre-compiled in their transformation system, wherethe second one is more generic than the �rst one, and both are counterparts ofthe loop merging in the strategy-based approaches. The �rst schema can mergetwo programs manipulating the same single recursive data-structure, whereasthe second one can merge two data-structure manipulating programs, even ifthese programs have di�erent possibilities of recursions.The loop merging example, namely Example 11, can be achieved by usingthe transformation schemas in [58]. I will not illustrate the schemas above byan example, since their schema representations have to be explained in detail.Later, in [47], Richardson and Fuchs proposed a methodology for develop-ment of provably correct program transformation schemas, by abstracting theprogram transformation operations to transformation operations on programschemas. They have de�ned abstract unfold operation on program schemas tomirror the concrete unfold operations on programs. They also indicate a way

CHAPTER 2. BASIC CONCEPTS 46to de�ne the fold operation on program schemas. Unfortunately, much has tobe done on this work to be useful, e.g., correctness proofs of these operations.

Chapter 3Divide-and-Conquer LogicProgram SchemasThe divide-and-conquer methodology is one of the most e�ective program con-struction methodologies, since it is applicable to a large variety of problems,and the programs that are constructed by this methodology are easy to under-stand. The divide-and-conquer methodology solves a problem in three steps: [11]i. divide a problem into sub-problems, unless it can be trivially solved;ii. conquer the sub-problems by solving them recursively;iii. combine the solutions to the sub-problems into a solution to the initialproblem.If a (sub)problem can be solved trivially (without dividing any more and re-cursion), it is called a minimal case, otherwise it is called a non-minimal case.The program schema patterns given in this chapter abstract sub-families ofdivide-and-conquer (DC) programs. They are restricted to binary predicateswith X as the induction parameter and Y as the result parameter, to reectthe program schema patterns that can be represented by the prototype trans-formation system explained in Chapter 7. Another restriction in the schemapatterns is that when X is non-minimal, then X is decomposed into one head47

CHAPTER 3. DIVIDE-AND-CONQUER LOGIC PROGRAM SCHEMAS 48HX and t tails TX1; : : : ; TXt, so that Y is composed from one headHY (whichis the result of processing HX) and t tails TY1; : : : ; TYt (which are the resultsof recursively calling the predicate with TX1; : : : ; TXt, respectively) by p-�xcomposition (i.e. Y is composed by putting HY between TYp�1 and TYp).These program schema patterns are called DCLR and DCRL (the reasonwhy I call them DCLR and DCRL will be explained after I give the schemapatterns). Template 1 (respectively, Template 2) is the template of the DCLRschema pattern (respectively, the DCRL schema pattern).Logic Program Template 1r(X;Y) minimal(X);solve(X;Y)r(X;Y) nonMinimal(X);decompose(X;HX;TX1; : : : ; TXt);r(TX1; TY1); : : : ; r(TXt; TYt);I0 = e;compose(I0; TY1; I1); : : : ; compose(Ip�2; TYp�1; Ip�1);process(HX;HY); compose(Ip�1;HY; Ip);compose(Ip; TYp; Ip+1); : : : ; compose(It; TYt; It+1);Y = It+1Logic Program Template 2r(X;Y)

CHAPTER 3. DIVIDE-AND-CONQUER LOGIC PROGRAM SCHEMAS 49minimal(X);solve(X;Y)r(X;Y) nonMinimal(X);decompose(X;HX;TX1; : : : ; TXt);r(TX1; TY1); : : : ; r(TXt; TYt);It+1 = e;compose(TYt; It+1; It); : : : ; compose(TYp; Ip+1; Ip);process(HX;HY); compose(HY; Ip; Ip�1);compose(TYp�1; Ip�1; Ip�2); : : : ; compose(TY1; I1; I0);Y = I0The steadfastness constraints of these schema patterns (i.e., the speci�-cations of the open relations in these templates) are the same, since thesetemplates have the same open relations, and these constraints are shown in[21]. For example, the speci�cations of solve and decompose are:8X : X : 8Y : Y: Ir(X) ^ Om(X)) [solve(X;Y), Or(X;Y)8X;TX1; : : : ; TXt : X : 8HX : HX : Onm(X))[decompose(X;HX;TX1; : : : ; TXt),Dec(X;HX;TX1; : : : ; TXt) ^ t̂i=1Ir(TXi) ^ t̂i=1TXi � X]where Ir is the input condition of the top level relation r, Or (respectively,OmandOnm) is the output condition of r (respectively,minimal and nonMinimal),and � is a well-founded order over the sort of the induction parameter X.

CHAPTER 3. DIVIDE-AND-CONQUER LOGIC PROGRAM SCHEMAS 50Now, I explain the underlying idea why we have two di�erent schema pat-terns for DC, and why we call them DCLR and DCRL. If we denote thefunctional version of the compose predicate with �, then the composition of Yin template DCLR by left-to-right (LR) composition ordering can be writtenas Y = ((((((e� TY1)� : : :)� TYp�1)�HY)� TYp)� : : :)� TYt (3.1)The composition of Y in DCRL by right-to-left (RL) composition ordering canbe written asY = TY1 � (: : :� (TYp�1 � (HY � (TYp � (: : :� (TYt � e)))))) (3.2)Each example program in this chapter is an instance of a particularizationof the schema pattern that it belongs to, namely for t = 2 and p varyingbetween 1 and 3, for pre�x, in�x, and post�x composition, respectively.Three problems (to give a better understanding of p-�x composition) aregiven for traversing binary trees. In all the problems, the constant void isused to represent the empty binary tree, and the compound term bt(L;E;R)is used to represent a binary tree of root E, left subtree L, and right subtreeR. Because of properties of compose, we can construct two programs, whichare instances of the DC schema patterns above, for each problem. For theseproblems, equations 3.1 and 3.2 can be further simpli�ed resulting in an equalcomposition of the result parameter as:Y = TY1 � : : :� TYp�1 �HY � TYp � : : :� TYtExample 26 For the pre�x traversal of a binary tree, we have the speci�cationbelow:prefix flat(B;F) i� list F is the pre�x representation of binary tree B,where pre�x representation means the list representation of the pre�x traversalof the tree.

CHAPTER 3. DIVIDE-AND-CONQUER LOGIC PROGRAM SCHEMAS 51Program 1 below is a program for the prefix flat=2 problem, and it is aninstance of the DCLR schema pattern.prefix flat(B;F) B = void;F = []prefix flat(B;F) B = bt(; ;);B = bt(L;E;R);prefix flat(L;FL); prefix flat(R;FR);I0 = [];HF = [E]; append(I0;HF; I1);append(I1; FL; I2); append(I2; FR; I3);F = I3 Logic Program 1Since Program 1 is an instance of the DCLR schema pattern for t = 2 andp = 1 (i.e. pre�x composition), the callscompose(I0; TY1; I1); : : : ; compose(Ip�2; TYp�1; Ip�1)in the non-minimal case reduce to the empty conjunction (i.e. true), duringparticularization.Program 2 below is another program for the prefix flat=2 problem, and itis an instance of the DCRL schema pattern.

CHAPTER 3. DIVIDE-AND-CONQUER LOGIC PROGRAM SCHEMAS 52prefix flat(B;F) B = void;F = []prefix flat(B;F) B = bt(; ;);B = bt(L;E;R);prefix flat(L;FL); prefix flat(R;FR);I3 = [];append(FR; I3; I2); append(FL; I2; I1);HF = [E]; append(HF; I1; I0);F = I0 Logic Program 2Similarly, for Program 2, which is an instance of the DCRL schema pattern,the calls compose(TYp�1; Ip�1; Ip�2); : : : ; compose(TY1; I1; I0)in the non-minimal case reduce to the empty conjunction (i.e. true), duringparticularization.Example 27 For the in�x traversal of a binary tree, we have the speci�cationbelow:infix flat(B;F) i� list F is the in�x representation of binary tree B,

CHAPTER 3. DIVIDE-AND-CONQUER LOGIC PROGRAM SCHEMAS 53where in�x representation means the list representation of the in�x traversalof the tree.Program 3 below is a program for the infix flat=2 problem, and it is aninstance of the DCLR schema pattern.infix flat(B;F) B = void;F = []infix flat(B;F) B = bt(; ;);B = bt(L;E;R);infix flat(L;FL); infix flat(R;FR);I0 = [];append(I0; FL; I1);HF = [E]; append(I1;HF; I2);append(I2; FR; I3);F = I3 Logic Program 3Program 4 below is another program for the infix flat=2 problem, and itis an instance of the DCRL schema pattern.infix flat(B;F)

CHAPTER 3. DIVIDE-AND-CONQUER LOGIC PROGRAM SCHEMAS 54B = void;F = []infix flat(B;F) B = bt(; ;);B = bt(L;E;R);infix flat(L;FL); infix flat(R;FR);I3 = [];append(FR; I3; I2);HF = [E]; append(HF; I2; I1);append(FL; I1; I0);F = I0 Logic Program 4Example 28 For the post�x traversal of a binary tree, we have the speci�ca-tion below:postfix flat(B;F) i� list F is the post�x representation of binary tree B,where post�x representation means the list representation of the post�x traver-sal of the tree.Program 5 below is a program for the postfix flat=2 problem, and it is aninstance of the DCLR schema pattern.postfix flat(B;F)

CHAPTER 3. DIVIDE-AND-CONQUER LOGIC PROGRAM SCHEMAS 55B = void;F = []postfix flat(B;F) B = bt(; ;);B = bt(L;E;R);postfix flat(L;FL); postfix flat(R;FR);I0 = [];append(I0; FL; I1); append(I1; FR; I2);HF = [E]; append(I2;HF; I3);F = I3 Logic Program 5Program 6 below is another program for the postfix flat=2 problem, andit is an instance of the DCRL schema pattern.postfix flat(B;F) B = void;F = []postfix flat(B;F) B = bt(; ;);B = bt(L;E;R);postfix flat(L;FL); postfix flat(R;FR);

CHAPTER 3. DIVIDE-AND-CONQUER LOGIC PROGRAM SCHEMAS 56I3 = [];HF = [E]; append(HF; I3; I2);append(FR; I2; I1); append(FL; I1; I0);F = I0 Logic Program 6By the same reasoning that we use in explaining the instances of programsfor prefix flat=2, for postfix flat=2, where t = 2 and p = 3 (i.e. post�xcomposition), both the callscompose(Ip; TYp; Ip+1); : : : ; compose(It; TYt; It+1)in DCLR and the callscompose(TYt; It+1; It); : : : ; compose(TYp; Ip+1; Ip)in DCRL reduce to the empty conjunctions (i.e. true), during particulariza-tion.

Chapter 4Problem GeneralizationSchemasIn Section 2.1.6, I summarized the logic program generalization techniquesthat were proposed by Deville in [16], and illustrated these techniques on twoexample problems. He proposed these techniques for logic program develop-ment. As I mentioned in Section 2.2.2, these techniques were further usedfor computer-aided synthesis and transformation of logic programs [17, 20].The main objective of this research is to extend the usage of these general-ization techniques in schema-based logic program transformation, since in thereferenced papers above, the automation of these generalization methods wasproposed for restricted sub-families of DC programs.In this chapter, I present the generalized generalization schemas that areconstructed by extending the ideas proposed in [20, 1]. The generalized tuplinggeneralization schemas are given in Section 4.1 and the generalized descendinggeneralization schemas are given in Section 4.2, together with the complexityanalysis of these schemas. In Section 4.3, simultaneous-tupling-and-descendinggeneralization schemas are given with their complexity analysis. For the cor-rectness proofs of these generalization schemas, the reader is invited to con-sult [9]. 57

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 584.1 Tupling GeneralizationThe de�nition of tupling generalization (TG) was given in Section 2.1.6, and thetupling generalization process was illustrated in Example 21 for the problemof sorting integer lists. In Section 2.2.2, the automation process of tuplinggeneralization of a restricted sub-family of DC programs, which was proposedby Flener and Deville [20], was summarized.Thus, �rstly in Section 4.1.1, I give two tupling generalization schemas.The time and space complexity analysis of the programs of these generalizationschemas is discussed in Section 4.1.2.4.1.1 Tupling Generalization SchemasI do not separate the tupling generalized program schema pattern into twoschema patterns, as the TGLR schema pattern and the TGRL schema pattern,like I did for the DC program schema patterns, since one of the objectives oftupling generalization is to reduce the number of recursive calls of the intendedrelation by generalizing the problem to a new single-recursive relation (i.e. thecomposition of the result parameter reduces to head-tail composition), whichis achieved by generalizing the structure (or: type) of the induction parameterof the input relation. So, it is not too much helpful and meaningful to give twodi�erent tupling generalized program schema patterns, although it is possible.Therefore, in this section, I give only two TG transformation schemas (one foreach DC program schema pattern), rather than four.Take a relation r, which has the speci�cation Sr as:8X : X : 8Y : Y: Ir(X)) [r(X;Y), Or(X;Y)]where X and Y denote the types ofX and Y , Ir(X) denotes the input conditionthat must be ful�lled before the execution of the procedure, and Or(X;Y)denotes the output condition that will be ful�lled after the execution.If a program is given for r as an instance of DCLR (or DCRL), then thespeci�cation of the new tupling generalized problem of r, namely Sr tupling is:

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 598Xs : list(X): 8Y : Y: (8X : X : X 2 Xs) Ir(X)))[r tupling(Xs; Y), (Xs = [] ^ Y = e)_ (Xs = [X1;X2; : : : ;Xn] ^ n̂i=1Or(Xi; Yi) ^ I1 = Y1^ n̂i=2Oc(Ii�1; Yi; Ii) ^ Y = In)]where Oc is the output condition of compose and n � 1.The tupling generalization schemas are:TG1 : h DCLR, TG, At1, Ot112, Ot121 i whereAt1 : - compose is associative- compose has e as the left and right identity element,where e appears in DCLR and TG- 8X : X : Ir(X) ^minimal(X)) Or(X; e)- 8X : X : Ir(X)) [:minimal(X), nonMinimal(X)]Ot112 : partial evaluation of the conjunctionprocess(HX;HY); compose(HY; TY; Y)results in the introduction of a non-recursive relationOt121 : partial evaluation of the conjunctionprocess(HX;HY); compose(Ip�1;HY; Ip)results in the introduction of a non-recursive relationTG2 : h DCRL, TG, At2, Ot212, Ot221 i whereAt2 : - compose is associative- compose has e as the left and right identity element,where e appears in DCRL and TG- 8X : X : Ir(X) ^minimal(X)) Or(X; e)- 8X : X : Ir(X)) [:minimal(X), nonMinimal(X)]Ot212 : partial evaluation of the conjunction

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 60process(HX;HY); compose(HY; TY; Y)results in the introduction of a non-recursive relationOt221 : partial evaluation of the conjunctionprocess(HX;HY); compose(HY; Ip; Ip�1)results in the introduction of a non-recursive relationwhere the template of the common schema pattern TG is Logic Program Tem-plate 3 below:Logic Program Template 3r(X;Y) r tupling([X]; Y)r tupling(Xs; Y) Xs = [];Y = er tupling(Xs; Y) Xs = [XjTXs];minimal(X);r tupling(TXs; TY);solve(X;HY);compose(HY; TY; Y)r tupling(Xs; Y) Xs = [XjTXs];nonMinimal(X);

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 61decompose(X;HX;TX1; : : : ; TXt);minimal(TX1); : : : ;minimal(TXt);r tupling(TXs; TY);process(HX;HY);compose(HY; TY; Y)r tupling(Xs; Y) Xs = [XjTXs];nonMinimal(X);decompose(X;HX;TX1; : : : ; TXt);minimal(TX1); : : : ;minimal(TXp�1);(nonMinimal(TXp); : : : ;nonMinimal(TXt));r tupling([TXp; : : : ; TXtjTXs]; TY);process(HX;HY);compose(HY; TY; Y)r tupling(Xs; Y) Xs = [XjTXs];nonMinimal(X);decompose(X;HX;TX1; : : : ; TXt);(nonMinimal(TX1); : : : ;nonMinimal(TXp�1));minimal(TXp); : : : ;minimal(TXt);

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 62minimal(U1); : : : ;minimal(Up�1);decompose(N;HX;U1; : : : ; Up�1; TXp; : : : ; TXt);r tupling([TX1; : : : ; TXp�1; N jTXs]; Y)r tupling(Xs; Y) Xs = [XjTXs];nonMinimal(X);decompose(X;HX;TX1; : : : ; TXt);(nonMinimal(TX1); : : : ;nonMinimal(TXp�1));(nonMinimal(TXp); : : : ;nonMinimal(TXt));minimal(U1); : : : ;minimal(Ut);decompose(N;HX;U1; : : : ; Ut);r tupling([TX1; : : : ; TXp�1; N; TXp; : : : ; TXtjTXs]; Y)Note that, in the TG template, I have only used = =2, which is a built-inof all the logic program compilers, and all the open predicates of DCLR (orDCRL), and no other new predicates. In other words, Lavoisier's Principle(\rien ne se cr�ee, rien ne se perd") also applies to transformation schemas.The applicability conditions of TG1 (respectively, TG2) ensure the equiva-lence of the DCLR (respectively, DCRL) and TG programs for a given prob-lem. The optimizability conditions ensure that the output program of thesegeneralization schemas is more e�cient than the input program. The opti-mizability conditions, together with some of the applicability conditions, checkwhether the compose calls in the template TG can be eliminated. In the secondclause of r tupling, the conjunction solve(X;HY); compose(HY; TY; Y) can besimpli�ed to Y = A, if relation r maps the minimal form of X into e, and e is

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 63also the right identity element of compose. This is already checked by the sec-ond and third applicability conditions of TG1 and TG2. In the third and fourthclauses of r tupling, the conjunction process(HX;HY); compose(HY; TY; Y)can be partially evaluated, resulting in the disappearance of that call to compose,and thus in a merging of the compose loop into the r loop in the templateDCLR (or DCRL). The optimizability condition Ot112 (or Ot212) checkswhether this compose call can be eliminated in the corresponding clauses.In this section, I illustrate tupling generalization using the TG generaliza-tion schemas on the prefix flat and infix flat problems.Example 29 The speci�cation of the prefix flat problem, and its DCLRand DCRL programs are in Example 26 in Chapter 3. These DC programscan be tupling generalized both resulting in Program 7 below, since the openrelations in the schema pattern DCLR (respectively, DCRL) satisfy the ap-plicability conditions At1 (respectively, At2), and the optimizability conditionsOt112 (respectively, Ot212) of TG1 (respectively, TG2). So, the prefix flatproblem can be tupling generalized, resulting in the speci�cation of a programfor tupling generalized problem of prefix flat as:prefix flat t(Bs;F) i� F is the concatenation of the pre�x representationsof the elements in binary tree list Bs.The word \concatenation" in the speci�cation above reects the compositiondone by the compose operators in Sr tupling. Then, Program 7 below is thetupling generalized program for prefix flat as an instance of TG.prefix flat(B;F) prefix flat t([B]; F)prefix flat t(Bs;F) Bs = [];

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 64F = []prefix flat t(Bs;F) Bs = [BjTBs];B = void;prefix flat t(TBs; TF);HF = [];append(HF;TF;F)prefix flat t(Bs;F) Bs = [BjTBs];B = bt(; ;);B = bt(L;E;R);L = void;R = void;prefix flat t(TBs; TF);HF = [E]; append(HF;TF;F)prefix flat t(Bs;F) Bs = [BjTBs];B = bt(; ;);B = bt(L;E;R);(L = bt(; ;);R = bt(; ;));prefix flat t([L;RjTBs]; TF);

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 65HF = [E]; append(HF;TF;F)Logic Program 7The reader may notice that in Program 7 we have only �ve clauses, al-though we have seven clauses in the TG template. The �fth and sixth clausesof prefix flat t reduce to false, during particularization, since the disjunction(nonMinimal(TX1); : : : ;nonMinimal(TXp�1)) in the �fth and sixth clausesof r tupling in TG becomes an empty disjunction (i.e. false), because of p = 1in prefix flat.Example 30 The speci�cation of the infix flat problem, and its DCLR andDCRL programs are in Example 27 in Chapter 3. The infix flat problem canalso be tupling generalized using the TG transformation schemas above result-ing in Program 8 below, since the infix flat and prefix flat DC programshave the same open relations, which satisfy the applicability and optimizabil-ity conditions of the TG transformation schemas. So, the speci�cation of thetupling generalized problem of infix flat is:infix flat t(Bs;F) i� F is the concatenation of the in�x representations ofthe elements in binary tree list Bs.Program 8 below is the tupling generalized program for infix flat as an in-stance of TG. infix flat(B;F) infix flat t([B]; F)infix flat t(Bs;F) Bs = [];F = []

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 66infix flat t(Bs;F) Bs = [BjTBs];B = void;infix flat t(TBs; TF);HF = [];append(HF;TF;F)infix flat t(Bs;F) Bs = [BjTBs];B = bt(; ;);B = bt(L;E;R);L = void;R = void;infix flat t(TBs; TF);HF = [E]; append(HF;TF;F)infix flat t(Bs;F) Bs = [BjTBs];B = bt(; ;);B = bt(L;E;R);L = void;R = bt(; ;);infix flat t([RjTBs]; TF);

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 67HF = [E]; append(HF;TF;F)infix flat t(Bs;F) Bs = [BjTBs];B = bt(; ;);B = bt(L;E;R);L = bt(; ;);R = void;UL = void;N = bt(UL; E;R);infix flat t([L;N jTBs]; F)infix flat t(Bs;F) Bs = [BjTBs];B = bt(; ;);B = bt(L;E;R);(L = bt(; ;);R = bt(; ;));UL = void; UR = void;N = bt(UL; E; UR);infix flat t([L;N;RjTBs]; F)Logic Program 8

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 68Although the tupling generalization schemas are constructed to tuplinggeneralize DC programs (i.e. to transform DC programs into TG programs),these schemas can also be used in the reverse direction, such that they canbe used to transform TG programs into DC programs, if the optimizabilityconditions for the corresponding DC program schema pattern are satis�ed,since the applicability conditions hold in both directions. These generalizationschemas can be used in the reverse direction, since it is sometimes possible thatwe have a TG program, which is not e�cient (e.g., the compose call in the non-minimal case of r tupling cannot be eliminated), and we want to transform itto a more e�cient program, which will be a DCLR program (most probably),since it is possible to eliminate the compose call in the non-minimal case inDCLR, because of the veri�cation of the optimizability conditions Ot112 ofTG1. Further discussion of this can be found in Section 4.1.2.4.1.2 Complexity AnalysisIn this section, I present the complexity analysis of the input and output pro-grams of the tupling generalization schemas, and I will use this complexityanalysis to discuss the e�ciency gain obtained by the tupling generalizationschemas.I use the infix flat problem, whose informal speci�cation is given in Chap-ter 3. If the prefix flat and postfix flat DC programs are also tupling gen-eralized and the complexity analysis is done for these problems, similar resultswill be obtained. Therefore, I consider only the programs for infix flat here.Logic Program 9 below is the optimized version of Program 3, which is aninstance of the program schema pattern DCLR for the infix flat problem.infix flat(B;F) B = void; F = []infix flat(B;F)

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 69B = bt(L;E;R);infix flat(L;FL); infix flat(R;FR);append(FL; [E]; I); append(I; FR;F)Logic Program 9Logic Program 10 below is the optimized version of Program 4, which is aninstance of the program schema pattern DCRL for the infix flat problem.infix flat(B;F) B = void; F = []infix flat(B;F) B = bt(L;E;R);infix flat(L;FL); infix flat(R;FR);I = [EjFR]; append(FL; I; F)Logic Program 10If n is the number of elements in treeB, then Programs 9 and 10 haveO(n2)time complexity in the worst case, because composition is done through append,whose complexity is linear in the number of elements in its �rst parameter. Ifwe analyze the programs above in terms of space, and we assume h is theheight of B, then these programs build a stack of h pairs of recursive calls, andcreate 2n intermediate data structures. However, since the conjunction HF =[E]; append(HF;FR; I) in Program 4 could be partially evaluated, resultingin the equality I = [EjFR], Program 10 has a better time complexity thanProgram 9 by a constant factor, which is not negligible in most cases.

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 70Program 8 in Section 4.1.1, which is an instance of the schema pattern TGfor the infix flat problem, can be optimized, resulting in Program 11 below:infix flat(B;F) infix flat t([B]; F)infix flat t(Bs;F) Bs = []; F = []infix flat t(Bs;F) Bs = [BjTBs];B = void;infix flat t(TBs; F)infix flat t(Bs;F) Bs = [BjTBs];B = bt(L;E;R);L = void;R = void;infix flat t(TBs; TF);F = [EjTF]infix flat t(Bs;F) Bs = [BjTBs];B = bt(L;E;R);L = void;

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 71R = bt(; ;);infix flat t([RjTBs]; TF);F = [EjTF]infix flat t(Bs;F) Bs = [BjTBs];B = bt(L;E;R);L = bt(; ;);R = void;infix flat t([L; bt(void;E;R)jTBs]; F)infix flat t(Bs;F) Bs = [BjTBs];B = bt(L;E;R);(L = bt(; ;);R = bt(; ;));infix flat t([L; bt(void;E; void); RjTBs]; F)Logic Program 11In Program 11, the calls to append have disappeared: the append loops havebeen merged into the infix flat loop in the templates DCLR or DCRL, andwe have a linear time program. However, the space complexity of Program 11is worse than for the DC programs for the infix flat problem: this programbuilds a stack of O(n) recursive calls, and it creates as many intermediate datastructures. Fortunately, this program can be made tail recursive in the mode(in,out), as the last �ve clauses are mutually exclusive.

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 72Therefore, for input DC programs like the programs given for infix flat,which use append as the compose operator, the tupling generalization schemasresult in an e�cient TG program, since the optimizability conditions of thesetupling generalization schemas are satis�ed.It is also possible that we have a program, which is an instance of theschema pattern TG, where the optimizability conditions Ot112 (or Ot212) arenot satis�ed, which means that the compose calls in some of the clauses ofr tupling can not be eliminated. So, this TG program can be worse than thecorresponding DCLR program. In these situations, the tupling generalizationschemas can be used in the reverse direction (i.e., to transform TG programsinto DC programs), and we will have a more e�cient DC program as the outputprogram of the transformation.4.2 Descending GeneralizationI explained the idea of descending generalization in Section 2.1.6, and thedescending generalization process was illustrated in Example 22 for the listreversing problem. In Section 2.2.2, I presented the automation process ofdescending generalization of a restricted sub-family of DC programs, achievedby Flener and Deville in [20].Descending generalization can also be called the accumulation strategy (pre-sented in Section 2.2.1 by giving example constructions of this strategy bothin functional programming and in logic programming), since an accumulatorparameter is introduced by descending generalization, and it is progressivelyextended to the �nal result. Descending generalization can also be seen astransformation towards di�erence-structure manipulation. In Section 2.1.6, thepair of parameters R and A in Example 22 can also be thought as representingthe di�erence-list R\A, which itself represents the di�erence between lists Rand A, where A is a su�x of R. But descending generalization yields some-thing more general than transformation to di�erence-list manipulation, sinceany form of di�erence-structures can be created by descending generalization.

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 73In Section 4.2.1, I give four descending generalization schemas, and ex-plain how they ensure correct and e�cient descending generalization in pro-gram transformation. The time and space complexity analyses of the programschemas of these generalization schemas are discussed in Section 4.2.2.4.2.1 Descending Generalization SchemasFour descending generalization schemas (two for each DC program schemapattern) are given. Since the conditions of each descending generalizationschema are di�erent, the process of choosing the appropriate generalizationschema for the input DC program is done only by checking the conditions, andthen the eureka [20] (i.e. the speci�cation of the generalized problem) comesfor free.The reason why we call the descendingly generalized (DG) program schemapatterns `DGLR' and `DGRL' is similar to the reason why we call the divide-and-conquer program schema patterns DCLR and DCRL, respectively. Indescending generalization, the composition ordering for extending the accu-mulator parameter in the template DGLR is from left-to-right (LR) and thecomposition ordering for extending the accumulator parameter in the templateDGRL is from right-to-left (RL).The �rst two descending generalization schemas are:DG1 : h DCLR, DGLR, Adg1, Odg112, Odg121 i whereAdg1 : - compose is associative- compose has e as the left identity element,where e appears in DCLR and DGLROdg112 : - compose has e as the right identity element,where e appears in DCLR and DGLRand Ir(X) ^minimal(X)) Or(X; e)- partial evaluation of the conjunctionprocess(HX;HY); compose(Ap�1;HY;Ap)results in the introduction of a non-recursive relationOdg121 : - partial evaluation of the conjunction

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 74process(HX;HY); compose(Ip�1;HY; Ip)results in the introduction of a non-recursive relationDG4 : h DCRL, DGLR, Adg4, Odg412, Odg421i whereAdg4 : - compose is associative- compose has e as the left and right identity element,where e appears in DCRL and DGLROdg412 : - Ir(X) ^minimal(X))Or(X; e)- partial evaluation of the conjunctionprocess(HX;HY); compose(Ap�1;HY;Ap)results in the introduction of a non-recursive relationOdg421 : - partial evaluation of the conjunctionprocess(HX;HY); compose(HY; Ip; Ip�1)results in the introduction of a non-recursive relationThese schemas have the same formal speci�cation (i.e. eureka) for the relationr descending1:8X : X : 8Y;A : Y: Ir(X))[r descending1(X;Y;A) , 9S : Y: Or(X;S) ^ Oc(A;S; Y)]where Oc is the output condition of compose, and Or is the output conditionof r, the initial problem. Template 4 below is the template of the commonschema pattern DGLR of DG1 and DG4.Logic Program Template 4r(X;Y) r descending1(X;Y; e)r descending1(X;Y;A) minimal(X);solve(X;S); compose(A;S; Y)

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 75r descending1(X;Y;A) nonMinimal(X);decompose(X;HX;TX1; : : : ; TXt);compose(A; e;A0);r descending1(TX1; A1; A0); : : : ; r descending1(TXp�1; Ap�1; Ap�2);process(HX;HY); compose(Ap�1;HY;Ap);r descending1(TXp; Ap+1; Ap); : : : ; r descending1(TXt; At+1; At);Y = At+1Note that, in the DGLR template, I have only used all the open predicatesof DCLR (or DCRL), and no other new predicates (other than primitive= =2).For an input program, one of these generalization schemas is applied, if boththe applicability and the optimizability conditions of the selected generalizationschema are satis�ed. The applicability conditions of these two generalizationschemas di�er, since the composition ordering is also changed from RL to LRin DG4.If the input program is a DCLR (respectively, DCRL) program for thegeneralization schemaDG1 (respectively,DG4) and the applicability conditionsare satis�ed, then the optimizability conditions Odg112 (respectively, Odg412)have to be satis�ed to yield a more e�cient output DGLR program.In the minimal case of r descending1, the simpli�cation of the conjunctionsolve(X;S); compose(A;S; Y) can result in Y = A, if relation r maps theminimal form of X into e, and e is also the right identity element of compose.This equality can be further compiled into the head of the minimal clause. The�rst optimizability condition of DG1 (or DG4) is de�ned to check whether thecompose call in the minimal case of r descending1 can be eliminated.

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 76In the non-minimal case of r descending1, the atom compose(A; e;A0) canbe further simpli�ed to the equality A = A0, if compose has e as the right iden-tity element. The conjunction process(HX;HY); compose(Ap�1;HY;Ap) canbe partially evaluated, resulting in the disappearance of that call to compose,and thus in a merging of the compose loop into the r loop in the templateDCLR (or DCRL). The second optimizability condition of DG1 (or DG4) isde�ned to check whether the elimination of the compose call in the non-minimalcase of r descending1 is possible.I illustrate descending generalization on the infix flat problem. The in-formal speci�cation of the infix flat problem, and its DCLR and DCRLprograms are in Example 27 of Chapter 3.Example 31 The speci�cation of a program for the LR descendingly gener-alized problem of infix flat is:infix flat desc1(B;F;A) i� list F is the concatenation of list A and the in�xrepresentation of binary tree B.Program 12 is the program for infix flat as an instance of DGLR for t = 2and p = 2. infix flat(B;F) infix flat desc1(B;F; [])infix flat desc1(B;F;A) B = void;S = []; append(A;S; F)infix flat desc1(B;F;A) B = bt(; ;);

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 77B = bt(L;E;R);append(A; []; A0);infix flat desc1(L;A1; A0);HF = [E]; append(A1;HF;A2);infix flat desc1(R;A3; A2);F = A3Logic Program 12Since the applicability conditions of DG1 (respectively, DG4) are satis�ed forthe input DCLR (respectively, DCRL) infix flat program, the descendinglygeneralized infix flat program can be Program 12. However, for this prob-lem, descending generalization of the infix flat programs with the above DGtransformation schemas cannot be done, since the optimizability conditions ofDG1 (respectively, DG4) are not satis�ed by the open relations of infix flat.In the non-minimal case of infix flat desc1, partial evaluation of the con-junction HF = [E]; append(A1;HF;A2) does not result in the introductionof a non-recursive relation, because of properties of append (actually, due tothe inductive de�nition of lists). Moreover, append is called each time withthe accumulator parameter, which increases in length, as the input inductionparameter, which shows that this program is not a good choice as an out-put descendingly generalized program for this problem. So, the optimizabilityconditions are really needed.The other two descending generalization schemas are:DG2 : h DCLR, DGRL, Adg2, Odg212, Odg221 i whereAdg2 : - compose is associative- compose has e as the left and right identity element,where e appears in DCLR and DGRL

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 78Odg212 : - Ir(X) ^minimal(X))Or(X; e)- partial evaluation of the conjunctionprocess(HX;HY); compose(HY;Ap; Ap�1)results in the introduction of a non-recursive relationOdg221 : - partial evaluation of the conjunctionprocess(HX;HY); compose(Ip�1;HY; Ip)results in the introduction of a non-recursive relationDG3 : h DCRL, DGRL, Adg3, Odg312, Odg321i whereAdg3 : - compose is associative- compose has e as the right identity element,where e appears in DCRL and DGRLOdg312 : - compose has e as the left identity element,where e appears in DCLR and DGRLand Ir(X) ^minimal(X)) Or(X; e)- partial evaluation of the conjunctionprocess(HX;HY); compose(HY;Ap; Ap�1)results in the introduction of a non-recursive relationOdg321 : - partial evaluation of the conjunctionprocess(HX;HY); compose(HY; Ip; Ip�1)results in the introduction of a non-recursive relationThese schemas have the same formal speci�cation (i.e. eureka) for the relationr descending2:8X : X : 8Y;A : Y: Ir(X))[r descending2(X;Y;A) , 9S : Y: Or(X;S) ^ Oc(S;A; Y)]where Oc is the output condition of compose, and Or is the output conditionof r, the initial problem. Template 5 below is the template of the commonschema pattern DGRL of DG2 and DG3.Logic Program Template 5r(X;Y)

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 79r descending2(X;Y; e)r descending2(X;Y;A) minimal(X);solve(X;S); compose(S;A; Y)r descending2(X;Y;A) nonMinimal(X);decompose(X;HX;TX1; : : : ; TXt);compose(e;A;At+1);r descending2(TXt; At; At+1); : : : ; r descending2(TXp; Ap; Ap+1);process(HX;HY); compose(HY;Ap; Ap�1);r descending2(TXp�1; Ap�2; Ap�1); : : : ; r descending2(TX1; A0; A1);Y = A0Again, in the DGRL template, I have only used all the open predicatesof DCLR (or DCRL), and no other new predicates (other than the primitive= =2).If the input program is a DCLR (respectively, DCRL) program for thegeneralization schemaDG2 (respectively,DG3) and the applicability conditionsare satis�ed, then the optimizability conditions Odg212 (respectively, Odg312)have to be satis�ed to yield a more e�cient output DGRL program.In the minimal case of r descending2, the simpli�cation of the conjunctionsolve(X;S); compose(S;A; Y) can result in Y = A, if relation r maps theminimal form of X into e, and e is also the left identity element of compose.This equality can be further compiled into the head of the minimal clause. The�rst optimizability condition of DG2 (or DG3) is de�ned to check whether the

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 80compose call in the minimal case of r descending2 can be eliminated.In the non-minimal case of r descending2, the atom compose(A0; e; Y) canbe further simpli�ed to the equality Y = A0, if compose has e as the left identityelement. The conjunction process(HX;HY); compose(HY;Ap; Ap�1) can bepartially evaluated, resulting in the disappearance of that call to compose, andthus in a merging of the compose loop into the r loop in the template DCLR(or DCRL). The second optimizability condition of DG2 (or DG3) is de�nedto check whether the elimination of the compose call in the non-minimal caseof r descending2 is possible.Example 32 The speci�cation of a program for the RL descendingly gener-alized problem of infix flat is:infix flat desc2(B;F;A) i� list F is the concatenation of the in�x represen-tation of binary tree B and list A.Program 13 is the program for infix flat as an instance of DGRL for t = 2and p = 2. infix flat(B;F) infix flat desc2(B;F; [])infix flat desc2(B;F;A) B = void;S = []; append(S;A;F)infix flat desc2(B;F;A) B = bt(; ;);B = bt(L;E;R);

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 81append(e;A;A3);infix flat desc2(R;A2; A3);HF = [E]; append(HF;A2; A1);infix flat desc2(L;A0; A1);F = A0Logic Program 13Since both the applicability conditions and the optimizability conditions ofDG2 (respectively,DG3) are satis�ed for the inputDCLR (respectively,DCRL)infix flat program, both descending generalizations of the infix flat pro-grams result in Program 13. The partial evaluation of the conjunction HF =[E]; append(HF;A2; A1) in the non-minimal case of infix flat desc2 results ina call to = =2, as A1 = [EjA2].Although the descending generalization schemas are constructed to de-scendingly generalize DC programs (i.e. to transform DC programs into DGprograms), these schemas can also be used in the reverse direction, such thatthey can be used to transform DG programs into DC programs, if the opti-mizability conditions for the corresponding DC program schema pattern aresatis�ed, since the applicability conditions hold in both directions. If we haveProgram 12 for the infix flat problem, and we want to transform it into amore e�cient program, then the DC programs can be the best candidates ifwe have the descending generalization schemas above. This last sentence willbe better understood in Section 4.2.2.4.2.2 Complexity AnalysisIn this section, I present the complexity analysis of the input and output pro-grams of the descending generalization schemas, and I will use this complexity

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 82analysis to discuss the e�ciency gain obtained by the descending generalizationschemas.For the complexity analysis of the programs of the descending general-ization schemas, I again use the infix flat problem, which was also used inSection 4.1.2 for the discussion of the tupling generalization schemas. I usePrograms 9 and 10 in Section 4.1.2, which are the optimized versions of theinfix flat DCLR and DCRL programs.As I discussed in Section 4.1.2, these programs have O(n2) time complexityin the worst case, if n is the number of elements in tree B. We analyzed theseprograms in terms of space in Section 4.1.2 where it was shown that their spacecomplexities are also not very good. However, the RL version is better thanthe LR version, since the append call in the non-minimal case of the RL versioncan be eliminated.Program 12 in Section 4.2.1 can be optimized, resulting in Program 14below. infix flat(B;F) infix flat desc1(B;F; [])infix flat desc1(B;F;A) B = void; F = Ainfix flat desc1(B;F;A) B = bt(L;E;R);infix flat desc1(L;A1; A);append(A1; [E]; A2);infix flat desc1(R;F;A2)

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 83Logic Program 14As I discussed in Example 31, in Program 14 the calls to append cannot be fullyeliminated. Moreover, if we compare the time used by the append calls in Pro-gram 9 (or 10) and Program 14, the time used by the call append(A1; [E]; A2)in Program 14 is higher than the time used by the append call in Program 9(or 10) by a (nonnegligible) constant factor. This time increase is caused by theincrease in the length of the accumulator list, which is the induction parameterof append. So, Program 14 is less e�cient than Program 9 (or 10), althoughits time complexity is also O(n2) in the worst case.Program 13 in Section 4.2.1 can be optimized, resulting in Program 15below. infix flat(B;F) infix flat desc2(B;F; [])infix flat desc2(B;F;A) B = void; F = Ainfix flat desc2(B;F;A) B = bt(L;E;R);infix flat desc2(R;NewA;A);infix flat desc2(L;F; [EjNewA])Logic Program 15In Program 15, the calls to append have disappeared, and we have a linear timeprogram. The space complexity of Program 15 is also better than the spacecomplexities of Programs 9 and 10. Since an accumulator parameter is used,this program creates only h intermediate data structures, although it builds a

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 84stack of h pairs of recursive calls. However, the program for infix flat desc2can be made semi-tail recursive in the mode (in,out,in).Therefore, for the input DC programs like the programs given for infix flat,which use append as the compose operator, the descending generalizationschemas DG2 and DG3 result in more e�cient programs than the descend-ing generalization schemas DG1 and DG4. If the compose operator of theinput DC program that is an instance of the DCLR template (or DCRL)satis�es the optimizability conditions of DG1 (or DG4), then obviously thedescending generalization schema DG1 (or DG4) will result in more e�cientprograms than the descending generalization schema DG2 (or DG3).If the descending generalization schemas are used in the reverse direction(i.e., to transform DG programs into DC programs), then for instance Pro-grams 9 and 10 are more e�cient in time and space than Program 14. So, it isstill possible to gain e�ciency by using the descending generalization schemasin the reverse direction. However, theDG1 generalization schema (respectively,the DG2 generalization schema), for an input program that is an instance ofthe DGLR schema pattern (respectively, DGRL schema pattern), can be bet-ter than the DG4 generalization schema (respectively, the DG3 generalizationschema), for an input program that is an instance of the DGLR schema pat-tern (respectively, DGRL schema pattern), or vice versa, depending on theoptimizability conditions of the descending generalization schemas for the in-put programs that are instances of the DGLR schema pattern (respectively,DGRL schema pattern).4.3 Simultaneous Tupling-and-DescendingGeneralizationWhile working on constructing possible generalized generalization schemas fordi�erent input program schemas, we also tried to apply descending general-ization to a tupling generalized problem, and vice versa. The generalizationschemas that we explain in this section are the results of this work. We call

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 85them simultaneous tupling-and-descending generalization schemas, althoughthe reader may notice by looking at the speci�cation of the generalized problemthat the process may also be thought of as applying descending generalizationto a tupling generalized problem.As I did while explaining the tupling and descending generalization schemas,I will �rst give the simultaneous tupling-and-descending generalization schemasin Section 4.3.1. Then, I will discuss the e�ciency gain that can be obtainedwith these generalization schemas by using the time and space complexityanalysis of the programs of these generalization schemas in Section 4.3.2.4.3.1 Simultaneous Tupling-and-DescendingGeneralization SchemasLike I did in Section 4.2.1 for descending generalization, four simultaneoustupling-and-descending generalization schemas will be given; two for each DCprogram schema pattern. The �rst two simultaneous tupling-and-descendinggeneralization schemas are:TDG1 : h DCLR, TDGLR, Atd1, Otd112, Otd121 i whereAtd1 : - compose is associative- compose has e as the left and right identity element,where e appears in DCLR and TDGLR- 8X : X : Ir(X) ^minimal(X)) Or(X; e)- 8X : X : Ir(X)) [:minimal(X), nonMinimal(X)]Otd112 : partial evaluation of the conjunctionprocess(HX;HY); compose(A;HY;NewA)results in the introduction of a non-recursive relationOtd121 : partial evaluation of the conjunctionprocess(HX;HY); compose(Ip�1;HY; Ip)results in the introduction of a non-recursive relationTDG4 : h DCRL, TDGLR, Atd4, Otd412, Otd421 i whereAtd4 : - compose is associative

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 86- compose has e as the left and right identity element,where e appears in DCRL and TDGLR- 8X : X : Ir(X) ^minimal(X))Or(X; e)- 8X : X : Ir(X)) [:minimal(X), nonMinimal(X)]Otd412 : partial evaluation of the conjunctionprocess(HX;HY); compose(A;HY;NewA)results in the introduction of a non-recursive relationOtd421 : partial evaluation of the conjunctionprocess(HX;HY); compose(HY; Ip; Ip�1)results in the introduction of a non-recursive relationThey have the same formal speci�cation, namely Sr td1, for the generalizedproblem:8Xs : list(X):8Y;A : Y: (8X : X : X 2 Xs) Ir(X)))[r td1(Xs; Y;A), (Xs = [] ^ Y = A)_(Xs = [X1;X2; : : : ;Xq] ^ q̂i=1Or(Xi; Yi) ^ I1 = Y1 ^q̂i=2Oc(Ii�1; Yi; Ii) ^ Oc(A; Iq; Iq+1) ^ Y = Iq+1)]where Oc is the output condition of compose, and Or is the output conditionof r, and q � 1. Template 6 below is the template of the common schemapattern TDGLR of TDG1 and TDG4.Logic Program Template 6r(X;Y) r td1([X]; Y; e)r td1(Xs; Y;A) Xs = [];Y = A

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 87r td1(Xs; Y;A) Xs = [XjTXs];minimal(X);solve(X;HY);compose(A;HY;NewA);r td1(TXs; Y;NewA)r td1(Xs; Y;A) Xs = [XjTXs];nonMinimal(X);decompose(X;HX;TX1; : : : ; TXt);minimal(TX1); : : : ;minimal(TXt);process(HX;HY); compose(A;HY;NewA);r td1(TXs; Y;NewA)r td1(Xs; Y;A) Xs = [XjTXs];nonMinimal(X);decompose(X;HX;TX1; : : : ; TXt);minimal(TX1); : : : ;minimal(TXp�1);(nonMinimal(TXp); : : : ;nonMinimal(TXt));process(HX;HY); compose(A;HY;NewA);

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 88r td1([TXp; : : : ; TXtjTXs]; Y;NewA)r td1(Xs; Y;A) Xs = [XjTXs];nonMinimal(X);decompose(X;HX;TX1; : : : ; TXt);(nonMinimal(TX1); : : : ;nonMinimal(TXp�1));minimal(TXp); : : : ;minimal(TXt);minimal(U1); : : : ;minimal(Up�1);decompose(N;HX;U1; : : : ; Up�1; TXp; : : : ; TXt);r td1([TX1; : : : ; TXp�1; N jTXs]; Y;A)r td1(Xs; Y;A) Xs = [XjTXs];nonMinimal(X);decompose(X;HX;TX1; : : : ; TXt);(nonMinimal(TX1); : : : ;nonMinimal(TXp�1));(nonMinimal(TXp); : : : ;nonMinimal(TXt));minimal(U1); : : : ;minimal(Ut);decompose(N;HX;U1; : : : ; Ut);r td1([TX1; : : : ; TXp�1; N; TXp; : : : ; TXtjTXs]; Y;A)

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 89Like I did in the tupling and descending generalized program schemas, in theTDGLR template, I have only used all the open predicates of DCLR (orDCRL), and no other new predicates (other than primitive = =2).The applicability conditions of TDG1 (respectively, TDG2) ensure theequivalence of the DCLR (respectively, DCRL) and TDGLR programs for agiven problem. The optimizability conditions ensure that the output TDGLRprogram of these generalization schemas are more e�cient than the input DCprograms. Like the optimizability conditions of the tupling and descendinggeneralization schemas, the optimizability conditions, together with some ofthe applicability conditions, check whether the compose calls in the templateTDGLR can be eliminated.In this section, the example programs are given for the infix flat problem.Example 33 The speci�cation of the left-to-right (LR) simultaneous tupling-and-descendingly generalized problem of infix flat is:infix flat td1(Bs;F;A) i� list F is the concatenation of list A and the in�xrepresentations of the elements in binary tree list Bs.Program 16 below is the program for infix flat as an instance of TDGLR.infix flat(B;F) infix flat td1([B]; F; [])infix flat td1(Bs;F;A) Bs = [];F = Ainfix flat td1(Bs;F;A) Bs = [BjTBs];

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 90B = void;HF = [];append(A;HF;NA);infix flat td1(TBs; F;NA)infix flat td1(Bs;F;A) Bs = [BjTBs];B = bt(; ;);B = bt(L;E;R);L = void;R = void;HF = [E]; append(A;HF;NA);infix flat td1(TBs; F;NA)infix flat td1(Bs;F;A) Bs = [BjTBs];B = bt(; ;);B = bt(L;E;R);L = void;R = bt(; ;);HF = [E]; append(A;HF;NA);infix flat td1([RjTBs]; F;NA)infix flat td1(Bs;F;A)

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 91Bs = [BjTBs];B = bt(; ;);B = bt(L;E;R);L = bt(; ;);R = void;U = void;N = bt(U;E;R);infix flat td1([L;N jTBs]; F;A)infix flat td1(Bs;F;A) Bs = [BjTBs];B = bt(; ;);B = bt(L;E;R);L = bt(; ;);R = bt(; ;);U1 = void; U2 = void;N = bt(U1; E; U2);infix flat td1([L;N;RjTBs]; F;A)Logic Program 16Since the applicability conditions of TDG1 (respectively, TDG4) are satis-�ed for the input DCLR (respectively, DCRL) infix flat program, the si-multaneous tupling-and-descendingly generalized infix flat program can be

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 92Program 16. For the infix flat problem, the generalization schemas TDG1(or TDG4) cannot be applied, because the optimizability condition Otd112 (orOtd412) is not satis�ed by append, the compose relation of infix flat.The other two simultaneous tupling-and-descending generalization schemasare:TDG2 : h DCLR, TDGRL, Atd2 Otd212, Otd221 i whereAtd2 : - compose is associative- compose has e as the left and right identity element,where e appears in DCLR and TDGRL- 8X : X : Ir(X) ^minimal(X))Or(X; e)- 8X : X : Ir(X)) [:minimal(X), nonMinimal(X)]Otd212 : partial evaluation of the conjunctionprocess(HX;HY); compose(HY;A;NewA)results in the introduction of a non-recursive relationOtd221 : partial evaluation of the conjunctionprocess(HX;HY); compose(Ip�1;HY; Ip)results in the introduction of a non-recursive relationTDG3 : h DCRL, TDGRL, Atd3 Otd312, Otd321 i whereAtd3: - compose is associative- compose has e as the left and right identity element,where e appears in DCRL and TDGRL- 8X : X : Ir(X) ^minimal(X)) Or(X; e)- 8X : X : Ir(X)) [:minimal(X), nonMinimal(X)]Otd312 : partial evaluation of the conjunctionprocess(HX;HY); compose(HY;A;NewA)results in the introduction of a non-recursive relationOtd321 : partial evaluation of the conjunctionprocess(HX;HY); compose(HY; Ip; Ip�1)results in the introduction of a non-recursive relationThe speci�cation of the generalized problem, namely Sr td2 is:8Xs : list(X):8Y;A : Y: (8X : X : X 2 Xs) Ir(X)))

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 93[r td2(Xs; Y;A), (Xs = [] ^ Y = A)_(Xs = [X1;X2; : : : ;Xq] ^ q̂i=1Or(Xi; Yi) ^ I1 = Y1 ^q̂i=2Oc(Ii�1; Yi; Ii) ^ Oc(Iq; A; Iq+1) ^ Y = Iq+1)]where Oc is the output condition of compose, and Or is the output conditionof r, and q � 1. Template 7 below is the template of the common schemapattern TDGRL of DG2 and DG3.Logic Program Template 7r(X;Y) r td2([X]; Y; e)r td2(Xs; Y;A) Xs = [];Y = Ar td2(Xs; Y;A) Xs = [XjTXs];minimal(X);r td2(TXs;NewA;A);solve(X;HY);compose(HY;NewA; Y)r td2(Xs; Y;A) Xs = [XjTXs];nonMinimal(X);

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 94decompose(X;HX;TX1; : : : ; TXt);minimal(TX1); : : : ;minimal(TXt);r td2(TXs;NewA;A);process(HX;HY); compose(HY;NewA; Y)r td2(Xs; Y;A) Xs = [XjTXs];nonMinimal(X);decompose(X;HX;TX1; : : : ; TXt);minimal(TX1); : : : ;minimal(TXp�1);(nonMinimal(TXp); : : : ;nonMinimal(TXt));r td2([TXp; : : : ; TXtjTXs]; NewA;A);process(HX;HY); compose(HY;NewA; Y)r td2(Xs; Y;A) Xs = [XjTXs];nonMinimal(X);decompose(X;HX;TX1; : : : ; TXt);(nonMinimal(TX1); : : : ;nonMinimal(TXp�1));minimal(TXp); : : : ;minimal(TXt);minimal(U1); : : : ;minimal(Up�1);decompose(N;HX;U1; : : : ; Up�1; TXp; : : : ; TXt);

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 95r td2([TX1; : : : ; TXp�1; N jTXs]; Y;A)r td2(Xs; Y;A) Xs = [XjTXs];nonMinimal(X);decompose(X;HX;TX1; : : : ; TXt);(nonMinimal(TX1); : : : ;nonMinimal(TXp�1));(nonMinimal(TXp); : : : ;nonMinimal(TXt));minimal(U1); : : : ;minimal(Ut);decompose(N;HX;U1; : : : ; Ut);r td2([TX1; : : : ; TXp�1; N; TXp; : : : ; TXtjTXs]; Y;A)Again, in the TDGRL template, I have only used all the open predicates ofDCLR (or DCRL), and no other new predicates (other than primitive = =2).The reader is invited to analyze the applicability conditions and the optimiz-ability conditions of TDG2 and TDG3, like I did for the previous generalizationschemas.Example 34 The speci�cation of the right-to-left (RL) simultaneous tupling-and-descendingly generalized problem of infix flat is:infix flat td2(Bs;F;A) i� list F is the concatenation of the in�x representa-tions of the elements in binary tree list Bs and list A.Program 17 below is the program for infix flat as an instance of TDGRL.infix flat(B;F)

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 96infix flat td2([B]; F; [])infix flat td2(Bs;F;A) Bs = [];F = Ainfix flat td2(Bs;F;A) Bs = [BjTBs];B = void;infix flat td2(TBs;NA;A);HF = [];append(HF;NA;F)infix flat td2(Bs;F;A) Bs = [BjTBs];B = bt(; ;);B = bt(L;E;R);L = void;R = void;infix flat td2(TBs;NA;A);HF = [E]; append(HF;NA;F)infix flat td2(Bs;F;A) Bs = [BjTBs];B = bt(; ;);

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 97B = bt(L;E;R);L = void;R = bt(; ;);infix flat td2([RjTBs]; NA;A);HF = [E]; append(HF;NA;F)infix flat td2(Bs;F;A) Bs = [BjTBs];B = bt(; ;);B = bt(L;E;R);L = bt(; ;);R = void;U = void;N = bt(U;E;R);infix flat td2([L;N jTBs]; F;A)infix flat td2(Bs;F;A) Bs = [BjTBs];B = bt(; ;);B = bt(L;E;R);L = bt(; ;);R = bt(; ;);

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 98U1 = void; U2 = void;N = bt(U;E;R);infix flat td2([L;N;RjTBs]; F;A)Logic Program 17Since both the applicability conditions and the optimizability conditions ofTDG2 (respectively, TDG3) are satis�ed for the input DCLR (respectively,DCRL) infix flat program, both simultaneous tupling-and-descending gen-eralizations of the infix flat programs result in Program 17 above.These simultaneous tupling-and-descending generalization schemas can alsobe used in the reverse direction (i.e., to transform TDG programs into DCprograms); the reason for using these schemas in the reverse direction willbecome clear in Section 4.3.2, where the optimized versions of Programs 16and 17, and the complexity analyses of these infix flat programs, are givenas well.4.3.2 Complexity AnalysisFor the complexity analysis of the programs of the simultaneous tupling-and-descending generalization schemas, I again use the infix flat problem, whichwas also used in Sections 4.1.2 and 4.2.2 for the discussions of the tupling anddescending generalization schemas. I use Programs 9 and 10 in Section 4.1.2,which are the optimized versions of the infix flat DCLR and DCRL pro-grams.I will again summarize the time and space complexities of these DC pro-grams. They have O(n2) time complexity in the worst case, and build a stackof h pairs of recursive calls, and create 2n intermediate data structures, if n isthe number of elements in tree B and h is the height of B.

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 99Program 15 in Section 4.3.1 can be optimized, resulting in Program 18below. infix flat(B;F) infix flat td1([B]; F; [])infix flat td1(Bs;F;A) Bs = []; F = Ainfix flat td1(Bs;F;A) Bs = [BjTBs];B = void;infix flat td1(TBs; F;A)infix flat td1(Bs;F;A) Bs = [BjTBs];B = bt(L;E;R);L = void;R = void;append(A; [E]; NA);infix flat td1(TBs; F;NA)infix flat td1(Bs;F;A) Bs = [BjTBs];B = bt(L;E;R);L = void;

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 100R = bt(; ;);append(A; [E]; NA);infix flat td1([RjTBs]; F;NA)infix flat td1(Bs;F;A) Bs = [BjTBs];B = bt(L;E;R);L = bt(; ;);R = void;infix flat td1([L; bt(void;E;R)jTBs]; F;A)infix flat td1(Bs;F;A) Bs = [BjTBs];B = bt(L;E;R);L = bt(; ;);R = bt(; ;);infix flat td1([L; bt(void;E; void); RjTBs]; F;A)Logic Program 18Unfortunately, in Program 18, the calls to append cannot be fully eliminated,because of properties of append. The time used by the append calls in r td1 ismore than the time used by the append calls in the infix flat DC programs,because the accumulator parameter, which is extended by the partial result, isinput as the induction parameter to each append call.Program 16 in Section 4.3.1 can be optimized, resulting in Program 19

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 101below. infix flat(B;F) infix flat td2([B]; F; [])infix flat td2(Bs;F;A) Bs = []; F = Ainfix flat td2(Bs;F;A) Bs = [BjTBs];B = void;infix flat td2(TBs; F;A)infix flat td2(Bs;F;A) Bs = [BjTBs];B = bt(L;E;R);L = void;R = void;infix flat td2(TBs; TF;A);F = [EjTF]infix flat td2(Bs;F;A) Bs = [BjTBs];B = bt(L;E;R);L = void;

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 102R = bt(; ;);infix flat td2([RjTBs]; TF;A);F = [EjTF]infix flat td2(Bs;F;A) Bs = [BjTBs];B = bt(L;E;R);L = bt(; ;);R = void;infix flat td2([L; bt(void;E;R)jTBs]; F;A)infix flat td2(Bs;F;A) Bs = [BjTBs];B = bt(L;E;R);L = bt(; ;);R = bt(; ;);infix flat td2([L; bt(void;E; void); RjTBs]; F;A)Logic Program 19In Program 19, the calls to append have disappeared, and we have a lineartime program. Although the space complexity of Program 19 is worse thanfor the DC programs for the infix flat problem, this program can be madetail recursive in the mode (in,out, in), as the last �ve clauses are mutuallyexclusive.Therefore, for the input DC programs like the programs given for infix flat,

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 103which use append as the compose operator, the generalization schemas TDG2and TDG3 result in more e�cient programs than the generalization schemasTDG1 and TDG4. If the compose operator of the input DC program that is aninstance of the DCLR template (or DCRL) satis�es the optimizability condi-tions of TDG1 (or TDG4), then obviously the generalization schema TDG1 (orTDG4) will result in more e�cient programs than the generalization schemaTDG2 (or TDG3).If the TDG generalization schemas are used in the reverse direction (i.e.,to transform TDG programs into DC programs), then for instance Programs 9and 10 are more e�cient in time and space than Program 18. So, it is stillpossible to gain e�ciency by using the TDG generalization schemas in thereverse direction. However, the TDG1 generalization schema (respectively, theTDG2 generalization schema) for an input program that is an instance of theTDGLR schema pattern (respectively, TDGRL schema pattern) can be betterthan the TDG4 generalization schema (respectively, the TDG3 generalizationschema) for an input program that is an instance of the TDGLR schemapattern (respectively, TDGRL schema pattern), or vice versa, depending onthe post-transformation conditions of these generalization schemas for the in-put programs that are instances of the TDGLR schema pattern (respectively,TDGRL schema pattern).

Chapter 5Duality TransformationSchemasIn Chapter 3, while discussing the composition ordering in DC program schemas,the reader who is familiar with functional programming will notice the simi-larities between composition ordering and the fold operators in functional pro-gramming. A detailed explanation of the fold operators and their laws can befound in [3]. Now, I will only give the de�nitions of the fold operators, andtheir �rst law. The de�nition of foldr is as follows:foldr f a [x1; x2; : : : ; xn] = f x1(f x2(: : : (f xn a) : : :))An equivalent formulation, possibly easier to read, is:foldr (�) a [x1; x2; : : : ; xn] = x1 � (x2 � (: : : (xn � a) : : :))where �, like f , is just a variable that can be bound to a function of twoarguments.The foldl operator can be de�ned as:foldl f a [x1; x2; : : : ; xn] = f(: : : (f(f a x1)x2) : : :)xn : : :))An equivalent formulation, possibly easier to read, is:foldl (�) a [x1; x2; : : : ; xn] = (: : : ((a� x1)� x2) : : :)� xn104

CHAPTER 5. DUALITY TRANSFORMATION SCHEMAS 105Thus, equation 3.1 in Chapter 3 that illustrates the composition of Y inthe DCLR template can be rewritten using foldl:foldl (�) e [TY1; : : : ; TYp�1;HY; TYp; : : : ; TYt]In a similar way, the foldr operator can be used to rewrite equation 3.2 thatillustrates the composition of Y in the DCRL template as follows:foldr (�) e [TY1; : : : ; TYp�1;HY; TYp; : : : ; TYt]The �rst three laws of the fold operators are called duality theorems. The�rst duality theorem states that:foldr (�) a xs = foldl (�) a xsif � is associative and has (left and right) identity element a, and xs is a �nitelist.Since append, which is compose in our flat examples, is associative and has[] as the identity element, Programs 1 and 2 (respectively, Programs 3 and 4,and Programs 5 and 6) are equivalent (resulting in the same Y , which is alsostated in the �rst duality theorem) for prefix flat (respectively, infix flat,and postfix flat). This shows that the problem families that the two programschemas abstract have an intersection family (resulting in equivalent programsfor the problem), if compose satis�es the constraints of the �rst duality theo-rem.So a transformation technique can be constructed that takes Program 1 (3,or 5, respectively) as an input, and produces Program 2 (4, or 6, respectively)as an output program, and vice versa.Since I already have the input and output program schema patterns, andthe applicability conditions (i.e., the constraints of the �rst duality theorem)of a possible transformation schema, I will give transformation schemas, ratherthan constructing a transformation technique.The transformation schemas given in Section 5.1 are thus called dualityschemas. The time and space complexity analysis of the input and output

CHAPTER 5. DUALITY TRANSFORMATION SCHEMAS 106programs of these duality schemas are given in Section 5.2. The correctnessproofs of these duality schemas are in [9].5.1 Duality SchemasUsing the previous discussion, the �rst duality schema Ddc below is given fortransforming DC programs.Ddc : h DCLR, DCRL, Addc, Oddc12, Oddc21i whereAddc : - compose is associative- compose has e as the left and right identity element,where e appears in DCLR and DCRLOddc12 : - partial evaluation of the conjunctionprocess(HX;HY); compose(HY; Ip; Ip�1)results in the introduction of a non-recursive relationOddc21 : - partial evaluation of the conjunctionprocess(HX;HY); compose(Ip�1;HY; Ip)results in the introduction of a non-recursive relationwhere the program schema patterns DCLR and DCRL are the DC schemapatterns given in Chapter 3, and Addc comes from the constraints of the �rstduality theorem. The optimizability conditions check whether the composeoperator can be eliminated in the output program.Taking Program 1 (3, or 5, respectively) in Chapter 3 as an input, andproducing Program 2 (4, or 6, respectively) as an output program can beachieved by the duality schema Ddc, but not the inverse transformation, sincethe optimizability condition Oddc21 is not satis�ed by append, which is thecompose relation of the infix flat problem.Similarly, it is possible to give duality schemas for the DG and TDG pro-gram schemas. The duality schema for DG programs, namely Ddg, is:Ddg : h DGLR, DGRL, Addg, Oddg12, Oddg21i where

CHAPTER 5. DUALITY TRANSFORMATION SCHEMAS 107Addg : - compose is associative- compose has e as the left and right identity element,where e appears in DGLR and DGRLOddg12: - 8X : X : Ir(X) ^minimal(X)) Or(X; e)- partial evaluation of the conjunctionprocess(HX;HY); compose(HY;Ap; Ap�1)results in the introduction of a non-recursive relationOddg21: - 8X : X : Ir(X) ^minimal(X)) Or(X; e)- partial evaluation of the conjunctionprocess(HX;HY); compose(Ap�1;HY;Ap)results in the introduction of a non-recursive relationwhere the templates of the schema patterns DGLR and DGRL are LogicProgram Templates 4 and 5 in Section 4.2.1.Taking Program 12 in Section 4.2.1 as an input, and producing Program 13as an output program can be achieved by the duality schema Ddg, but not theinverse transformation, because of properties of append.The duality schema for TDG programs, namely Dtdg, is:Dtdg : h TDGLR, TDGRL, Adtdg, Odtdg12, Odtdg21i whereAdtdg : (1) compose is associative(2) compose has e as the left and right identity element,where e appears in TDGLR and TDGRLOdtdg12: - 8X : X : Ir(X) ^minimal(X))Or(X; e)- partial evaluation of the conjunctionprocess(HX;HY); compose(HY;NewA;F)results in the introduction of a non-recursive relationOdtdg21: - 8X : X : Ir(X) ^minimal(X))Or(X; e)- partial evaluation of the conjunctionprocess(HX;HY); compose(A;HY;NewA)results in the introduction of a non-recursive relationwhere the templates of the schema patterns TDGLR and TDGRL are LogicProgram Templates 6 and 7 in Section 4.3.1.

CHAPTER 5. DUALITY TRANSFORMATION SCHEMAS 108Taking Program 16 in Section 4.3.1 as an input, and producing Program 17as an output program can be achieved by the duality schema Dtdg, but not theinverse transformation, because of properties of append.5.2 Complexity AnalysisSince the complexity analysis of DC, DG, and TDG programs for the infix flatproblem have already been given in Sections 4.1.2, 4.2.2, and 4.3.2, in this sec-tion I use these results to discuss the e�ciency gain obtained by the dualityschemas in Section 5.1.Although Programs 9 and 10, which are the optimized versions of theDCLR and DCRL infix flat programs, namely Programs 3 and 4, have timecomplexityO(n2), Program 10 has a better time complexity than Program 9 bya constant factor, which is not negligible. If we have Program 3 and we want totransform it into a more e�cient program, then Ddc will be applied resultingin Program 4, which can be optimized into Program 10, because the appli-cability and optimizability conditions of Ddc are satis�ed. Since Program 10is more e�cient than Programs 3 and 9, this shows that we can obtain e�-ciency gain by the Ddc schema. If we want to transform Program 4 into a moree�cient program and Ddc is selected, then Ddc will not be applied, becausethe optimizability conditions of Ddc are not satis�ed by the open relations ofinfix flat. So, we do not have Programs 3 or 9 as an output program of thisduality schema, which shows that the duality schema Ddc does not result in aprogram that has worse time complexity than the input program.Similarly, for the DG and TDG infix flat programs, the RL versions havebetter time complexity than the LR versions. Because of the optimizabilityconditions in the Ddg and Dtdg schemas, the RL versions will always be outputby these schemas.Of course, it is possible to have an LR version of DC, DG, or TDG programthat is more e�cient than its RL version for some problems. In these cases,the duality schemas will output the LR program, if the input program is RL,

CHAPTER 5. DUALITY TRANSFORMATION SCHEMAS 109and they will not output the RL program if the input program is LR. Sothey always output the corresponding e�cient version, which is ensured by theoptimizability conditions.

Chapter 6Evaluation of theTransformation SchemasIn this chapter, I evaluate the transformation schemas using performance testsdone on the manually optimized input and output programs of each trans-formation schema. However, the reader may �nd this evaluation of littlevalue, since the transformation schemas in this thesis are only dealing withthe declarative features of the programs. So, I must say that this evaluationis made because I think that these performance tests will help us to see whatour theoretical results will be when tested practically, although in an environ-ment with procedural side-e�ects. The programs are executed and tested usingMercury 0:6 (for an overview of the Mercury logic programming language, re-fer to [50], and every detail about Mercury can be found in its home-page`http://munkora.cs.mu.oz.au/mercury/') on a SPARCstation 4. Since the pro-grams are really short, the procedures were called 500 or 1000 times to achievemeaningful timing results. In Table 6.1, the results of the performance testsfor seven selected problems are shown, where each column heading representsthe schema pattern to which the program written for the problem of that rowbelongs. The timing results are normalized wrt the DCLR column.The reason why I chose the problems above is that all the seven pro-grams that are instances of the seven program schema patterns can be writ-ten for these problems, because of the properties of the compose, minimal,110

CHAPTER 6. EVALUATION OF THE TRANSFORMATION SCHEMAS 111problems DCLR DCRL TG DGLR DGRL TDGLR TDGRLprefix flat 1.00 0.92 0.23 11.88 0.15 12.38 0.15infix flat 1.00 0.49 0.02 7.78 0.05 7.59 0.15postfix flat 1.00 0.69 0.14 5.48 0.09 5.55 0.09reverse 1.00 1.00 0.04 1.01 0.01 1.02 0.04quicksort 1.00 0.85 0.72 6.02 0.56 6.42 1.01sumlist 1.00 1.00 8.33 0.01 0.33 4.00 8.67length 1.00 1.00 16.33 0.67 1.00 9.00 14.00Table 6.1. Performance Tests ResultsnonMinimal, and solve relations of their DC programs. The speci�cation,and the DC and TG (respectively, DG) programs for quicksort (respectively,for reverse) were given in Example 21 (respectively, in Example 22) in Sec-tion 2.1.6. The speci�cation of a program for relation sumlist is:sumlist(L;S) i� integer S is the sum of the elements in the integer-list L.The speci�cation of a program for relation length is:length(L;N) i� integer N is the number of elements in the list L.Let us �rst compare the DCLR and DCRL schema patterns. For reverse,sumlist, and length, the DCLR and DCRL programs are the same, sincethey are single-recursive, and their compose relations are either associative likeappend in reverse, or even commutative like + in sumlist and length. For thebinary tree flat problems and for quicksort, the DCRL programs are muchbetter than the DCLR programs, because of the relations like append (whichis the compose relation in all these examples), whose properties are the mainreason for properly achieving the optimizations of the DCRL programs of theproblems above.Hence, if the input programs for the binary tree flat problems, and for thequicksort problem to the duality schema, are instances of the DCLR schemapattern, then duality transformations will be performed resulting in the DCRLprograms for these relations, since both the applicability and the optimizabilityconditions are satis�ed by these programs. So, the duality transformation of

CHAPTER 6. EVALUATION OF THE TRANSFORMATION SCHEMAS 112the DCLR programs for the relations, having the unde�ned relations in theiropen programs like the ones of the problems above, results in DCRL programsthat are more e�cient than the input DCLR programs. If the DCRL pro-grams for the above relations are input to the duality schema, then the dualitytransformation will not be performed, since the optimizability conditions arenot satis�ed by append, which is the compose relation of the DCRL programs.Of course, there may exist some other relations where the duality transfor-mation of their DCRL programs into the DCLR programs will provide ane�ciency gain. Unfortunately, I did not �nd a meaningful well-known exampleof this category.The next step in evaluating the transformation schemas is to compare thegeneralized programs of these example relations. If we look at Table 6.1, themost obvious observation is that the DGRL programs for all these examplerelations are very e�cient programs. However, tupling generalization seemsto be the second best as a generalization choice, and it even must be the �rstchoice in problems like infix flat, where the composition place of the head inthe result parameter is the middle, and the minimal and nonMinimal checkscan be performed in minimum time. Although a similar situation occurs forthe quicksort problem, the TG program of quicksort is not as e�cient as theDGRL program. This is mainly because of partition, which is the decomposerelation of quicksort, being a costly operation, although we eliminate mostof the partition calls by putting extra minimality checks in the TG template.Since append, which is the compose relation in all the problems except sumlistand length, cannot be eliminated in the resulting DGLR and TDGLR pro-grams, the DGLR and TDGLR programs for these relations have the worsttiming results. The reason for their bad performances is that the percentages ofthe total running times of the DGLR and TDGLR programs used by appendare much higher than the percentages of the total running times of the DCLRand DCRL programs used by append for these relations. The reason for theincrease in the percentages is that the length of the accumulator, which is theinput parameter to append in the DGLR and TDGLR programs, is biggerthan the length of the input parameter of append in the DCLR and DCRLprograms, since the partial result has to be repeatedly input to the composerelation in descending generalization.

CHAPTER 6. EVALUATION OF THE TRANSFORMATION SCHEMAS 113The generalization of the input DC programs must be performed if all theapplicability conditions are satis�ed by the input DC programs (for the prob-lems above, the applicability conditions of each generalization schema given inthis thesis are satis�ed by the input DC programs). The generalization mustalso check the optimizability conditions, and then must choose the general-ization schema where both the applicability conditions and the optimizabilityconditions are satis�ed. A generalization must be performed if it really resultsin a program that is much more e�cient than the input program. So, the de-scending generalization of the input DCLR program for infix flat resultingin the DGLR program must not be done, even if the applicability conditionsare satis�ed, since the performance of the DGLR program for infix flat ismuch worse than the input DCLR program. This is the main reason for theexistence of the optimizability conditions in the schemas. If we try to descend-ingly generalize the input DCLR program (respectively, the DCRL program)for any of the flat, reverse, or quicksort problems, then the DG2 (respec-tively,DG3) schema will be chosen, since the optimizability conditions of DG2(respectively, DG3) are satis�ed. Also, if we try to do a simultaneous tupling-and-descending generalization of the input DCLR program (respectively, theDCRL program) for any of the flat, reverse, or quicksort problems, then theTDG2 (respectively, TDG3) schema will be chosen, since the optimizabilityconditions of TDG2 (respectively, TDG3) are satis�ed by the input programs.The optimizability conditions of DG1 or DG4 (respectively, TDG1 or TDG4)are not satis�ed by the problems above. So, these schemas are out of the ques-tion during generalization of the DC programs of the problems above, whichis what the user will want in a transformation system that is not doing atransformation that does not provide e�ciency gain.For the relations sumlist and length, the results are completely di�erentin the sense that the TG programs are much worse than the DC programs.The reason for this bad performance seems to be the overhead calls added bydoing the generalization of the input parameter, which is already a list, intoa list of lists. The other reasons for this e�ciency loss may be the propertiesof +, and the implementation of + in Mercury. Actually, this much of ane�ciency loss is not expected, this is the main reason which makes us to thinkthat the implementation of the built-in predicates in Mercury may cause these

CHAPTER 6. EVALUATION OF THE TRANSFORMATION SCHEMAS 114results. Of course, the other reason is the performance results of the DG(respectively, STDG) programs, where the DGLR programs (respectively, theTDGLR programs) are found to be more e�cient than the DGRL programs(respectively, the TDGRL programs) for sumlist and length. The only reasonthat I can come up with is the implementation of + in Mercury. Since + iscommutative, di�erent implementations can be done in di�erent languages.In some of the cases, using generalization schemas to transform the inputprograms that are already generalized programs of the relations to DC pro-grams will produce an e�ciency gain. For example, if the DGLR program forany of the flat problems is the input program to descending generalization(namely, DG1 or DG4), then the generalization will be performed resultingin the DCLR (or, DCRL) program, which is more e�cient than the inputDGLR program. Similarly, an e�ciency gain will be obtained if the programsof the TDGLR schema pattern are input to the generalization process, sincethe optimizability conditions of the generalization schemas in the reverse di-rections are satis�ed. However, if the input program for any of the aboverelations to generalization is a DGRL or TDGRL program, then the general-ization schemas are still applied in the reverse direction, which means that thereverse engineering will result in a program that is less e�cient than the inputprogram. This makes us think of some other ways of de�ning the optimizabilityconditions, namely optimization conditions, such that the transformation willalways either result in a better program than the input program. However,more performance analyses and complexity analyses are needed to make sucha decision.Therefore, a transformation system that will be developed with a databaseof the transformation schemas explained in this thesis has to verify the op-timizability conditions, since these conditions ensure e�ciency gain by thesetransformations.

Chapter 7Prototype TransformationSystemTRANSYS is a prototypical implementation of the schema-based programtransformation approach explained in this thesis. TRANSYS is an automatic(i.e. without any user interaction) program transformation system that is de-veloped to be integrated in a schema-based program development environment.Therefore, the input closed program to the transformation is assumed to bedeveloped by a synthesizer (e.g. a proper extension of DIALOGS [61]) usingthe database of program schema patterns available in the system, as other-wise the transformation system cannot transform the input program. So theprogram schema pattern, of which the input closed program is an instance, isa-priori known. Thus, given an input program that is an instance of a programschema pattern in the database, the system will output all the programs thatare instances of the program schema patterns in the database, and that aremore e�cient than the input program. The representation of program schemapatterns and transformation schemas makes the system more data-oriented,which means that the actual algorithm of the system has a minimum amountof sub-procedures to de�ne the representation of the schemas and schema pat-terns. The transformation schemas, and the program schema patterns, whichare the input (or output) program schema patterns of these transformationschemas given in this thesis, are all available in the database of the system.115

CHAPTER 7. PROTOTYPE TRANSFORMATION SYSTEM 116TRANSYS has been developed in SICStus Prolog 3, patch #5. Since TRAN-SYS is a prototype system, for some parts of the system, instead of implement-ing them, I integrated other systems:� For verifying the applicability conditions and some of the optimizabilityconditions, PTTP is integrated into the system. The Prolog TechnologyTheorem Prover (PTTP) was developed by M.E. Stickel in the Arti�-cial Intelligence Center of SRI International in California (for a detailedexplanation of PTTP, the reader can refer to [54, 55]). PTTP is an im-plementation of the model elimination theorem proving procedure thatextends Prolog to the full �rst-order predicate calculus. TRANSYS usesthe version of PTTP that is written in Prolog and compiles clauses intoProlog.� For verifying the other optimizability conditions, and applying the op-timizations to the output programs of the transformation schemas, Iintegrated Mixtus 0.3.6. Mixtus was developed by D. Sahlin in SICS(Swedish Institute of Computer Science) in Kista (for a detailed expla-nation of Mixtus, the reader can refer to [48]). Mixtus is an automaticpartial evaluator for full Prolog. Given a Prolog program and a query,it will produce a new program specialized for all instances of that query.The partial evaluator is guaranteed to terminate for all input programsand queries.I explain how the programs, the program schema patterns, and the transforma-tion schemas are de�ned in the system in Section 7.1. In Section 7.2, I explainthe high-level algorithm of the system, and how the above systems PTTP andMixtus are integrated into TRANSYS. I discuss the features of TRANSYS us-ing a sample run of the system, and I evaluate TRANSYS as a transformationsystem in Section 7.3.

CHAPTER 7. PROTOTYPE TRANSFORMATION SYSTEM 1177.1 Representation LanguageIn this section, I will explain how the programs, program schema patterns, andtransformation schemas are represented in the system. The program schemapattern representation is more complicated than the transformation schemaand the program representations, since �rst-order logic is not enough to rep-resent and manipulate the program schema patterns fully. In Section 7.1.1, Iwill give the syntax of the schema pattern language for the program schemapattern representation, and I will explain the semantics of the schema patternlanguage in Section 7.1.2. However, the schema pattern language used in thissystem cannot be used to represent every program schema pattern because ofimplementation restrictions, which will be explained in Section 7.1.2. For amore detailed representation of a program schema pattern, though in second-order logic, the reader can refer to [2]. In Section 7.1.3, the representations ofthe programs and transformation schemas are given.7.1.1 Schema Pattern Language: SyntaxCurrently, in the database of the system, the existing program schema patternsare the DC schema patterns, the TG, DG, and TDG schema patterns, andthe RS reuse schema pattern, which is the base schema pattern with the stead-fastness constraint true, which means that every program can be an instanceof this schema pattern. So, a program that is an instance of the reuse schemapattern has itself as its extension.A program schema pattern is represented as a relation lps(NS;L; Temp; PL),where� NS is the name of the program schema pattern;� L is the list of the actual name of the top-level relation R and the actualnames of the unde�ned relations in the NS schema pattern, which willbe substituted in Temp during particularization;� Temp is the template of theNS schema pattern, which is a list of template

CHAPTER 7. PROTOTYPE TRANSFORMATION SYSTEM 118clauses (de�ned below);� PL is the list of parameters; in the reuse schema pattern, PL is equalto the singleton list [N], but in the DC schema patterns and generalizedprogram schema patterns, PL consists of:{ E, a speci�c constant existing in every schema pattern for initiatingthe composition;{ N , the number of arguments of the top level relation R (currently,in the database, it is hard-wired to 2);{ H, the number of heads of the induction parameter when decom-posed;{ T , the number of tails of the induction parameter when decomposed;{ Ps, the list of numbers denoting the composition places of heads(head1; :::; headH), when composing the result parameter (since Nis 2, there is 1 result parameter).The syntax of template clauses can be given using the BNF grammar:Clause ::= if(Head;Body)Head ::= AtomBody ::= truejSeqAtomsjand(SeqAtoms;Body)SeqAtoms ::= AtomjConjunctionjDisjunctionAtom ::= Pred name(Args)Args ::= ArgjArg;ArgsArg ::= TermjV ariablejIndexed V ariablejV ector of V ariableswhere Term is a term and V ariable is a variable, and� an Indexed Variable is represented by a term of the form V#I, where Vis a variable (called the root), and I is the index, which can be either aninteger, or a variable, or an expression of the forms (J +X) or (J �X),where X is an integer and J is a variable;� a Vector of Variables is represented by a term of the form vec(V;LB;UB),where V is a variable (called the root of the V ector of V ariables), LB

CHAPTER 7. PROTOTYPE TRANSFORMATION SYSTEM 119is the lower bound, and UB is the upper bound, where a bound is eitheran integer or a variable;� a Conjunction is represented by a term of the form conjatoms(Atom;LB;UB), where Atom is as de�ned above, and LB and UB are the lower andupper bounds of the index J , which is in Atom,� a Disjunction is represented by a term of the form disjatoms(Atom;LB;UB), where Atom is as de�ned above, and LB and UB are the lowerand upper bounds of the built-in index, represented by a special variableJ in Atom.Example 35 The program schema pattern DCRL for a relation R of arity 2with the �rst parameter being the induction parameter, which is decomposedinto 1 head and N tails, and the head composition place in the result parameterbeing P , can be represented as:lps(dcrl; [R;M;S;NM;DEC;PROC;COMP]; Tmp; [E; 2; 1; T; [P]])i� Tmp = [if(R(X;Y); and(M(X); S(X;Y)));if(R(X;Y); and(NM(X); and(DEC(X;HX; vec(TX; 1; T));and(conjatoms(R(TX#J; TY#J); 1; T);and(I#T1 = E;and(conjatoms(COMP (TY#J; I#(J + 1); I#J); P; T);and(PROC(HX;HY); and(COMP (HY; I#P; I#P1);and(conjatoms(COMP (TY#J; I#J; I#(J � 1)); 1; P1);Y = I#0)))))))))]where P1 = P � 1 and T1 = T + 1.A full implementation of the program schema patterns in the system will begiven in the next section where the semantics of the schema patterns is ex-plained by de�ning the operations on them. The program schema patterns arestored in a �le called dbase:pl.

CHAPTER 7. PROTOTYPE TRANSFORMATION SYSTEM 1207.1.2 Schema Pattern Language: SemanticsIn this section, I explain how a template of a program schema pattern is ma-nipulated to obtain a template (actually an open program) without ellipses.De�nition 34 (Index Replacement) Let X#J be an Indexed V ariable.The replacement of an index I by an integer k applied to X#J , which isdenoted as IRepI aX#J , gives either a new variable X a that will refer tothe Indexed V ariable X#J throughout the template, where it is used, orremains X#J if I 6= J .De�nition 35 (Vector of Variables Expansion) Let vec(V;LB;UB) be aV ector of V ariables. The expansion of vec(V;LB;UB) is done if LB and UBare both substituted by integers. The expansion of vec(X;LB;UB) is de�nedas follows:� X#LB if LB = UB,� X#LB;X#(LB + 1); : : : ;X#UB if LB < UB,� the empty sequence if LB > UB.So, in vec(X;LB;UB), the root X ranges between the lower and upper bound.After expansion, a Vector of Variables having its lower bound greater thanits upper bound will fully disappear from the arguments of a relation.The replacement of an index I by the integer a applied to a Term T makesno change in Term T . Then, the replacement of an index I by the integera applied to a relation R of the form P (T#1; : : : ; T#n), which is denoted asARepI aR, gives P (IRepI aT#1; : : : ; IRepI aT#n).De�nition 36 (Conjunction Expansion) Let conjatoms(A;LB;UB) be aconjunction. Conjunction expansion is done after LB and UB are both substi-tuted by integers, and all arguments of A di�erent from the Indexed variables

CHAPTER 7. PROTOTYPE TRANSFORMATION SYSTEM 121with index J , which is the special variable for representing the index of theconjunction, are gone through index replacement. The expansion of the con-junction conjatoms(A;LB;UB) is de�ned as follows:� true if LB > UB,� ARepJ LBA if LB = UB,� and(ARepJ LBA; and(ARepJ (LB+1)A; : : : ;and(ARepJ (UB�1)A;ARepJ UBA) : : :))De�nition 37 (Disjunction Expansion) Let disjatoms(A;LB;UB) be adisjunction. Disjunction expansion is done after LB and UB are both substi-tuted by integers, and all arguments of A di�erent from the Indexed variableswith index J , which is the special variable for representing the index of thedisjunction, are gone through index replacement. The expansion of the dis-junction disjatoms(A;LB;UB) is de�ned as follows:� false if LB > UB,� ARepJ LBA if LB = UB,� or(ARepJ LBA; or(ARepJ (LB+1)A; : : : ;or(ARepJ (UB�1)A;ARepJ UBA) : : :))Restrictions: The V ector of V ariables in my system is restricted to a vectorof variables having a variable in the root, which means double indexing is notallowed. The Conjunction and Disjunction representation is also restrictedto built-in index J , which also means that double indexing of variables is notallowed. Another restriction is that the unde�ned relation names are taken asinput, so no construction of unde�ned indexed relations is allowed. Thus, theprogram schema patterns that can be represented in the prototype system arelimited.De�nition 38 (Particularization of a Template) The particularization ofTemplate of the program schema patternlps(NS; [R;M;S;NM;DEC;PROC;COMP]; T emplate; [E;N;H; T; Ps])

CHAPTER 7. PROTOTYPE TRANSFORMATION SYSTEM 122results in an open program for relation R, by doing the following sequence ofoperations:1. Parameter/Term Bindings: The parameters (i.e. ellipses of the template:N;H; T; Ps) are bound to their actual integer values. Also, at this stage,the variable/term bindings are achieved for the variablesE;NS;R;M;S;NM;DEC;PROC;COMPwith their actual values.2. Variable/Relation Bindings: The predicate variables in the template arebound to the actual names of the open relations. This will be betterunderstood in the example below.3. Template Manipulation: The template of the program schema pattern isconverted to an open program. Index replacement, Vector of Variablesexpansion, and conjunction and disjunction expansion are the subpro-cesses of this �nal process.The programs of the template manipulation process are in a �le calleddedotify:pl.Example 36 The representation of the DCRL program schema pattern fora relation R of arity 2 with the �rst parameter being the induction parame-ter, which is decomposed into 1 head and N tails, and the head compositionplace in the result parameter being P in the system is given in Example 35 inSection 7.1.1.The particularization of Template by the goallps(DCRL; [r;m; s; nm; dec; proc; comp]; T emplate; [[]; 2; 1; 2; [2]])will result in the open program below:Template= [if(r(X;Y), and(m(X); s(X;Y))),if(r(X;Y), and(nm(X); and(dec(X;HX;TX1; TX2),

CHAPTER 7. PROTOTYPE TRANSFORMATION SYSTEM 123and(and(r(TX1; TY1); r(TX2; TY2)),and(I3 = [],and(comp(TY2; I3; I2),and(proc(HX;HY),and(comp(HY; I2; I1),and(comp(TY1; I1; I0),Y = I0)))))))))]Therefore, the actual open program is obtained by conversion from the tem-plate.7.1.3 Representation of Programs and TransformationSchemasA program for relation R is represented as a term lp(NS;L;Ext; PL), where� The represented program is an instance of the schema pattern NS;� L is the list of the name of R and the actual names of the unde�nedrelations in NS;� Ext (stands for extension) is the list of programs for the unde�ned rela-tions in NS;� PL is the list of parameters, which consists, for DC, of:{ E, a speci�c constant existing in every schema pattern for initiatingthe composition;{ N , the number of arguments of R (currently in the database, it ishard-wired to 2);{ H, the number of heads of the induction parameter of R when de-composed;{ T , the number of tails of the induction parameter of R when de-composed;

CHAPTER 7. PROTOTYPE TRANSFORMATION SYSTEM 124{ Ps, the list of numbers denoting the composition places of the heads(head1; :::; headH), when composing the result parameter of R (sinceN is 2, there is 1 result parameter);{ Sorts, the list of constants (e.g. list or btree) indicating the typesof the parameters of R.Since Ext is a list of programs, where each one is also represented as above,the system has the mechanism to deal with nested programs.Example 37 Program 4 in Chapter 3 can be represented by the termlp(dcrl;[infix flat; f min; f solve; f nonmin; f decomp; f proc;f compose]; Ext; [[]; 2; 1; 2; [2]; [btree; list]])where Ext is the list containing the programs for the unde�ned relationsf min; f solve; f nonmin; f decomp; f proc; f composealso represented using the program representation above.A transformation schema is represented by an atomts(NTS;NS1; NS2; I; E; L;ACs; PCs)where� NTS is the name of the transformation schema;� NS1 and NS2 are the names of the program schema patterns that satisfythe applicability conditions of the transformation schema;� I is either 1, indicating that the input program to the transformation isan instance of program schema pattern NS1, or 2, indicating that theinput program to the transformation is an instance of program schemapattern NS2;� E is a speci�c constant existing in every schema pattern for initiating thecomposition;

CHAPTER 7. PROTOTYPE TRANSFORMATION SYSTEM 125� L is the list of the actual name of the top-level relation R and the actualnames of the unde�ned relations in the NS1 and NS2 schema patterns;� ACs is the list of the applicability conditions of the transformationschema, e.g. the �rst applicability condition of DG1 in Section 4.2.1 (i.e.compose is associative) is represented as a tuple (a;COMP), where con-stant a indicates associativity, and COMP is a variable referring to theactual name of the compose relation;� PCs is the list of the optimizability conditions of the transformationschema, e.g. in DG1, if the input program is an instance of the DCLRschema pattern, the �rst part of the �rst optimizability condition ofDG1 (i.e. compose has the left identity element e) is represented as(1; ri; COMP;E), where 1 indicates that the input program is an in-stance of the DCLR schema pattern, ri is a constant indicating leftidentity, COMP is a variable referring to the actual name of the composerelation, and E is a variable indicating the special composition constante in the templates.Example 38 The generalization schema DG1 in Section 4.2.1 is representedas a fact:gs(dg1; dclr; dglr; I; E; [R;M;S;NM;DEC;PROC;COMP];[(a;COMP); (li; COMP;E)];[(1; ri; COMP;E); (1;min;M;R;E); (1; pe; PROC;COMP);(2; pe; PROC;COMP)]) The transformation schemas are stored as facts in a �le called dbase:pl.7.2 Algorithm of the SystemThe program schema patterns given in Chapters 3 and 4 and the transformationschemas given in Chapters 4 and 5 are all represented in the system as explained

CHAPTER 7. PROTOTYPE TRANSFORMATION SYSTEM 126in Section 7.1. These program schema patterns and transformation schemas inthe database of the system can be represented using the graph in Figure 7.1below.
DCLR

DCRL

TG

DGLR

DGRL

TDGRLTDGLR

Ddc

Dtdg

Ddg

TG1
TG2

DG1

DG4

TDG1

TDG2
TDG4

TDG3

DG3

DG2

Figure 7.1. An Undirected Graph Representing the Database of the SystemEach node in the graph represents a program schema pattern in the database,and each edge represents a transformation schema. Since the transformationschemas are applicable in both directions, the graph is undirected.Given an input program P1, the prototype system traverses the graph on theedges where both the applicability and optimizability conditions are satis�ed,so as to output all the programs that are ensured to be more e�cient than P1by the optimizability conditions of the applicable transformation schemas.When a program P2 is output, which is an instance of the output programschema of one of the transformation schemas where both the applicability andoptimizability conditions are satis�ed, then the program P2 is further input toMixtus, the partial evaluator that is used in the system and explained in theintroductory section of Chapter 7, for optimization. Then Mixtus outputs the

CHAPTER 7. PROTOTYPE TRANSFORMATION SYSTEM 127an optimized program P3 to the user of the system. Therefore, at one instance,the system, also with Mixtus, outputs two programs where the second one isthe optimized version of the �rst one. Then, the output program P2 is inputto the system again to obtain other (possibly more e�cient) programs, whichwill be the output programs of the transformation schemas that are applicableto P2. So, what the system does for an input program can be seen as edgetraversing of the graph in Figure 7.1 from a given start node.The transform=3 relation, whose program is given with the simple Prologcode below, is called by the top-level graph traversing relation in the systemto �nd a transformation schema that is applicable and ensuring an e�ciencygain:transform(LP IN;LP OUT ;LS) : �LP IN = lp(NS IN;L;Ext; [E;N;H; T; Ps; Sorts]),ts(NST; I;NS IN;NS OUT ;E;L;ACs; PCs),memberCheck(LS;NS OUT),satisfied(ACs; Sorts;Ext),verified(PCs;L; Sorts;Ext; I),LP OUT = lp(NS OUT ;L;Ext; [E;N;H; T; Ps; Sorts]):where LP IN is the input program, LP OUT is the program, which is an in-stance of the output program schema NS OUT of the transformation schemaNST , and LS is the list of the names of the program schema patterns thatare not processed by the transform relation yet. NST is selected by thecall ts(NST; I;NS IN;NS OUT ; E;L;ACs; PCs) and it is checked by thememberCheck relation whether it was already found to be applicable resultingin a more e�cient output program for the input program. If the output pro-gram schema of the transformation schema has not been processed before, thenthe applicability conditions are checked by the satisfied relation. Finally, theoptimizability conditions of NST are checked by the verified relation. Thesatisfied relation calls PTTP, a theorem prover, to prove the applicabilityconditions. The verified relation also calls PTTP to prove some of the op-timizability conditions, e.g., proving E being the left identity of the composerelation, and it calls Mixtus to check the optimizability conditions when the

CHAPTER 7. PROTOTYPE TRANSFORMATION SYSTEM 128partial evaluation results are needed. Of course, the intermediate operations,which are needed to prepare the inputs for PTTP and Mixtus, and to operateon the outputs of these subsystems, are also taken care of by the low-levelrelations of the prototype system. For example, I hardwire the PTTP proof tosearch to depth 100 at most, since this number is less than 10 in all the testsand PTTP's default maximum is 1000000, which requires a lot of time if thetheorem is not provable.7.3 Evaluation of the SystemAs I explained in the previous sections, I used a theorem prover, PTTP, anda partial evaluator, Mixtus, to check the applicability and optimizability con-ditions, and to do the optimizations. Since these subsystems are too generic(i.e., they are not written to do only the operations in the system), they requirenearly 90 percent of the time used by the system. For example, I hardwiredPTTP proofs to search to depth 100 at most, so it will search up to the 100thlevel if the theorem is not provable, which can really take a lot of time. How-ever, a more application-speci�c subsystem would require less time, but thiswould also lower the generality and extendibility of the prototype system. So,the time complexity of the system is mainly dominated by the time used inthe veri�cation of the applicability and optimizability conditions. Since theoutput program of each applicable transformation schema is again input tothe system, if it is not already processed by the system, in the worst case thetime used by the system can be given as n � m � T , where n is the numberof program schema patterns processed, which is currently bounded by 7, andm is the number of the selected transformation schemas, which is currentlybounded by 13, and T is the time required for checking the applicability andoptimizability conditions.The time complexity of the system can be improved by extending the systemsuch that, for each input program, a dynamic list of the results of the conditionchecks is maintained during the execution, and before calling PTTP or Mixtusfor checking a condition, the condition check will be looked up from that list.This will really improve the time complexity of the system by a constant factor,

CHAPTER 7. PROTOTYPE TRANSFORMATION SYSTEM 129which is not negligible, since currently, in the database of the system, theconditions of one of the transformation schemas are equal to, or a superset of,or a subset of the conditions of another transformation schema.The sample run output of the system where the input program is Pro-gram 12, which is the DGLR infix flat program, is given in Appendix B.Actually, when Program 12 is input to the system, �rst the Ddg transforma-tion schema is selected. Since the applicability and optimizability conditionsof Ddg are satis�ed, the system stores the DGRL program to be output afterall the applicable transformation schemas (i.e., direct edges from DGLR in thegraph in Figure 7.1) are checked. Next, DG1 is selected. Since the optimiz-ability conditions are not satis�ed, DCLR will not be output. Finally, for theinput DGLR program, DG4 will be selected. DCRL will be stored as one ofthe output programs, since both the applicability and optimizability conditionsof DG4 are satis�ed. Then, the system outputs DGRL, the optimized versionof DGRL, DCRL, and the optimized DCRL programs, in this order. TheDGRL program will be input to the system for �nding the possible equivalentand optimizable output programs. All the direct edges are checked. Althoughsome transformation schemas are applicable, no programs will be output, sincethey have already been output for the input DGLR program. Finally, theDCRL program is input to the system. The transformation schemas TG2 andTDG3 are applied resulting in the TG and TDGRL programs, since the appli-cability and the optimizability of these transformation schemas are satis�ed.Therefore, the system outputs TG, the optimized version of TG, TDGRL, andthe optimized TDGRL programs, in this order. The TG and TDGLR pro-grams are further input to the system and some transformation schemas arechecked to be applied, but no programs are left that are ensured to be moree�cient than the input program, and the ones that are ensured to be moree�cient have already been output. So, the system stops.

Chapter 8ConclusionsI have shown that logic program transformation can be fully automated byusing the generalization schemas and duality schemas given in this thesis. Theapplicability conditions of these transformation schemas ensure the equivalenceof the input and output program schemas, but they do not guarantee to havea more e�cient output program. The integration of optimizability conditionsinto the transformation schemas provides the veri�cation of the optimizabilityof the output program of an applicable transformation schema.In this research, I have also validated the transformation schemas by usingequivalence veri�cation. The correctness proofs of the proposed transformationschemas are in [9].A prototype transformation system was developed with a database of theprogram schema patterns and the transformation schemas given in this thesis.I have de�ned a language for representing the programs, program schema pat-terns, and transformation schemas. For checking the applicability and some ofthe optimizability conditions, the theorem prover PTTP was integrated intothe system. For verifying the optimizability conditions where the check forpartial evaluation is done, and for optimization of the output programs of thetransformation schemas, the partial evaluator Mixtus was integrated into thesystem. 130

CHAPTER 8. CONCLUSIONS 1318.1 Contributions of This ResearchThe generalization schemas that are presented in this thesis are actually ex-tensions of Flener and Deville's generalization schemas [20] by extending theprogram schema and the transformation schema representations, and the eu-reka discovery step is fully eliminated by the generalization schemas that wehave in this thesis. Therefore, we achieve generalization of programs beyondone tail and pre�x composition of the result parameter.The program schemas, which are proposed in this thesis, are represented in�rst-order, whereas they were represented in second-order in [20]. The trans-formation schema representation is also extended from 3-tuples to 5-tuples byintegrating the optimizability conditions.New generalization schemas, namely simultaneous tupling-and-descendinggeneralization schemas, are pre-compiled in this research. Validation of theproposed transformation schemas by equivalence veri�cation [9] is another con-tribution of this research. The proposed prototype transformation system isalso an important contribution of this research, which shows that the proposedtransformation schemas can be used in a practical system.We can also compare the results of this research with Fuchs et al's re-sults [24, 57, 58, 47]. We assume that the schema of the input program isknown, which is achieved by matching in their work. Our assumption is rea-sonable, since our system is developed to be integrated into a schema-basedlogic program development environment.We have a di�erent representation for the transformation schemas, which isbetter than their representation in some respects. For instance, in our work, thetransformation schema selection is based on the applicability and optimizabilityconditions, whereas this process is based on matching and precedence in theirwork, which means they do not use all the semantic knowledge about theprogram.We now focus on transforming entire programs, but not yet on transformingconjunctions inside programs. They could transform also conjunctions inside

CHAPTER 8. CONCLUSIONS 132programs. This is one of the important future work directions that I alsodiscuss in the next section.8.2 Future WorkAlthough the integration of optimizability conditions into the transformationschemas provides the veri�cation of the optimizability of the output programof an applicable transformation schema, these conditions do not always ensureimproved performance (or complexity) of the output program wrt the inputprogram. Therefore, the optimization conditions have to be identi�ed to ensurethe e�ciency gain by an applicable transformation schema, as I discussed inChapter 6.I have only dealt with the declarative semantics of the typed de�nite pro-grams in closed frameworks for program transformation. Future work can beto extend the program schema patterns for typed normal programs in openframeworks. This may also require extensions in the transformation schemas.Other future work can be to validate the transformation schemas by usingautomated complexity analyzers like Le Charlier's GAIA [35], or Debray andLin's CASLOG [15]. With these analyzers, the transformation schemas canalso be better validated in terms of performance.There exist also some extensions that have to be done on the system tomake it work better. As I mentioned in Section 7.1, the representation languagemust be extended to provide exibility for representing more generic programschema patterns, e.g., eliminating the special treatment of e, which is actuallya second-order variable existing in the current database of the program schemapatterns and transformation schema representations, and also representing theindexed relations, like Bauvir's second-order representation language [2]. Alsoif we think in terms of performance, the performance of the system can beimproved by maintaining a dynamic list that keeps track of the results of theapplicability and optimizability condition checks.Of course, consideration of other program schemas, and searching for other

CHAPTER 8. CONCLUSIONS 133pre-compilable transformation techniques are the extensions that can be doneon this research. Pre-compilation of the loop merging strategy seems to bethe most important one, since the transformation schemas given in this the-sis focus on transforming entire programs, whereas transforming conjunctionsinside a program may result in better optimizations of the programs. Theloop merging strategy can be pre-compiled by extending the de�nition of thetransformation schemas into recursively de�ned transformation schemas. Sincenested programs were already processed by the prototype system, the trans-formation schemas can be extended to transform conjunctions inside programswith little work on theory of the transformation schemas.Therefore, this research is an important step on the way to a completetransformation system that can be integrated in a logic program developmentenvironment.

Bibliography[1] T. Batu. Schema-Guided Transformations of Logic Algorithms. SeniorProject Report, Bilkent University, Department of Computer Science,1996.[2] C. Bauvir. An Architecture and an Abstract Data Type for an InductiveSchema-Guided Logic Program Synthesizer. M.Sc. Thesis, University ofNamur, Institut d'Informatique, 1996.[3] R.S. Bird and P. Wadler. Introduction to Functional Programming. Pren-tice Hall, 1988.[4] R.S. Bird. The promotion and accumulation strategies in transformationalprogramming. ACM TOPLAS 6(4):487{504, 1984.[5] D.R. Brough and C.J. Hogger. Compiling associativity into logic programs.Journal of Logic Programming 4:345{359, 1987.[6] D.R. Brough and C.J. Hogger. Grammar-related transformations of logicprograms. New Generation Computing 9:115{134, 1991.[7] R.M. Burstall and J. Darlington. A transformation system for developingrecursive programs. Journal of the ACM 24(1):44{67, 1977.[8] H. B�uy�uky�ld�z and P. Flener. Generalized logic program transformationschemas. In: N.E. Fuchs (ed), Proc. of LOPSTR'97, LNCS. Springer-Verlag, forthcoming.[9] H. B�uy�uky�ld�z and P. Flener. Correctness Proofs of TransformationSchemas. Technical Report BU-CEIS-9713. Bilkent University, Depart-ment of Computer Science, 1997.134

BIBLIOGRAPHY 135[10] E. Chasseur and Y. Deville. Logic program schemas, semi-uni�cation andconstraints. In: N.E. Fuchs (ed), Proc. of LOPSTR'97 (this volume).[11] T.H. Cormen, C.E. Leiserson, and R.R. Rivest. Introduction to Algo-rithms. The MIT Press, 1990.[12] A. Cortesi, B. Le Charlier, and S. Rossi. Speci�cation-based automatic ver-i�cation of Prolog programs. In: J. Gallagher (ed), Proc. of LOPSTR'96,pp. 38{57. LNCS 1207. Springer-Verlag, 1997.[13] S.K. Debray. Optimizing almost-tail-recursive Prolog programs. In: Proc.of IFIP'85, pp. 204{219. LNCS 201. Springer-Verlag, 1985.[14] S.K. Debray. Unfold/fold transformations and loop optimization of logicprograms. In: Proc. of SIGPLAN'88, Conference on Programming Lan-guage Design and Implementation. SIGPLAN Notices 23(7):297{307,1988.[15] S.K. Debray and N.W. Lin. Cost analysis of logic programs. ACMTOPLAS 15(5):826{875, 1993.[16] Y. Deville. Logic Programming: Systematic Program Development. Addi-son Wesley, 1990.[17] Y. Deville and J. Burnay. Generalization and program schemata: A steptowards computer-aided construction of logic programs. In: E.L. Lusk andR.A. Overbeek (eds), Proc. of NACLP'89, pp. 409{425. The MIT Press,1989.[18] Y. Deville and K.-K. Lau. Logic program synthesis: A survey. Journalof Logic Programming, Special Issue on 10 Years of Logic Programming19{20:321{350, 1994.[19] P. Flener. Logic Program Schemata: Synthesis and Analysis. Technical Re-port BU-CEIS-9502. Bilkent University, Department of Computer Science,1995.[20] P. Flener and Y. Deville. Logic program transformation through general-ization schemata. Extended abstract in: M. Proietti (ed), Proc. of LOP-STR'95, pp. 171{173. LNCS 1048. Springer-Verlag, 1996. Full version in:

BIBLIOGRAPHY 136M. Proietti (ed), Pre-proc. of LOPSTR'95.[21] P. Flener, K.-K. Lau, and M. Ornaghi. On correct program schemas. In:N.E. Fuchs (ed), Proc. of LOPSTR'97, LNCS. Springer-Verlag, forthcom-ing.[22] P. Flener, K.-K. Lau, and M. Ornaghi. Correct-schema-guided synthesisof steadfast programs. In: M. Lowry and Y. Ledru (eds), Proc. of ASE'97.IEEE Computer Society Press, forthcoming.[23] P. Flener and S. Y�lmaz. Inductive Synthesis of Recursive Logic Programs:Achievements and Prospects. Submitted to Journal of Logic Programming.[24] N.E. Fuchs and M.P.J. Fromherz. Schema-based transformation of logicprograms. In: T. Clement and K.-K. Lau (eds), Proc. of LOPSTR'91, pp.111{125. Springer-Verlag, 1992.[25] T.S. Gegg-Harrison. Basic Prolog Schemata. Technical Report CS-1989-20, Duke University, Department of Computer Science, 1989.[26] T.S. Gegg-Harrison. Representing logic program schemata in �Prolog. In:L. Sterling (ed), Proc. of ICLP'95, pp. 467{481. The MIT Press, 1995.[27] T.S. Gegg-Harrison. Extensible logic program schemata. In: J. Gallagher(ed), Proc. of LOPSTR'96, pp. 256{274. LNCS 1207. Springer-Verlag,1997.[28] A. Hamfelt and J. Fischer Nilsson. Towards a Logic Programming Method-ology based on Higher-Order Predicates. Submitted to New GenerationComputing.[29] A. Hamfelt and J. Fischer Nilsson. Declarative logic programming withprimitive recursion relations on lists. In: L. Sterling (ed), Proc of JIC-SLP'96. The MIT Press.[30] J. Hannan and D. Miller. Uses of higher-order uni�cation for implementingprogram transformers. In: R.A. Kowalski and K.A. Bowen (eds), Proc. ofICLP'88, pp. 942{959. The MIT Press, 1993.

BIBLIOGRAPHY 137[31] �A. Hansson and S.-�A. T�arnlund. Program transformation by a functionthat maps simple lists onto d-lists. In: Proc. of Logic Programming Work-shop, pp. 225{229, 1980.[32] G. Huet and B. Lang. Proving and applying program transformationsexpressed with second-order patterns. Acta Informatica 11:31{55, 1978.[33] H.J. Komorowski. Partial evaluation as a means for inferencing data struc-tures in an applicative language: A theory and implementation in the caseof Prolog. In: Proc. of the Ninth ACM Symposium on Principles of Pro-gramming Languages, pp. 255{267, 1982.[34] K.-K. Lau, M. Ornaghi, and S.-�A. T�arnlund. Steadfast Logic Programs.Submitted to Journal of Logic Programming.[35] B. Le Charlier, S. Rossi, and A. Cortesi. Speci�cation-based automatic ver-i�cation of Prolog programs. In: J. Gallagher (ed), Proc. of LOPSTR'96.LNCS 1207. Springer-Verlag, 1997.[36] J.M. Lever. Program equivalence, program development and integritychecking. In: T. Clement and K.-K. Lau (eds), Proc. of LOPSTR'91,pp. 1{12. Springer-Verlag, 1992.[37] M.J. Maher. Equivalences of logic programs. In: J. Minker (ed), Founda-tions of Deductive Databases, pp. 627{658. Morgan Kaufmann, 1988.[38] E. Marakakis and J.P. Gallagher. Schema-based top-down design of logicprograms using abstract data types. In: L. Fribourg and F. Turini (eds),Proc. of LOPSTR'94, pp. 138{153. LNCS 883, 1994.[39] K. Marriott and H. S�ndergaard. Di�erence-list transformation for Prolog.New Generation Computing 11:125{157, 1993.[40] R. Paige and S. Koenig. Finite di�erencing of computable expressions.ACM TOPLAS 4(3):402{454, 1982.[41] A. Pettorossi and M. Proietti. Transformation of logic programs: Foun-dations and techniques. Journal of Logic Programming 19(20):261{320,1994.

BIBLIOGRAPHY 138[42] A. Pettorossi and M. Proietti. Rules and strategies for transforming func-tional and logic programs. ACM Computing Surveys 28(2):360{414, 1996.[43] M. Proietti and A. Pettorossi. Synthesis of eureka precidates for developinglogic programs. In: N. Jones (ed), Proc. of ESOP'90, pp. 306{325. LNCS432. Springer-Verlag, 1990.[44] M. Proietti and A. Pettorossi. Unfolding-de�nition-folding, in this order,for avoiding unnecessary variables in logic programs. In: J. Maluszyn-ski and M. Wirsing (eds), Proc. of PLILP'91, pp. 347{358. LNCS 528.Springer-Verlag, 1991.[45] M. Proietti and A. Pettorossi. The loop absorption and the generalizationstrategies for the development of logic programs and partial deduction.Journal of Logic Programming 16:123{161, 1993.[46] M. Proietti and A. Pettorossi. Completeness of some transformationstrategies for avoiding unnecessary logical variables. In: P. van Hentren-ryck (ed), Proc. of ICLP'94, pp. 714{729. The MIT Press, 1994.[47] J. Richardson and N.E. Fuchs. Development of correct transformationschemata for Prolog programs. In: N.E. Fuchs (ed), Proc. of LOPSTR'97,LNCS. Springer-Verlag, forthcoming.[48] D. Sahlin. An Automatic Partial Evaluator of Full Prolog. Ph.D. Thesis,Swedish Institute of Computer Science, 1991.[49] H. Seki and K. Furukawa. Notes on transformation techniques for generateand test logic programs. In: Proc. of ISLP'87, pp. 215{223, 1987.[50] Z. Somogyi, F. Henderson, and T. Conway. Mercury: An e�cient purelydeclarative logic programming language. In: Proc. of the Australian Com-puter Science Conference, pp. 499{512, 1995.[51] M.H. S�rensen and R. Gl�uck. An algorithm of generalization in positivesupercompilation. In: J. Lloyd (ed), Proc. of ISLP'95, pp. 465{479. TheMIT Press, 1995.

BIBLIOGRAPHY 139[52] L.S. Sterling and M. Kirschenbaum. Applying techniques to skeletons.In: J.-M. Jacquet (ed), Constructing Logic Programs, pp. 127{140. JohnWiley, 1993.[53] L.S. Sterling and E.Y. Shapiro. The Art of Prolog, Advanced ProgrammingTechniques. Second edition, The MIT Press, 1994.[54] M.E. Stickel. A Prolog Technology Theorem Prover: A New Expositionand Implementation in Prolog. Technical Note 464, SRI International, Ar-ti�cial Intelligence Center, 1989. (a longer version of the reference belowthat includes annotated code)[55] M.E. Stickel. A Prolog technology theorem prover: A new expositionand implementation in Prolog. Theoretical Computer Science 104:109{128,1992.[56] V.F. Turchin. The concept of a supercompiler. ACM TOPLAS 8(3):292{325, 1986.[57] W.W. Vasconcelos and N.E. Fuchs. Opportunistic Logic Program Analy-sis and Optimisation: Enhanced Schema-Based Transformations for LogicPrograms and their Usage in an Opportunistic Framework for ProgramAnalysis and Optimisation. Technical Report 95-24. Universit�at Z�urich,Institut fur Informatik, 1995.[58] W.W. Vasconcelos and N.E. Fuchs. An opportunistic approach for logicprogram analysis and optimisation using enhanced schema-based transfor-mations. In: M. Proietti (ed), Proc. of LOPSTR'95, pp. 174{188. LNCS1048. Springer-Verlag, 1996.[59] P. Wadler. Deforestration: Transforming programs to eliminate trees. The-oretical Computer Science 73:231{248, 1990.[60] M. Waldau. Formal validation of transformation schemata. In: T. Clementand K.-K. Lau (eds), Proc. of LOPSTR'91, pp. 97{110. Springer-Verlag,1992.[61] S. Y�lmaz. Inductive Synthesis of Recursive Logic Programs.M.Sc. Thesis,Bilkent University, Department of Computer Science, 1997.

BIBLIOGRAPHY 140[62] J. Zhang and PP.W. Grant. An automatic di�erence-list transformationalgorithm for Prolog. In: Proc. of ECAI'88, pp. 320{325, 1988.

AREADME File of the PrototypeTransformation SystemThe �les of the prototype transformation system TRANSYS:transys:pl : top-level relationsdbase:pl : database of the program schema patterns and transformationschemasdedotify:pl : manipulate the templates ofthe program schema patterns during particularizationprover:pl : prove the applicability and post-optimizability conditionsmverify:pl : check the post-optimizability conditionsof the transformation schemashprint:pl : print the output programs of the systemon the current output streamutilities:pl : low-level relations called by the other programspttp:pl : PTTPpttpq:pl : PTTP Prolog code for inference counting and timing;mixtus : the executable �le of the partial evaluator MixtusFor properly running TRANSYS, �rst write mixtus in the command line,which calls �rst the available Sicstus Prolog interpreter, then load transys.pl.141

A. README FILE OF THE PROTOTYPE TRANSFORMATION SYSTEM 142Then you can call the top-level relation transys=1 with the input program.The calls of sample example runs are in a �le called run exs:pl.

BSample Output of thePrototype SystemBelow are some parts of the output for transforming the DGLR infix flatprogram:| ?- transys(lp(dglr,[i_flat,minimal,solve,nonminimal,decompose,process,compose],[lp(rs,[if(minimal(X),X=void)]),lp(rs,[if(solve(X,Y),Y=[])]),lp(rs,[if(nonminimal(X), X=bt(_,_,_))]),lp(rs,[if(decompose(X,E,T1,T2),X=bt(T1,E,T2))]),lp(rs,[if(process(E,HF), HF=[E])]),lp(rs,[if(compose(P,Q,R),and(P=[],Q=R)),if(compose(P,Q,R),and(P = [HP|TP],and(compose(TP,Q,TR), R = [HP|TR])))])],[[],2,1,2,[2],[btree,list]])).PTTP_IS_CHECKING_THE_APPLICABILITY_CONDITIONS_OF_dsdgAssociativityLeft_IdentityRight_IdentityPTTP_AND_MIXTUS_CHECKING_THE_OPTIMIZABILITY_CONDITIONS_OF_dsdgMinimality{consulting for mixtus: /csgrad/halime/cs599/thesis/GENSYS/goal}p(A, B, C) :-p1(A, B, C). 143

B. SAMPLE OUTPUT OF THE PROTOTYPE SYSTEM 144% p1(A,B,C):-p(A,B,C)p1(A, B, [A|B]).PTTP_IS_CHECKING_THE_APPLICABILITY_CONDITIONS_OF_dg1AssociativityLeft_IdentityPTTP_AND_MIXTUS_CHECKING_THE_OPTIMIZABILITY_CONDITIONS_OF_dg1{consulting for mixtus: /csgrad/halime/cs599/thesis/GENSYS/goal}p(A, B, C) :-p1(A, B, C).% p1(A,B,C):-p(A,B,C)p1(A, B, C) :-compose1(B, A, C).% compose1(A,B,C):-compose(A,[B],C)compose1([], A, [A]).compose1([A|B], C, D) :-compose1(B, C, E),D=[A|E].PTTP_IS_CHECKING_THE_APPLICABILITY_CONDITIONS_OF_dg4AssociativityLeft_IdentityRight_IdentityPTTP_AND_MIXTUS_CHECKING_THE_OPTIMIZABILITY_CONDITIONS_OF_dg4{consulting for mixtus: /csgrad/halime/cs599/thesis/GENSYS/goal}p(A, B, C) :-p1(A, B, C).% p1(A,B,C):-p(A,B,C)p1(A, B, [A|B]).**OUTPUT_OF_THE_TRANSFORMATION_AS_AN_INSTANCE_OF dgrl**i_flat(A,B):-i_flat_d2(A,B,[]).i_flat_d2(A,B,C):-minimal(A),solve(A,D),compose(D,C,B).i_flat_d2(A,B,C):-nonminimal(A),decompose(A,E,F,G),compose([],C,H),i_flat_d2(G,I,H),process(E,J),compose(J,I,K),

B. SAMPLE OUTPUT OF THE PROTOTYPE SYSTEM 145i_flat_d2(F,L,K),B=L.minimal(M):-M=void.solve(M,N):-N=[].nonminimal(M):-M=bt(O,P,Q).decompose(M,R,S,T):-M=bt(S,R,T).process(R,U):-U=[R].compose(V,W,X):-V=[],W=X.compose(V,W,X):-V=[Y|Z],compose(Z,W,AA),X=[Y|AA].**OPTIMIZED_dgrl_PROGRAM**{consulting for mixtus: /csgrad/halime/cs599/thesis/GENSYS/prog}i_flat(A, B) :-i_flat1(A, B).% i_flat1(A,B):-i_flat(A,B)i_flat1(A, B) :-i_flat_d21(A, B).% i_flat_d21(A,B):-i_flat_d2(A,B,[])i_flat_d21(void, []).i_flat_d21(bt(A,B,C), D) :-i_flat_d21(C, E),i_flat_d22(A, D, B, E).% i_flat_d22(A,B,C,D):-i_flat_d2(A,B,[C|D])i_flat_d22(void, [A|B], A, B).i_flat_d22(bt(A,B,C), D, E, F) :-i_flat_d21(C, E, F, G),i_flat_d22(A, D, B, G).% i_flat_d21(A,B,C,D):-i_flat_d2(A,D,[B|C])i_flat_d21(void, A, B, [A|B]).i_flat_d21(bt(A,B,C), D, E, F) :-i_flat_d21(C, D, E, G),i_flat_d21(A, B, G, H),F=H.**OUTPUT_OF_THE_TRANSFORMATION_AS_AN_INSTANCE_OF dcrl**i_flat(A,B):-minimal(A),solve(A,B).i_flat(A,B):-nonminimal(A),decompose(A,C,D,E),i_flat(D,F),i_flat(E,G),

B. SAMPLE OUTPUT OF THE PROTOTYPE SYSTEM 146H=[],compose(G,H,I),process(C,J),compose(J,I,K),compose(F,K,L),B=L.minimal(M):-M=void.solve(M,N):-N=[].nonminimal(M):-M=bt(O,P,Q).decompose(M,R,S,T):-M=bt(S,R,T).process(R,U):-U=[R].compose(V,W,X):-V=[],W=X.compose(V,W,X):-V=[Y|Z],compose(Z,W,AA),X=[Y|AA].**OPTIMIZED_dcrl_PROGRAM**{consulting for mixtus: /csgrad/halime/cs599/thesis/GENSYS/prog}i_flat(A, B) :-i_flat1(A, B).% i_flat1(A,B):-i_flat(A,B)i_flat1(void, []).i_flat1(bt(A,B,C), D) :-i_flat1(A, E),i_flat1(C, F),compose1(F, G),compose2(E, B, G, D).% compose1(A,B):-compose(A,[],B)compose1([], []).compose1([A|B], C) :-compose1(B, D),C=[A|D].% compose2(A,B,C,D):-compose(A,[B|C],D)compose2([], A, B, [A|B]).compose2([A|B], C, D, [A|E]) :-compose2(B, C, D, E).PTTP_IS_CHECKING_THE_APPLICABILITY_CONDITIONS_OF_dg2AssociativityLeft_IdentityRight_IdentityPTTP_AND_MIXTUS_CHECKING_THE_OPTIMIZABILITY_CONDITIONS_OF_dg2

B. SAMPLE OUTPUT OF THE PROTOTYPE SYSTEM 147{consulting for mixtus: /csgrad/halime/cs599/thesis/GENSYS/goal}p(A, B, C) :-p1(A, B, C).% p1(A,B,C):-p(A,B,C)p1(A, B, C) :-compose1(B, A, C).% compose1(A,B,C):-compose(A,[B],C)compose1([], A, [A]).compose1([A|B], C, D) :-compose1(B, C, E),D=[A|E].PTTP_IS_CHECKING_THE_APPLICABILITY_CONDITIONS_OF_tg2AssociativityLeft_IdentityRight_IdentityExclusive_ORMinimalityPTTP_AND_MIXTUS_CHECKING_THE_OPTIMIZABILITY_CONDITIONS_OF_tg2{consulting for mixtus: /csgrad/halime/cs599/thesis/GENSYS/goal}p(A, B, C) :-p1(A, B, C).% p1(A,B,C):-p(A,B,C)p1(A, B, [A|B]).PTTP_IS_CHECKING_THE_APPLICABILITY_CONDITIONS_OF_tdg3AssociativityLeft_IdentityRight_IdentityExclusive_ORMinimalityPTTP_AND_MIXTUS_CHECKING_THE_OPTIMIZABILITY_CONDITIONS_OF_tdg3{consulting for mixtus: /csgrad/halime/cs599/thesis/GENSYS/goal}p(A, B, C) :-p1(A, B, C).

B. SAMPLE OUTPUT OF THE PROTOTYPE SYSTEM 148% p1(A,B,C):-p(A,B,C)p1(A, B, [A|B]).PTTP_IS_CHECKING_THE_APPLICABILITY_CONDITIONS_OF_tdg4AssociativityLeft_IdentityRight_IdentityExclusive_ORMinimalityPTTP_AND_MIXTUS_CHECKING_THE_OPTIMIZABILITY_CONDITIONS_OF_tdg4{consulting for mixtus: /csgrad/halime/cs599/thesis/GENSYS/goal}p(A, B, C) :-p1(A, B, C).% p1(A,B,C):-p(A,B,C)p1(A, B, C) :-compose1(B, A, C).% compose1(A,B,C):-compose(A,[B],C)compose1([], A, [A]).compose1([A|B], C, D) :-compose1(B, C, E),D=[A|E].PTTP_IS_CHECKING_THE_APPLICABILITY_CONDITIONS_OF_dsdcAssociativityLeft_IdentityRight_IdentityPTTP_AND_MIXTUS_CHECKING_THE_OPTIMIZABILITY_CONDITIONS_OF_dsdcMinimality{consulting for mixtus: /csgrad/halime/cs599/thesis/GENSYS/goal}p(A, B, C) :-p1(A, B, C).% p1(A,B,C):-p(A,B,C)p1(A, B, C) :-compose1(B, A, C).% compose1(A,B,C):-compose(A,[B],C)

B. SAMPLE OUTPUT OF THE PROTOTYPE SYSTEM 149compose1([], A, [A]).compose1([A|B], C, D) :-compose1(B, C, E),D=[A|E].**OUTPUT_OF_THE_TRANSFORMATION_AS_AN_INSTANCE_OF tg**i_flat(A,B):-i_flat_t([A],B).i_flat_t(C,B):-C=[],B=[].i_flat_t(C,B):-C=[A|D],minimal(A),i_flat_t(D,E),solve(A,F),compose(F,E,B).i_flat_t(C,B):-C=[A|D],nonminimal(A),decompose(A,G,H,I),minimal(H),minimal(I),i_flat_t(D,E),process(G,F),compose(F,E,B).i_flat_t(C,B):-C=[A|D],nonminimal(A),decompose(A,G,J,K),minimal(J),nonminimal(K),i_flat_t([K|D],E),process(G,F),compose(F,E,B).i_flat_t(C,B):-C=[A|D],nonminimal(A),decompose(A,G,L,M),nonminimal(L),minimal(M),minimal(N),decompose(O,G,N,M),i_flat_t([L,O|D],B).i_flat_t(C,B):-C=[A|D],nonminimal(A),decompose(A,G,P,Q),nonminimal(P),nonminimal(Q),minimal(R),minimal(S),decompose(O,G,R,S),i_flat_t([P,O,Q|D],B).minimal(T):-T=void.solve(T,U):-U=[].nonminimal(T):-T=bt(V,W,X).decompose(T,Y,Z,AA):-T=bt(Z,Y,AA).process(Y,AB):-AB=[Y].compose(AC,AD,AE):-AC=[],AD=AE.compose(AC,AD,AE):-AC=[AF|AG],compose(AG,AD,AH),AE=[AF|AH].**OPTIMIZED_tg_PROGRAM**i_flat(A, B) :-i_flat1(A, B).% i_flat1(A,B):-i_flat(A,B)i_flat1(A, B) :-'i_flat_t.1'(A, B).

B. SAMPLE OUTPUT OF THE PROTOTYPE SYSTEM 150% 'i_flat_t.1'(A,B):-i_flat_t([A],B)'i_flat_t.1'(void, []).'i_flat_t.1'(bt(void,A,void), [A]).'i_flat_t.1'(bt(void,A,bt(B,C,D)), E) :-'i_flat_t.1'(bt(B,C,D), F),E=[A|F].'i_flat_t.1'(bt(bt(A,B,C),D,void), E) :-'i_flat_t.bt2'(A, B, C, D, [], E).'i_flat_t.1'(bt(bt(A,B,C),D,bt(E,F,G)), H) :-'i_flat_t.bt2'(A, B, C, D, E, F, G, [], H).% 'i_flat_t.bt2'(A,B,C,D,[],E):-i_flat_t([bt(A,B,C),bt(void,D,void)],E)'i_flat_t.bt2'(void, A, void, B, C, [A,B|D]) :-i_flat_t2(C, D).'i_flat_t.bt2'(void, A, bt(B,C,D), E, F, G) :-'i_flat_t.bt2'(B, C, D, E, F, H),G=[A|H].'i_flat_t.bt2'(bt(A,B,C), D, void, E, F, G) :-'i_flat_t.bt2'(A, B, C, D, [bt(void,E,void)|F], G).'i_flat_t.bt2'(bt(A,B,C), D, bt(E,F,G), H, I, J) :-'i_flat_t.bt2'(A, B, C, D, [bt(E,F,G),bt(void,H,void)|I], J).% i_flat_t2(A,B):-i_flat_t(A,B)i_flat_t2([], []).i_flat_t2([void|A], B) :-i_flat_t2(A, B).i_flat_t2([bt(void,A,void)|B], [A|C]) :-i_flat_t2(B, C).i_flat_t2([bt(void,A,bt(B,C,D))|E], F) :-i_flat_t2([bt(B,C,D)|E], G),F=[A|G].i_flat_t2([bt(bt(A,B,C),D,void)|E], F) :-i_flat_t2([bt(A,B,C),bt(void,D,void)|E], F).i_flat_t2([bt(bt(A,B,C),D,bt(E,F,G))|H], I) :-i_flat_t2([bt(A,B,C),bt(void,D,void),bt(E,F,G)|H], I).% 'i_flat_t.bt2'(A,B,C,D,E,F,G,[],H):-i_flat_t([bt(A,B,C),bt(void,D,void),%bt(E,F,G)],H)'i_flat_t.bt2'(void, A, void, B, C, D, E, F, [A,B|G]) :-'i_flat_t.bt3'(C, D, E, F, G).'i_flat_t.bt2'(void, A, bt(B,C,D), E, F, G, H, I, J) :-'i_flat_t.bt2'(B, C, D, E, F, G, H, I, K),J=[A|K].'i_flat_t.bt2'(bt(A,B,C), D, void, E, F, G, H, I, J) :-'i_flat_t.bt2'(A, B, C, D, void, E, void, [bt(F,G,H)|I], J).'i_flat_t.bt2'(bt(A,B,C), D, bt(E,F,G), H, I, J, K, L, M) :-'i_flat_t.bt2'(A, B, C, D, E, F, G, [bt(void,H,void),bt(I,J,K)|L], M).% 'i_flat_t.bt3'(A,B,C,D,E):-i_flat_t([bt(A,B,C)|D],E)'i_flat_t.bt3'(void, A, void, B, [A|C]) :-i_flat_t2(B, C).'i_flat_t.bt3'(void, A, bt(B,C,D), E, [A|F]) :-'i_flat_t.bt3'(B, C, D, E, F).

B. SAMPLE OUTPUT OF THE PROTOTYPE SYSTEM 151'i_flat_t.bt3'(bt(A,B,C), D, void, E, F) :-'i_flat_t.bt3'(A, B, C, [bt(void,D,void)|E], F).'i_flat_t.bt3'(bt(A,B,C), D, bt(E,F,G), H, I) :-'i_flat_t.bt3'(A, B, C, [bt(void,D,void),bt(E,F,G)|H], I).**OUTPUT_OF_THE_TRANSFORMATION_AS_AN_INSTANCE_OF tdgrl**i_flat(A,B):-i_flat_td2([A],B,[]).i_flat_td2(C,B,D):-C=[],B=D.i_flat_td2(C,B,D):-C=[A|E],minimal(A),i_flat_td2(E,F,D),solve(A,G),compose(G,F,B).i_flat_td2(C,B,D):-C=[A|E],nonminimal(A),decompose(A,H,I,J),minimal(I),minimal(J),i_flat_td2(E,F,D),process(H,G),compose(G,F,B).i_flat_td2(C,B,D):-C=[A|E],nonminimal(A),decompose(A,H,K,L),minimal(K),nonminimal(L),i_flat_td2([L|E],F,D),process(H,G),compose(G,F,B).i_flat_td2(C,B,D):-C=[A|E],nonminimal(A),decompose(A,H,M,N),nonminimal(M),minimal(N),minimal(O),decompose(P,H,O,N),i_flat_td2([M,P|E],B,D).i_flat_td2(C,B,D):-C=[A|E],nonminimal(A),decompose(A,H,Q,R),nonminimal(Q),nonminimal(R),minimal(S),minimal(T),decompose(P,H,S,T),i_flat_td2([Q,P,R|E],B).minimal(U):-U=void.solve(U,V):-V=[].nonminimal(U):-U=bt(W,X,Y).decompose(U,Z,AA,AB):-U=bt(AA,Z,AB).process(Z,AC):-AC=[Z].compose(AD,AE,AF):-AD=[],AE=AF.compose(AD,AE,AF):-AD=[AG|AH],compose(AH,AE,AI),AF=[AG|AI].**OPTIMIZED_tdgrl_PROGRAM**{consulting for mixtus: /csgrad/halime/cs599/thesis/GENSYS/prog}i_flat(A, B) :-i_flat1(A, B).% i_flat1(A,B):-i_flat(A,B)

B. SAMPLE OUTPUT OF THE PROTOTYPE SYSTEM 152i_flat1(A, B) :-'i_flat_td2.1'(A, B).% 'i_flat_td2.1'(A,B):-i_flat_td2([A],B,[])'i_flat_td2.1'(void, []).'i_flat_td2.1'(bt(void,A,void), [A]).'i_flat_td2.1'(bt(void,A,bt(B,C,D)), E) :-'i_flat_td2.1'(bt(B,C,D), F),E=[A|F].'i_flat_td2.1'(bt(bt(A,B,C),D,void), E) :-'i_flat_td2.bt2'(A, B, C, D, [], E).'i_flat_td2.1'(bt(bt(A,B,C),D,bt(E,F,G)), H) :-i_flat_td2([bt(A,B,C),bt(void,D,void),bt(E,F,G)], H).% 'i_flat_td2.bt2'(A,B,C,D,[],E):-i_flat_td2([bt(A,B,C),bt(void,D,void)],E,[])'i_flat_td2.bt2'(void, A, void, B, C, D) :-i_flat_td21(C, E),D=[A,B|E].'i_flat_td2.bt2'(void, A, bt(B,C,D), E, F, G) :-'i_flat_td2.bt2'(B, C, D, E, F, H),G=[A|H].'i_flat_td2.bt2'(bt(A,B,C), D, void, E, F, G) :-'i_flat_td2.bt2'(A, B, C, D, [bt(void,E,void)|F], G).'i_flat_td2.bt2'(bt(A,B,C), D, bt(E,F,G), H, I, J) :-i_flat_td2([bt(A,B,C),bt(void,D,void),bt(E,F,G),bt(void,H,void)|I], J).% i_flat_td21(A,B):-i_flat_td2(A,B,[])i_flat_td21([], []).i_flat_td21([void|A], B) :-i_flat_td21(A, C),B=C.i_flat_td21([bt(void,A,void)|B], C) :-i_flat_td21(B, D),C=[A|D].i_flat_td21([bt(void,A,bt(B,C,D))|E], F) :-i_flat_td21([bt(B,C,D)|E], G),F=[A|G].i_flat_td21([bt(bt(A,B,C),D,void)|E], F) :-i_flat_td21([bt(A,B,C),bt(void,D,void)|E], F).i_flat_td21([bt(bt(A,B,C),D,bt(E,F,G))|H], I) :-i_flat_td2([bt(A,B,C),bt(void,D,void),bt(E,F,G)|H], I).PTTP_IS_CHECKING_THE_APPLICABILITY_CONDITIONS_OF_tg1AssociativityLeft_IdentityRight_IdentityExclusive_OR

B. SAMPLE OUTPUT OF THE PROTOTYPE SYSTEM 153MinimalityPTTP_AND_MIXTUS_CHECKING_THE_OPTIMIZABILITY_CONDITIONS_OF_tg1{consulting for mixtus: /csgrad/halime/cs599/thesis/GENSYS/goal}p(A, B, C) :-p1(A, B, C).% p1(A,B,C):-p(A,B,C)p1(A, B, C) :-compose1(B, A, C).% compose1(A,B,C):-compose(A,[B],C)compose1([], A, [A]).compose1([A|B], C, D) :-compose1(B, C, E),D=[A|E].PTTP_IS_CHECKING_THE_APPLICABILITY_CONDITIONS_OF_dstdgAssociativityLeft_IdentityRight_IdentityPTTP_AND_MIXTUS_CHECKING_THE_OPTIMIZABILITY_CONDITIONS_OF_dstdgMinimality{consulting for mixtus: /csgrad/halime/cs599/thesis/GENSYS/goal}p(A, B, C) :-p1(A, B, C).% p1(A,B,C):-p(A,B,C)p1(A, B, C) :-compose1(B, A, C).% compose1(A,B,C):-compose(A,[B],C)compose1([], A, [A]).compose1([A|B], C, D) :-compose1(B, C, E),D=[A|E].PTTP_IS_CHECKING_THE_APPLICABILITY_CONDITIONS_OF_tdg2AssociativityLeft_IdentityRight_IdentityExclusive_OR

B. SAMPLE OUTPUT OF THE PROTOTYPE SYSTEM 154MinimalityPTTP_AND_MIXTUS_CHECKING_THE_OPTIMIZABILITY_CONDITIONS_OF_tdg2{consulting for mixtus: /csgrad/halime/cs599/thesis/GENSYS/goal}p(A, B, C) :-p1(A, B, C).% p1(A,B,C):-p(A,B,C)p1(A, B, C) :-compose1(B, A, C).% compose1(A,B,C):-compose(A,[B],C)compose1([], A, [A]).compose1([A|B], C, D) :-compose1(B, C, E),D=[A|E].true ?

