Name: Page 1 of 6

Uppsala University

DVP1 Programmeringsmetodik

Periods1 & 2 of Fall 2001

Exam 1

Monday 17 December 2001, from 9:00 to 14:00

Global I nstructions

Read these instructions, as well as the actual questemys;arefullybefor e attempting to sok the problems.
Especially pay attention &ressed words (in boldace). The questions Vebeen engineered toveaconcise
and elgant answers, so if you get into some messy reasoning, you are probably on the wrong trackdand w
benefit from re-reading the question.

This question set double-sided. D the etent possible, write your answenso the gaps: the preided space
is amply suficient each time. Write your name or@ry sheet. This is arxam withclosed books and notes.
An English-Swedish dictionary isvailable at the front desk. Normallshe instructor will come to answer
questions between 11:00 and 12:00.

All components of function gmments should be named and usedt ileast the post-condition. &lure to
provide a specification (signature, pre-condition, and post-conditior)- if the program is recurs — a
justification sleleton (the chosen induction parameter and well-founded relatiost) IfEast one function of a
sub-question will result in a zero grade for that entire sub-questienif the program is actually correctoi
neednot hand in ay other justifications, it the preided onesnust correspond to your program.

You mayonly use the functions of ttetandard library of SML. For instance, my solutions to the questions
belov only involve +, — map, andfoldl. Layout is unimportant,u please be considerate.

Unless otherwise posted, | amly interested in correct SML functions, sy attempts at étient functions
are purely at yourwn risk, namely the risk of missing out on correctness or of losing time.

The four credit points for thisxam are warded for HTO1 if the sum of youkam points and bonus points
is in the interal 55..100. Furthermore, &nry-good grade is earned if this sum is in the imters..100, while

a good grade is earned if this sum is in the iates%..74.

Cover Story

Towards axiomatising natural-number arithmetic thay B uclid axiomatised geometry around 300 BCE, the
Italian mathematician Giuseppe Peano proposed, in 1889, theifalalternatie representation of natural
numbers: the number 0 is represented by the cor&amt, the number 1 is represented®yZer o) , where
Scan be seen as a successor function, the number 2 is represe3{t&{ Bgr o) ) , and so on. In otherards,

the positve integern is represented b$( p) , wherep is the Peano representatiomefl.

For official use (do not write belothis line):

Q1 Q2 Q3 Q4 Q5 Exam
/8 /30 /10 /25 |7 / 80




Name: Page 2 of 6

Question 1 Abstract Datatypes (8 points)

Design the siileton of an SML abstract datatype (ADT) for natural numbers, using Beapoésentation and
exporting, at this moment, only the folling types and constructors:

a. A datatypenat .

b. A valuezer o, which denotes the natural number 0.
val ue zero :
description:
val zero
c. A functionnext , which increases a natural number byEkample:next Zero = S(Zer 0)
function next n : -
pre:
post :

fun next

d. In what sense is thxample in sub-questionrot really an ample?

Question 2 Recursion (30 points)

Add the follaving functionalities to the ADTby programming ecursively, in a non-defensive style, and
without calling ary new auxiliary functionsexcept maybe the other functions tfis question:
e. The predicate essEq returnst r ue if and only if its ‘first’ natural number is less than or equal to its
‘second’ natural numbeilExample:l essEq S(Zero) S(S(Zero)) = true
function I essEq nl1 n2 : -
pre:
post :

val rec |lesskEq =

by i nduction on:

wel | -founded rel ati on:



Name: Page 3 of 6

f. Thefunction pl us returns the sum of two natural numbers.
Example: S(Zero) plus S(S(Zero)) = S(S(S(Zero)))

function nl plus n2 : -
pre:

post :

fun pl us

by i nduction on:
wel | -founded rel ation:
g. The function mi nus returns the difference of two natural numbers, assuming the result is a natural
number. Example: S( S(S(S(S(Zero))))) minus S(S(Zero)) = S(S(S(Zero)))

function nl minus n2 : -
pre:

post:

fun nm nus

by i nduction on:
wel | -founded rel ation:
h. Thefunctiont i mes returns the product of two natural numbers.
Example: S(S(S(Zero))) times S(S(Zero)) = S(S(S(S(S(S(zero))))))

function nl times n2 : -
pre:

post:

fun times

by i nduction on:

wel | - f ounded rel ati on:



Name: Page 4 of 6

i. The functiondi vMod returns the quotient and the remainder of thaésidin of two natural numbers,

assuming the result is mathematically defined.

Example:S( S(S(S(S(Zero))))) divMd S(S(Zero)) = ( S(S(Zero)) , S(Zero) )
function nl divhMdd n2 : -
pre:
post :
fun di vibd

by i nduction on:

wel | - f ounded rel ati on:

Question 3 Type conversion (10 points)

Add the follaving functionalities to the AD;Tby programmingecur sively, in anon-defensive style:
j- The functionnat Tol nt corverts a natural number into an igé
Example:nat Tol nt S(S(S(S(S(Zero))))) =5
function natTolnt n : -
pre:
post :

fun nat Tol nt

by induction on:
wel | - founded rel ation:
k. The functioni nt ToNat converts a hon-rgative integer into a natural numher
Example:i nt ToNat 5 = S(S(S(S(S(Zero)))))

function intToNat i : -
pre:

post :

fun int ToNat

by induction on:

wel | -founded rel ati on:



Name: Page 5 of 6

Question 4 Tail Recursion (25 points)

Answer the following sub-questions:
I. Which of your programs in Question 2 are tail-recursive and which are not? Why?
lessEq:
plus:
minus:
times:

divMod:

m. Using your programs in Question 2, reduce the expression S(S(Zero)) times S(S(S(Zero)))

temporarily considering plus to be aprimitive. Discuss this reduction.

n. Construct atail-recursive generalisation of times , called times” , after justifying its existence.
functi on times” : -
pre:
post:
f un times”

by induction on:

wel | - founded rel ati on:



Name: Page 6 of 6

0. Construct a new, non-recursive function for times , called times’ , in terms of times”

fun times’
p. Reducetheexpression S(S(Zero)) times’ S(S(S(Zero))) , temporarily considering plus tobe

aprimitive. Discuss this reduction.

Question 5 Higher-Order Functions (7 points)

Add the following functionality to the ADT, by programming non-recursively, in a non-defensive style, and
by using one or more of the standard higher-order functions map, foldr , and foldl
g. Thefunction sigmaSqr returnsthe sum of the squares of the elements of alist of natural numbers.
Example: sigmaSqr [S(Zero), S(S(Zero))] = S(S(S(S(S(Zero)))))
function sigmaSqr N : -
pre:
post :

f un sigmaSaqr



