
Name: Page 1 of 6

Uppsala University
DVP1 Programmeringsmetodik
Periods 1 & 2 of Fall 2001
Exam 2
Wednesday 16 January 2002, from 9:00 to 14:00

Global Instructions

Read these instructions, as well as the actual questions, very carefullybefore attempting to solve the problems.

Especially pay attention tostressed words (in boldface). The questions have been engineered to have concise

and elegant answers, so if you get into some messy reasoning, you are probably on the wrong track and would

benefit from re-reading the question.

This question set is double-sided. To the extent possible, write your answers into the gaps: the provided space

is amply sufficient each time. Write your name ontoevery sheet. This is an exam withclosed books and notes.

An English-Swedish dictionary is available at the front desk. Unfortunately, the instructor cannot come and

answer questions, due to a clash with his teaching schedule. However, Dr Mikael Pettersson will be there at

10:00 and 12:00 (noon) for an exam he is giving at the same time and the same place, so he will try and answer

any questions you may have.

Provide a specification (with at least the names of the argument components, a signature, a pre-condition, and

a post-condition involving all the names of the argument components) forevery program you construct,such

that this specification would be suitable for justifying your program or constructing another program. Provide

a justification skeleton (the chosen induction parameter and well-founded relation) forevery recursive program

you construct. You neednot provide any other justifications, but the given onesmust correspond to your

program: for instance, each case shouldnot be redundant with the other cases. Failure to provide such a

specification or justification skeleton for at least one function of a sub-question will result in zero points for that

entire sub-question, even if the program is actually correct.

You mayonly use the functions of thestandard library of SML. For instance, the instructor’s solutions to

the questions below only involve=, <>, <, >, :: , +, @, andalso , if…then…else…, andorelse . Layout

is unimportant, but please be considerate.

Unless otherwise posted, the instructor isonly interested in correct SML functions, so any attempts at

efficient functions are purely at your own risk, namely the risk of missing out on correctness or of losing time.

The four credit points for this exam are awarded for HT01 if the sum of your exam points and bonus points

is in the interval 55..100. Furthermore, a very-good grade is earned if this sum is in the interval 75..100, while

a good grade is earned if this sum is in the interval 55..74.

For official use (do not write below this line):

Q1 Q2 Q3 Exam

/ 20 / 25 / 35 / 80

Name: Page 2 of 6

Question 1 Type Inference, Reduction, Currying (20 pts)

Considering the following SML declarations:

fun mystery x = ((fn y => y-1) x) ∗ ((fn y => y+1) x) + 1

fun triple g z = (1+1) ∗ g z

fun min (x,y) = if x>y then x else y

fun max (v,w) = min (min v, min w)

answer the following sub-questions:

a. Complete the following specifications, simplifying the post-conditions as much as possible:

function mystery n : →

pre: (none)

post:

function triple f x : →

pre: f is defined on x

post:

b. Give the SMLvalue declaration that is equivalent to the SMLfunction declaration oftriple above:

val triple =

Step-by-step show what happens with the SML declarationval strange = triple mystery:

Step-by-step normalise the SML expression strange 4:

c. Give the signatures ofmin andmax:

function min (a,b) :

function max (a,b) :

Give curried signatures ofmin andmax, calling themminC andmaxC, assuming maxC usesminC:

function minC

function maxC

Name: Page 3 of 6

Question 2 Methodology and Recursion (25 points)

A segment of a list is a prefix of a suffix of that list.

For example, the lists [], [4,5], and [2,1,4,5,3] are segments of [2,1,4,5,3].

A plateau of a list is a segment thereof with all-equal elements but different previous and next elements, if any.

For example, the list [3,3] is a plateau of [1,3,3,2,2,2,5], but its segments [3,3,2] and [3] are not plateaus thereof.

Using the definitions above, answer the following sub-questions, by programming in anon-defensive style:

a. Construct arecursive program compressing a list of binary digits (0 or 1) by encoding plateaus of 1s as

their sums,without introducing any help functions:

function compress L : →

pre:

post:

Example: compress [0,0,1,1,1,1,0,1,0,0,1,1,1] = [0,0,4,0,1,0,0,3]

fun compress

by simple induction on: the number of elements of L

well-founded relation: <

b. Construct anotherrecursive program forcompress, taking a different methodological decision:

fun compress

by simple induction on: the number of plateaus of L

well-founded relation: <

Name: Page 4 of 6

If you need arecursive help function (you are allowedat most one!), then construct it here:

function : →

pre:

post:

Examples:

fun

by induction on:

well-founded relation:

Question 3 Recursion versus Tail-Recursion (35 points)

A binary tree is either the empty binary tree, or a non-empty binary tree with a root element as well as left and

right binary trees as subtrees. Theprefix traversal of a binary treeB is a list where the root ofB appears just

before the prefix traversal of its left subtree followed by the prefix traversal of its right subtree.

Using the definitions above, answer the following sub-questions, by programming in anon-defensive style:

a. Declare a new SML datatype for binary trees of elements ofany type, for use in the other sub-questions:

datatype

b. Construct arecursive program computing the prefix traversal of a binary tree,without any help functions:

function prefix BT : →

pre:

post:

fun prefix

by simple induction on: the number of elements of BT

well-founded relation: <

Name: Page 5 of 6

Is this program tail-recursive or not?Why?

c. Construct arecursive program for the generalisation ofprefix that computes the concatenation of the

prefix traversals of the elements of alist of binary trees,without any help functions and withat most one

recursive call per clause:

function prefix’ : →

pre:

post:

fun prefix’

by induction on:

well-founded relation:

Is this program tail-recursive or not?Why?

Construct anon-recursive program forprefix , usingonly prefix’ :

fun prefix

Is this program more or less efficient than the other one forprefix ? Why?

d. Construct arecursive higher-order function for binary trees, performing whatfoldr andfoldl do for

lists, namely (in this case) applying a 3-ary functionf to the root of the tree and the two results of applying

f to its two subtrees, given a start elemente:

function fold f e BT : →

pre:

post:

fun fold

by induction on:

well-founded relation:

Name: Page 6 of 6

Construct a non-recursive program computing the maximum element of a binary tree of natural

numbers, using fold:

function max BT : →

pre:

post:

val max =

You may draw pictures or write scratch notes below this line!

