
Name: Page 1 of 6

Uppsala University
DVP1 Programmeringsmetodik
Periods 1 & 2 of Fall 2001
Exam 1
Monday 17 December 2001, from 9:00 to 14:00

Global Instructions

Read these instructions, as well as the actual questions, very carefullybefore attempting to solve the problems.

Especially pay attention tostressed words (in boldface). The questions have been engineered to have concise

and elegant answers, so if you get into some messy reasoning, you are probably on the wrong track and would

benefit from re-reading the question.

This question set isdouble-sided. To the extent possible, write your answersinto the gaps: the provided space

is amply sufficient each time. Write your name ontoevery sheet. This is an exam withclosed books and notes.

An English-Swedish dictionary is available at the front desk. Normally, the instructor will come to answer

questions between 11:00 and 12:00.

All components of function arguments should be named and used inat least the post-condition. Failure to

provide a specification (signature, pre-condition, and post-condition)or — if the program is recursive — a

justification skeleton (the chosen induction parameter and well-founded relation) forat least one function of a

sub-question will result in a zero grade for that entire sub-question,even if the program is actually correct. You

neednot hand in any other justifications, but the provided onesmust correspond to your program.

You mayonly use the functions of thestandard library of SML. For instance, my solutions to the questions

below only involve +, –,map, andfoldl. Layout is unimportant, but please be considerate.

Unless otherwise posted, I amonly interested in correct SML functions, so any attempts at efficient functions

are purely at your own risk, namely the risk of missing out on correctness or of losing time.

The four credit points for this exam are awarded for HT01 if the sum of your exam points and bonus points

is in the interval 55..100. Furthermore, a very-good grade is earned if this sum is in the interval 75..100, while

a good grade is earned if this sum is in the interval 55..74.

Cover Story

Towards axiomatising natural-number arithmetic the way Euclid axiomatised geometry around 300 BCE, the

Italian mathematician Giuseppe Peano proposed, in 1889, the following alternative representation of natural

numbers: the number 0 is represented by the constantZero, the number 1 is represented byS(Zero), where

S can be seen as a successor function, the number 2 is represented byS(S(Zero)), and so on. In other words,

the positive integern is represented byS(p), wherep is the Peano representation ofn−1.

For official use (do not write below this line):

Q1 Q2 Q3 Q4 Q5 Exam

/ 8 / 30 / 10 / 25 / 7 / 80

Name: Page 2 of 6

Question 1 Abstract Datatypes (8 points)

Design the skeleton of an SML abstract datatype (ADT) for natural numbers, using Peano’s representation and

exporting, at this moment, only the following types and constructors:

a. A datatypenat.

b. A valuezero, which denotes the natural number 0.

value zero :

description:

val zero

c. A functionnext, which increases a natural number by 1.Example:next Zero = S(Zero)

function next n : →

pre:

post:

fun next

d. In what sense is the example in sub-question cnot really an example?

Question 2 Recursion (30 points)

Add the following functionalities to the ADT, by programmingrecursively, in a non-defensive style, and

without calling any new auxiliary functions,except maybe the other functions ofthis question:

e. The predicatelessEq returnstrue if and only if its ‘first’ natural number is less than or equal to its

‘second’ natural number. Example:lessEq S(Zero) S(S(Zero)) = true

function lessEq n1 n2 : →

pre:

post:

val rec lessEq =

by induction on:

well-founded relation:

Name: Page 3 of 6

f. The function plus returns the sum of two natural numbers.

Example: S(Zero) plus S(S(Zero)) = S(S(S(Zero)))

function n1 plus n2 : →

pre:

post:

fun plus

by induction on:

well-founded relation:

g. The function minus returns the difference of two natural numbers, assuming the result is a natural

number. Example: S(S(S(S(S(Zero))))) minus S(S(Zero)) = S(S(S(Zero)))

function n1 minus n2 : →

pre:

post:

fun minus

by induction on:

well-founded relation:

h. The function times returns the product of two natural numbers.

Example: S(S(S(Zero))) times S(S(Zero)) = S(S(S(S(S(S(Zero))))))

function n1 times n2 : →

pre:

post:

fun times

by induction on:

well-founded relation:

Name: Page 4 of 6

i. The functiondivMod returns the quotient and the remainder of the division of two natural numbers,

assuming the result is mathematically defined.

Example:S(S(S(S(S(Zero))))) divMod S(S(Zero)) = (S(S(Zero)) , S(Zero))

function n1 divMod n2 : →

pre:

post:

fun divMod

by induction on:

well-founded relation:

Question 3 Type conversion (10 points)

Add the following functionalities to the ADT, by programmingrecursively, in anon-defensive style:

j. The functionnatToInt converts a natural number into an integer.

Example:natToInt S(S(S(S(S(Zero))))) = 5

function natToInt n : →

pre:

post:

fun natToInt

by induction on:

well-founded relation:

k. The functionintToNat converts a non-negative integer into a natural number.

Example:intToNat 5 = S(S(S(S(S(Zero)))))

function intToNat i : →

pre:

post:

fun intToNat

by induction on:

well-founded relation:

Name: Page 5 of 6

Question 4 Tail Recursion (25 points)

Answer the following sub-questions:

l. Which of your programs in Question 2 are tail-recursive and which are not? Why?

lessEq:

plus:

minus:

times:

divMod:

m. Using your programs in Question 2, reduce the expression S(S(Zero)) times S(S(S(Zero))) ,

temporarily considering plus to be a primitive. Discuss this reduction.

n. Construct a tail-recursive generalisation of times , called times’’ , after justifying its existence.

function times’’ : →

pre:

post:

fun times’’

by induction on:

well-founded relation:

Name: Page 6 of 6

o. Construct a new, non-recursive function for times , called times’ , in terms of times’’ .

fun times’

p. Reduce the expression S(S(Zero)) times’ S(S(S(Zero))) , temporarily considering plus to be

a primitive. Discuss this reduction.

Question 5 Higher-Order Functions (7 points)

Add the following functionality to the ADT, by programming non-recursively, in a non-defensive style, and

by using one or more of the standard higher-order functions map, foldr , and foldl :

q. The function sigmaSqr returns the sum of the squares of the elements of a list of natural numbers.

Example: sigmaSqr [S(Zero), S(S(Zero))] = S(S(S(S(S(Zero)))))

function sigmaSqr N : →

pre:

post:

fun sigmaSqr

