
Indutive ProgrammingPierre FlenerDepartment of Information SieneUppsala University, Box 513, S { 751 20 Uppsala, SwedenPierre.Flener�dis.uu.seDerek PartridgeDepartment of Computer SieneUniversity of Exeter, Exeter, EX4 4PT, United KingdomD.Partridge�exeter.a.ukWhat Is Indutive Programming?The intent of this speial issue was to bring together developments in indutiveprogramming [12℄ that have a diret bearing on software development, and topromote a broader usage of the term. Indutive programming, in our view, isnot a return to the overly ambitious, and thus ultimately unworkable, shemes ofautomatially generating large software systems. Indutive programming is thusnot just programming-by-example, nor just programming-by-demonstration,nor a panaea for software development-in-the-large. It is a mix of more sub-tle uses of indution to assist the software developer in a variety of ways. Wedesribe some ingredients of the mixture below, but all need further develop-ment, and entirely new ones remain to be disovered. At this point in time,we an do no more than artiulate our urrent understanding in the hope thatthis personal view will stimulate the requisite disussion and researh needed topush the indutive-programming strategy forwards to beome a set of pratialoptions for the software engineer | not a replaement for mainstream methods,but a powerful adjunt in appropriate irumstanes.Sienti� indution (whih is not to be onfused with mathematial indu-tion) is the proess of reasoning from the partiular, whih is known-to-be-inomplete information, to the general. Suh indutive inferene, just like ab-dutive inferene and analogial inferene, is in general unsound. The termindutive programming may be ontrasted with lassial programming, whihworks from an assumed-to-be-omplete spei�ation to a partiular implemen-tation. Classial programming is thus a proess that we might justi�ably alldedutive programming, whih is a name that gains further redibility whenwe remember that the history of automati programming is one of attemptingto logially dedue orret implementations from (assumed-to-be-omplete) so-1

alled \formal spei�ations".1 Reall that dedutive inferene is always sound.In indutive programming, we seek algorithms that survey known-to-be-inomplete information, say a set of input-output examples, and generate infor-mation pertinent to the onstrution of a generalised omputational system forwhih these input-output examples are a representative sample. The informa-tion so extrated might thus be no more than problem features and deision logifor spei�ation enhanement, or it might be a self-ontained system module,but it does not have to be a omplete software system in order to be useful.Another de�nition of indutive programming, namely as programming-by-example, that is the extrapolation of \the orret" funtion from a subset of itsinput-output examples, is too restritive in our opinion. It even seems ill-posed,as there never is a single orret funtion in suh a setting, so that one has noguarantee that the obtained result is orret in any sense. This ommon prej-udie is overly strong, and an be weakened by the following argument. Thereis not always a single orret funtion embedded in spei�ations suitable fordedutive programming either. Indeed, suh spei�ations an also be ambigu-ous (embed more than one funtion) or even internally inonsistent (embed nofuntion at all).2 An ambiguous or internally inonsistent spei�ation is sub-jeted to inspetion and revision. If internal inonsisteny persists, then it mayjust be beause the problem has no solution. If ambiguity persists, then it mayjust be beause several solutions are equally good. The hard rules of FormalMethods advoates, suh as avoiding ambiguity and internal inonsisteny, thuslead to absurdities: one annot deide in advane what is good in all possiblesituations. (Known-to-be-)inomplete spei�ations an thus not be attakedfor their (de�nite) ambiguity, due to their inomplete nature, beause ambiguityand internal inonsisteny an be desirable even for (assumed-to-be-)ompletespei�ations.3 The fundamental omputer siene notion of `spei�ation' issurprisingly omplex [13℄; this is a fat that goes largely unappreiated, to judgeby the ommon and avalier usage of this word.Nothing thus says that no useful information nor valuable omputationalsystem an be forthoming from appliations of indution algorithms to data.Beause the indution proesses we ontemplate are algorithmially spei�ed,the information generated | either guidane for problem spei�ation enhane-ment or an exeutable module | is generated automatially. This is the esseneof what indution algorithms have to ontribute to the �eld of automated soft-ware engineering [5, 12℄. It has been noted [8℄ that the addition of input-outputexamples to even omplete spei�ations may be bene�ial (to human program-mers), namely as a means of lari�ation. (The ommon fear that suh examplesmay be inonsistent with the rest of the spei�ation is unreasonable, as abseneof internal inonsisteny is not a guarantee of external onsisteny, whereas in-ternal inonsisteny is an undeniable indiation that the onsidered problem1See [8℄ for an argument why \formal spei�ations" annot really be onsidered to beatual spei�ations, in the lassial engineering sense.2Note that internal inonsisteny is impossible with input-output examples.3Similarly, both kinds of spei�ation annot be attaked for their potential external in-onsisteny with respet to the intentions or real world.2

either is ill-posed or has no solution.) What indutive programming aims at isthe exploration of all synergies between omplete and inomplete spei�ations.Indutive Programming in AtionThe �rst step in idealised software engineering is to abstrat a preise (andassumed-to-be-omplete) spei�ation, whih is then taken as the foundation forall subsequent development, suh as oding and veri�ation. However, omplexspei�ations typially ontain errors and approximations that lead to errors inthe eventual software, errors that are not easily deteted or eliminated beforethe software is subjeted to operational testing.However, many programming problems are manifest as sets of data values,namely inputs and orresponding outputs, divided into positive examples andnegative examples, whih an also be seen as a known-to-be-inomplete spei-�ation. Indutive programming tehniques work from suh data instanes tothe implementation without going through an assumed-to-be-omplete spei-�ation. They thus o�er the software engineer a means to avoid or retifysystem errors that are due to spei�ation faults, and perhaps even to irum-vent the need for a omplete spei�ation, i.e., some system modules may beindutively generated from data where aurate spei�ation proves diÆult.Indution-based proessing of problem data (i.e., data mining) may even beused to hek and orret features of a potentially or assumed-to-be ompletespei�ation. Indeed, software engineering experiene shows that the notion of`omplete spei�ation' is nothing but a himera.Indutive software development will be partiularly germane, if not essential,for (parts of) omplex data-de�ned problems. These will arise in a data-rihdomain and address very omplex aspets of the world, suh as the humanbody, ompliated manufaturing proesses, and omplex dynamial situations.Human fae reognition is one suh problem. It is a priori plausible that aomputerised fae reogniser is possible. We are all good fae reognisers, butwe do not know how we do it. We may be able to speify what is desiredbut not at the level of detail required for lassial algorithm design and subse-quent implementation. The details ould, however, be provided in the form ofa set of input-output examples, and from suh a set of instanes an indutiveprogramming tehnology ould provide a generalised fae-reognition system.Indutive programming is not, however, trouble-free. There are diÆultissues of `understanding' automatially indued proedures so that implementa-tion performane an be haraterised. There are issues of data pre-proessingto failitate optimal appliation of a given indutive tehnique and to obtain animplementation with ertain desired harateristis.The `understanding' issue is partiularly important when the indution teh-nology is that of distributed neural omputing. It may be possible to train, say,a multilayer pereptron using the bakpropagation algorithm to produe a goodpredition module in a situation where lassial programming has been unsu-essful. After training, no further weight updating is permitted, and then the3

trained neural network implements a deterministi omputation. This moduleis then lear evidene of a systemati algorithmi solution to some hitherto in-tratable subfuntion, but inspetion of the trained network is unlikely to shedmuh light on how, in lassial omputational terms, this partiular subfuntionan be haraterised [11℄.As a spei� example, we are ollaborating with National Air-TraÆ Ser-vies of the UK to improve the performane of their Short-Term Conit Alert(STCA) software system. The STCA system was designed to alert air-traÆontrollers whenever two airraft are likely to breah proximity restritions. Itmust never miss a true alarm situation, and onsequently it produes large num-bers of false alarms. A ommon false-alarm situation ours when one plane isasending (or desending) towards a ight level where it an (and invariablydoes) safely level o�, but the linear extrapolation of its ight path (before level-o�) leads to a false alarm. The existene of a subfuntion that ould preditlevel-o�s ould anel many false alarms, but the STCA system ontains nosuh subfuntion beause no one knows how to speify it. However, given manyexamples of ight paths (and other objetive data suh as size of airraft) forwhih planes level o� and do not level o�, it is possible to train a neural net-work to predit level-o�s (not perfetly but quite well). But inspetion of thetrained networks yields no information to assist in the formulation of a lassialspei�ation for level-o� predition, and hene we are no loser to a lassiallyprogrammed level-o� predition module to add to the STCA system. But wedo then know whih of the available features (suh as speed, deeleration, andsize) are important for prediting level-o�, and use of automati deision-treeindution algorithms is expeted to reveal useful deision logi assoiated withthose features.A major soure of inipient tehnologies to develop for indutive program-ming is the �eld of Arti�ial Intelligene (AI). This is beause the problems of AIhave long been aknowledged as unspei�able with the preision and omplete-ness typially demanded by software engineers. Mihie [9℄, for example, makesexpliit onnetion between \mahine learning" tehnologies and software main-tenane. A reent olletion entitled \Computational Intelligene in SoftwareEngineering" [14℄ ontains a number of indutive tehnologies applied to variousaspets of software development. The eÆient solving of onstraint satisfationproblems [15℄ is an important sub-�eld of AI, beause of the ubiquity of theseoften NP-omplete problems; to ope with the instane sensitivity of heuristis,reent industry-strength solver generators [2, 10℄ also use training instanes, andthus feature a produtive mix of indutive and dedutive inferene.In some indutive programming settings, mere input-output examples maybe too weak spei�ation information, either beause the searh spae of indu-tion then beomes too large, or beause the spei�er knows a few more things.To overome the many negative results on indutive inferability from examplesalone, many researhers have proposed additional spei�ation information, suhas orales, properties, and bakground knowledge. Indeed, the indution algo-rithm may onstrut its own additional examples and submit them to an orale(usually the spei�er) for lassi�ation as positive or negative. Or the spei�er4

may wish to impart that the sought funtion is believed to satisfy a ertain prop-erty, suh as transitivity. This may be useful for ommuniating known intrinsiinformation: for instane, the � relation is intrinsi to number-list sorting, asit appears in all sorting programs, but a partitioning funtion is extrinsi to it,as it only appears in quiksort programs.4 Finally, bakground knowledge mayinrease the power of indution by making reusable programs available.Other information is often added to redue the searh spae. For instane,delarative bias is used to ontrol the searh and language during indution:a deterministi program may be preferred, or a program that �ts a ertainshema5 [3, 4℄. A note of aution is neessary about the addition of hints atwhat relations from the bakground knowledge may or should be used duringthe indution. Indeed, hinting at the exatly neessary bakground knowledgein a problem-spei� way amounts to \speifying the solution" (whih is anoxymoron), and thus misses the usual objetive of speifying the problem. Es-peially in Indutive Logi Programming (ILP), some systems require suh usein a teaher setting (as opposed to a spei�er setting) [6℄ and are thus essentiallydedutive synthesisers masquerading as indutive ones. (Their searh spaes areintratable otherwise.) Of ourse, there are senarios where the spei�er feelsthat some spei� bakground programs may or do have to be reused, but doesnot know exatly how to ombine them to ahieve the desired omputation, soprefers to hand over to an indutive programming tool to �gure it out. We thenget a hybrid approah between indutive programming and programming-by-demonstration.The Future of Indutive Programming?Predition is always diÆult (as someone said), espeially of the future, but itmay be worth a try. As stated above, the �eld of AI is a rih soure of potentialtehnologies for indutive programming. But AI tehnologies are notoriouslyfragile and often ome with no formal underpinning, whih an make a suess nomore than a pleasant surprise. In indutive programming, we require robustnessand we require that the sope and limitations of a andidate tehnology an beirumsribed, so that appliability is not based on hane and that suessomes with some assurane of reliability. Part of the future an thus be seenas development of indutive tehnologies that AI has demonstrated. A furtheraspet of this development must be salability: tehniques that work on smalldemonstration examples must also sueed on realistially large examples.Work in Neural Computing [1℄, whih assoiates an \error bar" with eahneural-net omputation, o�ers promise of the neessary assuranes for a prati-al software system. By modelling the training data and the indutive algorithmused to develop a omputational module, aurate on�dene measures an beassoiated with every new omputation. Muh work remains to be done on4Our passive synapse [3℄ and interative dialogs [4℄ indutive program synthesisers demon-strate the bene�ts of having suh properties in addition to examples.5See [6℄ for an overview of shema-guided indutive synthesisers of reursive logi programs.5

aurate and eÆient data modelling, but the potential reward, namely an a-urate `on�dene' value assoiated with eah omputed result, will be valuableinformation for the software engineer. A similar strand of researh is onentrat-ing on the further development of Bayesian networks, whih hold the promise ofilluminating logial deision strutures as well as aurate on�dene measures[7℄.Overview of the Aepted PapersThe three papers that have been seleted bring an interesting variety of ap-pliations of indutive tehnologies to bear on the entral problem of softwaredevelopment.The �rst paper | by Hern�andez-Orallo and Ram��rez-Quintana | taklesthe issue of software spei�ation from the viewpoint that there will alwaysbe sope for improvement. In their view, software development methodologieshave an unhealthy tendeny to treat the spei�ation as some given foundationupon whih everything else is built and with respet to whih ruial notionslike implementation orretness are de�ned. They propose a new model forsoftware development that is inspired by the ideas of inremental learning em-anating from the Mahine Learning sub�eld of Arti�ial Intelligene. Indutivetehnology is used to move the spei�ation into the evolutionary loop of inre-mental modi�ation alongside design and implementation, whih are the moretraditional elements of an evolutionary software development paradigm.The seond paper | by Hamfelt, Nilsson, and Oldager | presents a newapproah to indutive synthesis of logi programs. They ontrast their shemewith that of the traditional ones, whih attempt to generalise programs froma set of examples. The proposed method works through examples but usesproblem-deomposition and problem-redution priniples to yield a pratiallyviable alternative, provided that the programmer an supply appropriate auxil-iary prediates to maintain the overall searh spae within reasonable bounds.The third ontribution | by MCluskey and West | again addresses the ini-tial phases of software development, namely the spei�ation and managementof requirements. Their appliation domain, namely air-traÆ management overthe North Atlanti, with its demanding safety requirements puts heavy empha-sis upon the auray of a requirements domain theory. The entral onernis the re�nement and improvement of this domain theory so that it better �tsthe intentions of air-traÆ ontrol oÆers as reeted in operational examples.They present a novel theory re�nement algorithm that uses the logs of expertdeisions and so permits validation of the requirements.AknowledgementsWe express our gratitude to all the authors who submitted a paper to this speialissue, as well as to all the anonymous referees who aepted to partiipate in the6

review proess. Finally, we would like to thank the Editorial Board memberswho ommented on a draft of this introdution, as well as Bashar Nuseibeh, theEditor-in-Chief of this journal, for his ontinuous support.Referenes[1℄ C.M. Bishop. Neural Networks for Pattern Reognition. Clarendon Press,1995.[2℄ T. Ellman, J. Keane, A. Banerjee, and G. Armhold. A transformation sys-tem for interative reformulation of design optimization strategies.Researhin Engineering Design 10(1):30{61, 1998.[3℄ P. Flener. Logi Program Synthesis from Inomplete Information. KluwerAademi Publishers, 1995.[4℄ P. Flener. Indutive logi program synthesis with dialogs. In: S. Muggle-ton (ed), Pro. of ILP'96, pp. 175{198. LNAI 1314. Springer-Verlag, 1997.[5℄ P. Flener and L. Popel��nsk�y. On the use of indutive reasoning in programsynthesis: Prejudie and prospets. In: L. Fribourg and F. Turini (eds),Pro. of LOPSTR/META'94, pp. 69{87. LNCS 883. Springer-Verlag, 1994.[6℄ P. Flener and S. Y�lmaz. Indutive synthesis of reursive logi programs:Ahievements and prospets. J. of Logi Programming 41(2{3):141{195,Nov./De. 1999.[7℄ F. Jensen. An Introdution to Bayesian Networks. UCL Press, 1996.[8℄ B. Le Charlier and P. Flener. Spei�ations are neessarily informal, or:Some more myths of formal methods. J. of Systems and Software 40(3):275{296, Marh 1998.[9℄ D. Mihie. Methodologies from mahine learning in data analysis and soft-ware. The Computer Journal 34(6):559{565, 1991.[10℄ S. Minton. Automatially on�guring onstraint satisfation programs: Aase study. Constraints 1(1{2):7{43, 1996.[11℄ D. Partridge. Non-programmed omputation. Comm. of the ACM 43(11es),Nov. 2000.[12℄ D. Partridge. The ase for indutive programming. IEEE Computer30(1):36{41, 1997.[13℄ D. Partridge and A. Galton. The spei�ation of `spei�ation.' Minds andMahines 5(2):243{255, 1995.[14℄ W. Pedryz and J.F. Peters (eds). Computational Intelligene in SoftwareEngineering. World Sienti�, 1998.7

[15℄ E.P.K. Tsang. Foundations of Constraint Satisfation. Aademi Press,1993.

8

