
Program Design II (PK2)

SML Assignment 1 of Spring 2006

In any recurrence for a divide-and-conquer algorithm, first make explicit the
costs of every part of the divide, conquer (recurse), and combine steps, and relate
these costs to the relevant parts of the algorithm. Clearly state any assumptions
you make. Then maximally simplify the resulting expressions before continuing.

To derive tight asymptotic bounds Θ(. . . ), use the Master Theorem (MT)
where possible. If the MT is applicable, then show in detail which case you
apply, why it is applicable, and how you apply it. You can assume that the
regularity condition holds, if need be. If the MT is not applicable, then first
explain why that is so and then use any other suitable theorem or method seen
in the course, again giving the full details of your reasoning.

A Closed Forms

Derive tight asymptotic bounds Θ(. . . ) for the following recurrences:

1. T (n) = 3T (n
2 ) + n2

2. T (n) = 5T (n
2 ) + n2 lg n

3. T (n) = T (n− 1) + n

4. T (n) = 2T (n
4 ) + c, where c is a constant

5. T (n) = 2T (n
4 ) +

√
n

6. T (n) = 2T (n
2 ) + n lg n

1



B Algorithm Analysis

Let binary trees be represented by the declaration:

datatype ’a bTree = V | B of ’a * ’a bTree * ’a bTree

1. Give a recurrence for the running time T1 of the f1 function below; assume
the binary tree is balanced. Derive a tight asymptotic bound for T1.

fun f1 V = []
| f1 (B(v,L,R)) = (f1 L) @ (v :: f1 R)

2. Give a recurrence for the running time T2 of the f’ function below, which
is used by f2, which has the same specification as f1; assume the binary
tree is balanced. Derive a tight asymptotic bound for T2.

local
fun f’ V a = a

| f’ (B(v,L,R)) a =
let val a’ = f’ R a
in f’ L (v::a’)
end

in
fun f2 t = f’ t []

end

3. Discuss the results.

Submission

Your solution, prepared in compliance with the ethics rules of the course, must
be submitted by the published deadline via the course manager system, and
shall contain replies, in English, to Questions A and B above, in a .txt or .pdf
or .html file. In a .txt or .html file, write Omega for Ω, O for O, Theta for Θ,
n^a for na, and sqrt(n) for

√
n.

2


