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Abstract

It can be argued that for (semi-)automated software de-
velopment, program schemas are indispensable, since they
capture not only structured program design principles, but
also domain knowledge, both of which are of crucial impor-
tancefor hierarchical program synthesis. Most researchers
represent schemas purely syntactically (as higher-order ex-
pressions). This means that the knowledge captured by a
schema is not formalised. We take a semantic approach and
show that a schema can be formalised as an open (first-
order) logical theory that contains an open logic program.
By using a special kind of correctness for open programs,
called steadfastness, we can define and reason about the
correctness of schemas. We also show how to use correct
schemas to synthesi se steadfast programs.

1. Introduction

It can be argued that any systematic approach to soft-
ware development must use some kind of schema-based
strategies. In (semi-)automated software development, pro-
gram schemas become indi spensabl e, since they capture not
only structured program design principles, but aso domain
knowledge, both of which are of crucial importance for hi-
erarchical program synthesis. This is amply borne out by
user-guided program devel opment systems that have been
successfully applied in practice, e.g. KIDS[17].

Informally, a program schema is an abstraction (in a
given problem domain) of a class of actua programs, inthe
sense that it represents their data-flow and control -flow, but
doesnot contain (all) their actual computationsor (al) their
actua data structures. At a syntactic level, a schemaisan
open program, or a template, which can be instantiated to
any concrete program of which it is an abstraction. Thus,
most researchers represent schemas as higher-order syntac-
tic expressions from which actual programs are obtained by
higher-order substitutions. However, in such a purely syn-
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tactic approach, the knowledgethat is captured by a schema
isnot formalised.

We take a semantic approach and show that a schema S
consists of a syntactic component, viz. atemplate 7', and
a semantic component. 7" is formalised as an open (first-
order) logic program in the context of the problem domain,
characterised as a first-order axiomatisation called a spec-
ification framework F [10, 11]. F endows the schema §
withaformal semantics, and enables usto define and reason
about its correctness. In particular, we define a specia kind
of correctness for open programs such as templates, that we
call steadfastness. A steadfast (open) programisalwayscor-
rect (wrt its specification) as long as its parameters are cor-
rectly computed (wrt their specifications). This means that
a steadfast open program, though only partially defined, is
always a priori correct when (re-)used in program compo-
sition, inthe sensethat itsdefined partisa priori correct (wrt
its specification). A steadfast program isthus a priori cor-
rectly reusable, and such programs make ideal unitsin ali-
brary from which correct programs can be composed.

Thus we define a correct schema to be a specification
framework containing a steadfast open program. Moreove,
we show how to use correct schemas to synthesise stead-
fast open logic programs. The notion of correctness applied
to schemas and the use of correct schemas in synthesising
steadfast programs are the main novel themes of this paper.

Our genera approach followsthat of the pioneering work
of Smith in functional programming [16]. Although we fo-
cus on the logic programming paradigm (see [13] for basic
terminology), our ultimate goal is to extend it to a genera
paradigm with suitable [ogic semantics.

2. Defining Correct Schemas

Our approach tologic program synthesisis set inthe con-
text of a (fully) first-order axiomatisation of the problem do-
main in question, which we call a specification framework
F. Specifications and programs are given in the context of
F. This approach enables us to define program correctness



wrt specifications not only for closed programs but also for
open programs i.e. programs with parameters.

Our notion of correctness for open programsis a specia
kind of correctnessthat we call steadfastness, and we define
acorrect program schema as a specification framework con-
taining a steadfast (open) program. In this section, we dis-
cuss steadfastness and correct program schemas, but due to
lack of space we can only giveabrief summary (amore de-
tailed account with examples can be found in [4]).

2.1. Specification Frameworks

Definition 2.1 A specification framework F(IT) with pa
rameters I1 consists of a(many-sorted) signature>: and a set
of first-order axioms for the symbols of >:. The parameters
IT belong to X. The axioms for the parameters are called p-
axioms. We say that a (specification) framework F(IT) is
open if I is not empty; otherwise, we say that it is closed
and weindicateit by F.

A closed framework F axiomeatizesone problemdomain,
as an intended model (unique up to isomorphism). In our
approach, intended models are reachabl e isoinitial models.
A mode iisreachableif its elements can be represented by
ground terms; areachable model of F isisoinitial iff ground
guantifier-freeformulas are truein it whenever they are true
in every model of F.

Followingthetraditionof algebraic ADTs[14, 18], initial
models have also been proposed for logic programs [5, 6].
We have preferred isoinitial models to properly dea with
negation (see also the prima models proposed in [7]).

In general, a framework may have no isoinitial model.
Hence the following adequacy condition:

Definition 2.2 A closed framework F is adequate if it has
areachable isoinitia model.

A typical closed framework is (first-order) Peano arith-
metic VAT, using the well-known axiomatisation, includ-
ing the first-order induction schema. NA7 has the stan-
dard structure of natural numbers as an intended (reachable
isoinitial) modd.

An open framework F(IT) has a non-empty set 11 of pa-
rameters, which can be instantiated by a closed framework
G. Theinstance, denoted by F(II)[G], is the union of (the
signaturesand theaxiomsof) F(II) and G. Itisdefined only
if IT istheintersection of the signatures of F(II) and G, and
G provesthe p-axioms.

Definition 2.3 Anopenframework F(IT) isadequateif, for
every adequate closed framework G, the instance F(II)[G]
is an adequate closed framework.

A more genera notion of instance can be given, involv-
ing renamings (see aso the pushout approach in algebraic

ADTs [18]). However, it can be shown that F(II) is ade-
quate according to Definition 2.3 iff it is adequate consider-
ing the more general notion of instance. Therefore we can
use our simpler definition, without loss of generality.

Example2.1 The following open framework axiomatises
the (kernel of the) theory of lists with parametric element
sort £'lem and parametric total ordering relation <i:

Specification Framework £LZST (Elem, <),
IMPORT: NAT;
SORTS. Nat, Elem, List;
FUNS: nil — List;
(Elem, List) — List;
noce : (Flem, List) — Nat;

RELS: elemi (List, Nat, Elem);
< o (Elem, Elem);
AXS: C-Axs(nil, -);
elemi(L,i,a) — 3n,T,j5.L="h-TA
(i=0Aa=hVi=s(j)Aelemi(T,j,a));
noce(x, nil) = 0;
a="b— noce(a,b- L) = nocc(a, L)+ 1;
—a =b— noce(a,b- L) = noce(a, L);
P-AXS. ...total ordering axiomsfor < ...

where C-Axs(nil, -) contains Clark’s Equality Theory (see
[13]) for thelist constructors - and r:!, and thefirst-order in-
duction schema H (nil) A (Ya,J . H(J) — H(a-J)) —
VL. H(L); thefunction noce(a, L) givesthe number of oc-
currences of a in L, and elemi(L, 4, a) means a occurs at
positionz in L.

If ZN'T is a closed framework axiomatising integers
Int with total ordering <, then £LZS87 (Int, <)[ZNT] is
aclosed framework that axiomatises finite lists of integers.
Note the renaming of #lem by Int and <1 by <.

2.2. Specifications

Definition 2.4 In a specification framework F(1II), a spec-
ification S5 isa set of sentences that define new function or
relation symbols é in terms of the symbols X of F. If S
contains symbolsof 11, then it is caled a p-specification.

Ss can beinterpreted as an expansi on operator that asso-
ciates with every model of F aset of (X + §)-expansions,
called Ss-expansions (where ¥ + 6 isthe signature X en-
riched by é). An Ss-expansion of amodd m of F isany
(X + 8)-expansion m’ of m, such that m" isamodel of S;s.
A specification S isstrict, if, for every model m of F, there
isone Ss-expansion. It isnon-strict otherwise.

For uniformity, in this paper, we shall only use condi-
tional specifications, that is specifications of the form

Vo X, Yy: Y. Q(x) — (r(x,y) — R(z,y))



where 2 and R are formulasin thelanguage of F, and x:X,
y:Yare (possibly empty) lists of sorted variables, with sorts
in . @ is caled the input condition, whereas R is called
the output condition of the specification.

When ) istrue, then we drop it and speak of an iff spec-
ification. Iff specificationsare strict, whilein general acon-
ditiona specification is not.

In our approach, there is a clear distinction between
frameworks and specifications. The latter introduce new
symbols and assume their proper meaning only in the con-
text of the framework.

Example2.2 In LIS8T (Flem,<), we can specify the
usua length and concatenation functions ! and |, and the
usua ‘membership’, ‘concatenation’, ‘permutation’, ‘or-
dered’ and ‘sort’ relations mem, append, perm, ord and
sort asfollows (we drop the universal quantificationsat the
beginning of specifications):

SPECS:
mem(e, L) — 3i. elemi(L,,e);
n=IL)—=Vi.i<n< Ja.elemi(L,i, a);
append(A, B, L) < Vi, a.

(elemi(A,i,a) < elemi(L,i,a) Ni < [(A)A
(elemi(B,i,a) — elemi(L,i+ l(A), a));
perm(A, B) < Ve . noce(e, A) = noce(e, B);

C = A|B < append(A, B,C);
P-SPECS:
ord(L) —
Vi. elemi(L,i,e1) A elemi(L, s(7),
sort(L,S) < perm(L,S) A ord(S).

€z) — e1 < ea;

To distinguish the specified symbols from the signature
of the framework, we will call them s-symbols. Also, spec-
ifications and axioms are clearly distinguished.

An s-symbol 6 with specification S5 can be used to ex-
pand the signature of the framework by ¢ and its axioms by
Ss. An expansion is adequate iff framework adequacy is
preserved.

The expansions of LZST(FElem,<1) by I, |, mem,
append, perm, ord and sort can be shown to be adequate.
In the following, we will consider £LZS7 thus expanded.
Note that in the expanded framework these symbols can be
used both as s-symbols and as symbols of the language.

2.3. Correctness of Open Programs

Anopen programmay containopen relations, or parame-
ters. The parameters of aprogram P arerelationsto be com-
puted by other programs. They are not defined by P.

A relationin P isdefined (by P) if and only if it occurs
in the head of at least one clause of P. Itisopenif itisnot

defined (by P). Anopen relationin P isaso called a pa-
rameter of P.

A programis closed if it does not contain open relations.
We consider closed programs a special case of open ones.

Open programs are aways given in the context of an
(open or closed) framework F(II). In F(II), wewill distin-
guish program sorts, i.e. sortsthat can be used by programs.
A closed program sort must have constructors (see axioms
C-AXg(. . .)), and an open program sort may only beinstan-
tiated by program sorts. In programs, constant and function
symbolsmay only be constructors. A program relation must
be an s-symboal, i.e. it must have a specification.

A model-theoretic definition of correctness of open pro-
gramsin aframework, called steadfastness, isgivenin[11].
Here, we give aless abstract, but more conventional defini-
tion (for a comparison, see [1, 12]). In this paper, for sm-
plicity, we only give definitions and results that work for
definite programs. Nevertheless they extend to normal pro-
grams, under suitable termination assumptions.

For closed programs in closed frameworks, we have the
classical notion of (total) correctness:

Definition 2.5 In a closed framework F with isoinitial
mode i, aclosed program P, for relation r istotally correct
wrt its specification S,

Ve : X, Vy: Y. L (z) = (r(z,y) — Or(2,y))  (Sr)

iff foral¢: Xandw :Ysuchthati |= I.(t) we have:
i Or(t,u) iff PoFor(t,u) Q)

If P, satisfies theif-part of (1), it is partially correct (wrt
Sy). If it satisfies the only-if part, then it istotal.

Total correctness as defined here is unsatisfactory for
logic programs, since it cannot deal with different cases of
termination. In particular, we consider the following two
Cases

(¢) P, istotally correct wrt to .S, and terminates either
with success or finite failure, for every ground goal
r(t,u) suchthati = I ().

Inthiscase, P, correctly decides », and we say that P,
iscorrect wrt (S,, TCy(r)).

(¢2) P ispartialy correct wrt S,., and, for every ground :
Xsuchthati = I,.(¢), the computation with open goal
— r(t,y) terminates with at least one answer y = w.
Inthiscase, P, correctly computes aselector of », and
we say that P, iscorrect wrt (S, PCy(r(z — y))).

TCy(r)and PCy(r(z — y)) will be called termination re-
quirements.

It is easy to see that total correctness is too wesk for
case (¢), since atotally correct P, could not terminate for a



faser(¢, u), and too strong for case (¢7), since for comput-
ing a selector, we do not need success for every truer(t, u)).
Therefore, a specification of a programrelation » will be of
the form (S, T..), where T, is a termination requirement;
we will consider correctnesswrt (S, 7} ).

Termination and termination requirements are an impor-
tant issue. For lack of space, however, we will not further
deal with them here.

The definition of correctnesswrt (S, 7;) isstill unsatis-
factory. First, it definesthe correctness of P, interms of the
programs for the relations other than », rather than in terms
of their specifications. Second, al theprogramsfor thesere-
lations need to beincluded in £, (thisfollowsfrom P, be-
ing closed), even though it might be desirable to discussthe
correctness of P, without having to fully solveit (i.e. we
may want to have an open F,). So, the abstraction achieved
through the introduction (and specification) of the new rela-
tionsiswasted.

This leads us to the following notion of steadfastness of
an open program in a closed framework.

Definition 2.6 In a closed framework F, let P. be an
open program for r, with parameters pi,...,pn, Spec-
ifications S, S1,...,5,, and termination requirements
T.,1,...,T,. P isseadfastin F if, for any closed pro-
grams P, ..., P, that compute p1, ..., p, such that P; is
correct wrt (S;, 7;), the(closed) program P. U P, U. ..U P,
iscorrect wrt (S, 7} ).

Now we can define steadfastness in an open framework:

Definition 2.7 P, issteadfast in an open framework F(II)
if itis steadfast in every instance F[G].

2.4. Correct Schemas

Now we define a schema as an open framework contain-
ing a steadfast (open) program.

In order to aso consider a notion of correctness of a
schema, we have to add to a schema the specifications of its
open relations. This leads to the following definition (it is
worth recalling that programs are X-programs, and specifi-
cations are X-formulas, where X is the signature of 7 (II)):

Definition 2.8 A correct (program) schema for arelation r
isan open framework S(IT) containing a steadfast program
P, forr. P, iscalled the template of S(IT), whereas the p-
axioms and the p-specifications are call ed the constraints of
S(IT). A schema S covers aprogram P if (S and) its tem-
plate can be instantiated into P.

Most researchers, with the laudable exception of
Smith [16, 17], define a schema to be just atemplate. Such
definitions are thus merely syntactic, providing only a pat-
tern of place-holders, but not the semantics of the template,

the semantics of the programs it covers, or the interactions
between these place-holders. So atemplate by itsalf has no
guiding power for synthesis, and the additional knowledge
(corresponding to our constraints) somehow has to be hard-
wired into the system or person using thetemplate. Despite
the similarity, our definition is an enhancement of even
Smith’s definition, because we consider relationa schemas
(rather than functional ones), uninstantiated schemas (rather
than instantiated ones), and we set everything up in the
explicit, user-definable background theory of a framework
(rather than in an implicit, predefined theory). The notion
of constraint even follows naturally from, or fits naturaly
into, our view of schemas as open frameworks.

Example 2.3 Figure 1 gives a divide-and-conquer schema
D¢, for which one can prove the following theorem [4].

Theorem 2.1 The schema DC is correct, i.e. it
contains a steadfast template.

This theorem is related to the one given by Smith [16] for
a divide-and-conquer schema in functional programming.
The innovations here are that we use specification frame-
works and that we can thus aso consider open programs.
Also, wecould eliminate Smith’s Srong Problem Reduction
Principle by endeavouring to achieve these objectives.

3. Synthesisof Steadfast Programs

In therest of the paper, we show how we can use correct
schemas to guidethe synthesis of steadfast programs.

Schemas have been successfully used to guide the syn-
thesis of programs [16, 17, 2]. The benefit of such guid-
ance is a reduced search space, because the synthesiser, at
a given moment, only tries to construct a program that fits
agiven schema. Thisisfeasible because a schema fixes the
data-flow and restrictsthe rel ationshi psbetween itsopen re-
lations. In our approach, we use correct schemas, and estab-
lish the synthesisability of open programs, rather than only
of closed ones, and even of steadfast open programs. Thisis
asignificant step forwardsin the field of synthesis, because
the synthesised programs are then not only correct, but also
apriori correctly reusable.

We investigate how much of the synthesis process can
be pre-computed at theleve of “completely open” schemeas.
The key to pre-computation lies in the constraints. These
can be seen as an “overdetermined system of equations (in
a number of unknowns),” which may be unsolvable as it
stands (as is the case for the divide-and-conquer schema
above). An arbitrary instantiation, according to theinformal
semantics of thetemplate, of one (or severd) of itsopenre-
lations may then provide a“jump-start,” as the set of equa
tions may then become solvable.



SchemaDC(X,Y,H, <, I, Op, Taec, Odec);

SORTS. X,Y,H;
RELS: Iy Tgee = (X);
O, (X Y);
Ogec : (X, H X, X);
P-AXS:  Tgec(®) AOgec(, hyx1,22) — (1) Ay <2 AL (22) Awe < ; (c1)
Tgee(x) — b, w1, 2. Ogec(, h, 21, 22); (c2)
P-SPECS. I.(z,y) — (r(z,y) — O (2,¥)) (Sr)
I (z) — (primitive(x) — —1z..(x)) (Sprim)
Tgec(#) — (decompose(x, hy w1, 22) — Ogec(x, h, 21, 22)) (Sdec)
I (2) A —1gec() — (solve(x,y) — Or(z,y)) (Ssotve)
Ogec(, hyx1,22) AOp(21,91) A Op(22,y2) — (compose(h,y1,y2,y) — Op(2,¥)) (Scomp)
T-REQS. PCi(r(x — y)) <« TCi(primitive), PCy(solve(x — y)),
PCy(decompose(x — h,x1,22)), PCi(compose(h, y1,y2 — y))
TEMPL:  r(x,y) <— primitive(x), solve(z,y)
r(x,y) — —primitive(x), decompose(x, hx,tey, tea), (1)

r(tey, tyr), r(tee, tys), compose(hx, tyr,tya, y)

Figure 1. A correct divide-and-conquer schema.

Thisleadsto the notion of synthesis strategy (cf. Smith’'s
work [16]), as a pre-computed (finite) sequence of synthesis
steps, for agiven schema. A strategy has two phases, stating
first which parameter(s) to arbitrarily instantiate, and next
which specifications to “set up”, based on a pre-computed
propagation of these instantiation(s). Once correct pro-
grams have been synthesised from these new specifications
(using the synthesiser all over again), they can be composed
into a correct program for the originally specified relation,
according to the schema. There can be severa strategiesfor
agiven schema (e.g., Smith [16] givesthree strategiesfor a
divide-and-conquer schema), depending on which parame-
ter(s) are instantiated first.

Synthesisis thus a recursive problem reduction process
followed by arecursive solution composition process, where
the problems are specifications and the solutions are pro-
grams [16]. Problem reduction (which is the “step case”
of synthesis) stops when a “sufficiently ssimple”’ problemis
reached, i.e. a specification that “reduces to” another spec-
ification for which a program is known and can thus be re-
used (thisisthe “base case’ of synthesis).

3.1. Re-usein Synthesis

To formalise the process of re-use, we need to capture
what it means for a specification to reduce to another one.

Definition 3.1 In aframework F(II) with isoinitial model
i, the specification

Ve : X, Vy: Y. L (z) = (r(z,y) = Op(z,y))  (Sr)

reduces to the specification
Vo : X, Vy: Y. Ip(z) — (r(z,y) < Or(z,y))  (Sk)
under conditions #" and (G iff the following hold:
(@) FOI) FVYa: X. F(z)A L (z) — I;(x)
(i) F(I) Ve : X,Vy: Y. G(2) AOx(e,y) — O.(2,y)

Since nothing prevents F' from being false, it is clear
that, for practical purposes, one should look for the weak-
est possible F.

Now we can propose a theorem stating when and how
it is possible to re-use a known program P that is correct
wrt specification Sy, for correctly implementing some other
specification S,..

Theorem 3.1 In a closed framework F with isoinitia
mode i, given specifications S and S, (asabove), if apro-
gram P iscorrect wrt .Sy, and terminationrequirement 7', and
if S, reducesto S under conditions /' and (&, then P isalso
correct wrt the specification

L(x) NF(x) ANG(x) = (r(z,y) < Or(z,y))  (5))

and the same termination requirement 7'.

Proof. Let T"be T'Cy(r). InF, let P beaprogram that is
totally correct wrt Sy, i.e., foral « : X and y : Y such that
It (), we have:

i Op(e,y) iff PFr(z,y) 2



Let S, reduceto Sy under conditions F' and G. For an arbi-
trary z : X, assume

I.(z) A F(2) A G(z) 3)

Pt r(z,y) 4

forsomey : Y. From (3) and (¢), weinfer that I;, (z) neces-
sarily holds. From (4) and (2), weinfer thati |= Oy(z,y)
necessarily and sufficiently holds. From (3) and (i7), we
inferthat i |= O, (z,y) necessarily and sufficiently holds.
Since T'Cy(r) holds (the input condition is stronger), P is
correct wrt (5%, TCy(r)).

The proof for ' = PC,(r(z — y)) goes similarly, consid-
ering partial instead of total correctness. i

This theorem is more general than the combination of
Hoare's two consequence rules, since conditions /' and G
need not be true (as inspired by Smith [16]), and since we
cover total correctness (rather than just partial correctness,
as Hoare and Smith do). Thiswill turn out crucia for syn-
thesis, namely when the input condition of a specification
isincompletely known. Finding G such that (¢¢) holds may
be quite difficult (if not impossible); the following theorem
may then come in handy. It says that some conjuncts (de-
noted V') of theinput condition of a specification S may be
“promoted” toitsoutput condition, so asto formanew spec-
ification 57, with the effect that any call to aprogram that is
correct wrt S can be replaced by a call to a program that is
correct wrt .S, provided V' holdsin the context of that call.

Theorem 3.2 In a closed framework F with isoinitia
model i, any call to a program that is correct wrt the spec-
ification

Ve : X,\Vy: Y. I(x) ANV (x) — (r(z,y) = O(x,y)) (5)

and the termination requirement 7" can bereplaced by acall
to aprogram that is correct wrt

Ve : X, Vy: Y. I(z) — (r(z,y) — Oz, y) AV(x)) (S)

and the same requirement 7', provided V' (x) holdsin the
context of that call.

Proof. Let T be T'Cy(r). InF, let P beaprogram that is
totally correct wrt 57, i.e, foral « : Xand y : Y such that
I(z), we have:

iEO(x,y) AV(z) iff Ptor(z,y) (5

For an arbitrary = : X, assume
I(z) AV () (6)
Pt r(z,y) (7

for some y : Y. From (6), we infer that I(x) necessar-
ily holds. From (7) and (5), we infer that # = O(x,y) A
V (x) necessarily and sufficiently holds. Using (6), we infer
that i = O(x,y) necessarily and sufficiently holds. Since
T C4(r) holds(theinput conditionis stronger), P is correct
wrt (S, TCy(r)).

The proof for T' = PC,(r(z — y)) issimilar. ]

Theorems 3.1 and 3.2 can also be used in an open frame-
work F(II), to replace a specification with a better one,
while preserving steadfastness (indeed, the proofsof (:) and
(¢7) in F(IT) areinherited by every instance). They can also
be used in the singleinstances, alowing redefinition of pro-
gram components.

3.2. A Divide-and-Conquer Synthesis Strategy

We illustrate all these ideas on the divide-and-conquer
schema. Some reductions can be done directly at the level
of the schema, which already contains, as abuilt-in, thefol-
lowing divide-and-conquer strategy. After the instantiation
of I,,0,,x : X,y : Y, proceed as follows:

1. Select (or construct) a well-founded order (wfo) over
the input sort X.

2. Sdect (or construct) a decomposition operator
decompose, such that it satisfies (e1) and (¢2). Supposethe
following specification is obtained:

Idéc(x) - (S/ )
(decompose(x, h,t1,t2) — Ogec(x, h,t1,12)) dec

3. Set up the specifications of the operators primitive,
solve and compose.

We can set up the specifications of the last step, because
all their place-holders are known. In thisway, four specifi-
cations (.., Sprims Steotver Seomp) AESEL UP, SO four aux-
iliary syntheses can be started from them, using the same
overall synthesis approach again, but not necessarily the
(same) strategy for the (same) divide-and-conquer schema.
The programs Pyee, Pprim, Psotver Peomp resulting from
these auxiliary syntheses are added to thetemplate 7, of the
schema, yielding a steadfast program, by Theorem 2.1.

The specifications S; 1., and Se.mp (and a fortiori the
specifications S5, . and .57, ) deserve some special com-
ments. Indeed, their output conditions are the same as those
of S,, sothere seemsto benoreal problemreduction. More-
over, their input conditions are quite complex, but the syn-
thesis strategy described here does not make much use of in-
put conditionsand even tends to build “lengthy” ones. So
if the same divide-and-conquer strategy were used to syn-
thesise programs from these specifications (and this is not
unusua, especially for compose), then al conditionswould
eventually disappear into input conditions and no problem



reduction would ever occur in most output conditions! For-
tunately, Theorem 3.2 providesan elegant solutionto this(at
first sight disturbing) phenomenon: since the input condi-
tionsof S;o10. and S.on,, are only made of the output con-
ditions of (some of) their preceding computations (i.e. are
guaranteed to hold in the calling context), one can promote
these entireinput conditions, then simplify theresulting out-
put conditions, and call programs implementing these new
specifications rather than the old ones.

3.3. A Sample Synthesis

We now show how all these considerationscan be put to-
gether in order to synthesise a program from the sort spec-
ification of Example 2.2. See [3] for more details.

Wearein IS8T (Elem, <1) andwewant asteadfast sort-
ing program with termination requirement PC';(sort(L —
S)). Note that, since sort is functiona, this entails total
correctness. We instantiate 1, (L) by true, O,(L,S) by
perm(L,S) Aord(S), z : Xby L : List,andy : Y by
S : List.

At Step 1, since L isof sort List, supposewe select < as
wfo, where A < B means that A has fewer elements than
B,i.e YA, B: List. A< B — l(A) < (B).

At Step 2, suppose we select the following specifica-
tion of a decomposition operator, partitioninglist L into its
first element h, thelist A of itsremaining e ements that are
smaller (according to <1) than i, and thelist B of itsremain-
ing elements that are not smaller (according to <1) than A:

=L = nil — (part(L,h, A, B) <
L=hTAperm(A|B, TYNAC hABIR)
(Spart)
where the following axioms:

LCe
L e

= VYe.mem(z,L)—2x<e
— VYz.mem(z,L)— -z e

areadded to LZST (Elem, <).
At Step 3, we set up the specifications of primitive,
solve and compose. FoOr primitive we get:
true — (primitive(L) — L = nil)

(Sempty)

For solve, after promoting the entire input condition of
Ssolve. we ga

solve(L,S) « true A L = nil A perm(L,S) A ord(S)
which simplifiesinto

solve(L,S) — S = nil (Sempty2)

Finally, we set up the specification of the composition oper-
ator compose. \We promote the entire input condition:

compose(h,C, D, S) — 3L, T, A, B : List.

L=hTAperm(A|IB,TYNAChABOh
Atrue Atrue NA <K LAB<LAperm(A,C)A ord(C)
Aperm(B, D) A ord(D) A perm(L,S) A ord(S)

which simplifiesinto

compose(h,C, D, S) — S = C|(h.D) (Scatcons)

We leave open how these simplifications can be done (but
see [4]). Our objective hereisjust to show the feasibility of
schemarguided synthesis of steadfast (open) programs, not
the details of how to actualy do it.

Four SpeC|f|03t|0n3 (Spart: Sempty: SemptyZ: Scatcons)
having been set up, four auxiliary synthesesare started from
them. Thelatter three syntheses aretrivial, whereas thefirst
one can be guided by the divide-and-conquer schema and
strategy. We omit them here, but after adding their result
programsto the template, one could get the classical Quick-
sort program, which is steadfast, by Theorem 2.1.

Other choices at Step 3 would lead to other sorting pro-
grams, such as insertion-sort, merge-sort, etc (as shown
in[9] for instance).

4. Conclusion

We have defined a notion of correctness for program
schemas, and we have shown how we can use such schemas
to guide the synthesis of steadfadt, i.e. correct and a priori
correctly reusable (divide-and-conquer) programs, fromfor-
mal specifications expressed in the first-order language of
aframework. In both these aspects, our work extends pre-
vious work in schema-guided synthesis. The synthesis of
steadfast open programsisimportant from the point of view
of constructing alibrary of correctly reusable program units
for achosen problem domain. However, here we have only
lai d thetheoretical foundations; much more needsto be done
inorder to apply the resultsto theimplementation of aprac-
tical system for (semi-)automated software development.

At the schema-guided synthesis level, our work is very
strongly influenced by Smith’s pioneering work [16] in
functional programming in the early 1980s. Our work is
however not limited to simply transposing this to the logic
programming paradigm: indeed, we have a so enhanced the
theoretical foundationsby adding frameworks, enlarged the
scope of synthesis by alowing the synthesis of open pro-
grams, and simplified (theformulation and proof of) thethe-
orem on the divide-and-conquer schema (Theorem 2.1).

Future work includes the devel opment of a proof system
for deriving antecedents and for obtaining simplifications
of output conditions. To be efficient, this requires the pre-
existence of a considerable set of theorems of the axiomatic



theory in a framework, which theorems state the combined
effects of thefunctionsand rel ationsof theframework. Such
theorems could be either hand-crafted (and mechanically
verified), or generated by forward reasoning. The work of
Smith[15, 16] showsthat deriving an antecedent A of afor-
mula F' (i.e, suchthat A — F isvalid)isagenerdisation
both of formulasimplification (find aweakest antecedent of
“minimal syntactic complexity”) and of “conventional” the-
orem proving (find ¢rue as antecedent). In-between these
(known) extremes lie other usages of antecedent derivation
that are crucia to schema-guided synthesis.

We aso need to abduce the constraints for a more gen-
era template (namely where non Primitive(x) replaces
—primitive(x)), and to develop the corresponding strate-
gies, inorder to alow the synthesisof larger classes of non-
deterministic programs.

Another important objective isto identify templates and
constraintsfor other design methodol ogiesthan divide-and-
conquer, and to develop corresponding strategies. Once
again, Smith [17] has shown the way, namely by captur-
ing avast class of search methodologiesin a global-search
schema and seven corresponding strategies. At the same
time, other strategies for the divide-and-conquer schema
also need to be devel oped.

Eventually, we plan a proof-of-concept implementation
of the outlined synthesiser (and the adjunct proof system).
Since schema-guided synthesis involves a fair amount of
theorem-proving-liketasks, the notion of proof plans[8] and
their use in directing synthesiswill be worth investigating.
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