
Name: Page 1 of 6

Uppsala University
ITP1 Programkonstruktion, del 2
Period 3, Spring 2002
Exam 1
Monday 11 March 2002, from 9:00 to 14:00

Global Instructions

Read these instructions, as well as the actual questions, very carefullybefore attempting to solve the problems.

Especially pay attention tostressed words (in boldface). The questions have been engineered to have concise

and elegant answers, so if you get into some messy reasoning, you are probably on the wrong track and would

benefit from re-reading the question.

This question set is double-sided. To the extent possible, write your answers into the gaps: the provided space

is amply sufficient each time. Write your name ontoevery sheet. This is an exam withclosed books and notes.

An English-Swedish dictionary is available at the front desk. Normally, the instructor will come and answer

questions between 11:00 and 12:00.

Provide a specification (with at least the names of the argument components, a signature, a pre-condition, a

post-condition involving all the names of the argument components, anduseful examples) forevery program

you construct,such that this specification would be suitable for justifying your program or constructing

another program. Provide a justification outline (the chosen induction parameter and well-founded relation) for

every recursive program you construct. You often neednot provide any other justifications, but the given ones

must correspond to your program: for instance, each case shouldnot be redundant with the other cases. Failure

to provide such a specification or justification outline for at least one function of a sub-question will result in

zero points for that entire sub-question, even if the program is actually correct.

You mayonly use the functions and directives of thestandard library of SML. For instance, the instructor’s

solutions to the questions below only involve = , < , > , + , - , ∗, :: , @, if…then…else…, foldl , and

infix . Do not use higher-order functions, except where explicitly requested. Layout is unimportant, but

please be considerate.

Unless otherwise posted, the instructor isonly interested in correct SML functions, so any attempts at

efficient functions are purely at your own risk, namely the risk of missing out on correctness or of losing time.

The 2.2 credit points for this exam are awarded for VT02 if the sum of your exam points and bonus points is

in the interval [55,100]. Furthermore, a “med beröm godkänd” (5) grade is earned if this sum is in [85,100],

while an “icke utan beröm godkänd” (4) grade is earned if this sum is in [70,84], and a “godkänd” (3) grade is

earned if this sum is in [55,69]. In all other cases, an “underkänd” (U) grade is earned.

For official use (do not write below this line):

Q1 Q2 Q3 Exam

/ 14 / 55 / 11 / 80



Name: Page 2 of 6

Cover Story

A prime number is a positive integer having exactly one positive divisor other than 1.

Given a positive integern such thatn > 1, its prime factorisation is n rewritten as a product of prime numbers.

For instance, 2 = 2, 3 = 3, 4 = 2∗ 2 = 22, 5 = 5, 6 = 2∗ 3, 7 = 7, 8 = 2∗ 2 ∗ 2 = 23, 9 = 3∗ 3 = 32, 10 = 2∗ 5,

11 = 11, 12 = 2∗ 2 ∗ 3 = 22 ∗ 3, etc.

A positive integern such thatn > 1 can thus be rewritten as a productp1
a1 ∗ ⋅⋅⋅ ∗ pq

aq

where thepi are prime numbers — called theprime factors of n —and the powersai are positive integers.

Additionally, we arbitrarily define the prime factorisation of 0 to be 01, and the one of 1 to be 11, although 0

and1 are not prime numbers, so that every natural number has a prime factorisation.

The prime factorisation of any natural number is unique.

Question 1 Specification of an ADT (14 points)

Specify an SML abstract datatype (ADT) — called nat — for natural numbers, with the following functions:

a. An infix function plus, which returns the sum of two natural numbers:

function

pre:

post:

Example:

b. An infix function times, which returns the product of two natural numbers that are larger than 1:

function

pre:

post:

Example:

c. A function natToInt, which converts a natural number into an integer:

function

pre:

post:

d. A function intToNat, which converts an integer into a natural number:

function

pre:

post:

e. A function primeFactors, which returns the non-decreasing list of prime factors of a natural number:

function

pre:

post:

Example: primeFactors (intToNat 12) = [2,2,3]



Name: Page 3 of 6

Question 2 A First Realisation of the ADT (55 points)

Realise the nat ADT, using a representation that is based on prime factorisation. The natural number with

prime factorisation p1
a1 ∗ ⋅⋅⋅ ∗ pq

aq is to be represented by PF [(p1,a1),...,(pq,aq)]. You must

protect the representation invariant that the prime factors are strictly increasing from left to right across the

list, which must be non-empty, and that all the powers are positive. Answer the following sub-questions:

a. Declare the realisation of the nat ADT:

abstype nat =

with (∗ here comes the code of the other sub-questions ∗) end

b. Realise the times function, using at most one other function.

Hint: Introduce a help function that works on the lists without the PF value constructor.

Ex: PF [(2,2),(3,1)] times PF [(3,1),(5,1)] = PF [(2,2),(3,2),(5,1)]

fun

If you introduced a (recursive) help function, then specify and implement it here:

function

pre:

post:

Example:

fun

by induction on:

well-founded relation:

In what sense is the given example of times not really an example?



Name: Page 4 of 6

c. Realise the natToInt function, usingrecursion and introducingno new functions, say exponentiation:

Example: natToInt (PF [(2,2),(3,2),(5,1)]) = 180

fun

by induction on:

well-founded relation:

Is this function tail-recursive or not?Why?

If not, then specify a generalisation of natToInt and implement it usingtail-recursion:

function

pre:

post:

Example:

fun

by induction on:

well-founded relation:

as well as re-realise the natToInt function using only the generalisation you have specified:

fun

d. Assuming that you aregiven help functions for the following two specifications:

function candidates i : int → int list

pre: i ≥ 2

post: the candidate prime factors of i, in increasing order

Examples: candidates 10 = [2,3,5,7] ; candidates 11 = [2,3,5,7,11]

and:

function divGen i j : int → int → int ∗ int

pre: j > 0

post: (the largest number q such that i mod jq = 0, i div jq)

Examples: divGen 40 2 = (3,5) ; divGen 9 2 = (0,9)



Name: Page 5 of 6

realise the intToNat function, using the idea of reducing the given integer by successively trying all

its candidate prime factors, and introducing at most one new function:

Example: intToNat 180 = PF [(2,2),(3,2),(5,1)]

fun

If you introduced a (recursive) help function, then specify and implement it here:

function

pre:

post:

Example:

fun

by induction on:

well-founded relation:

e. Realise the plus function, using no recursion and using no new functions outside the ADT:

Example: PF [(2,2),(3,1)] plus PF [(3,1),(5,1)] = PF [(3,3)]

fun

f. Realise the primeFactors function, using recursion and introducing no new functions:

val rec

by induction on:

well-founded relation:

Is this function tail-recursive or not? Why?



Name: Page 6 of 6

If not, can we apply the accumulator-introduction technique to specify a generalisation that can be

implemented using tail-recursion? Why?

Question 3 Another Realisation of the ADT (11 points)

Realise the nat ADT again, using a representation that is based on integers. The natural number n is to be

represented by the expression NAT n. You have to protect the representation invariant that the involved

integer is non-negative. Answer the following sub-questions:

a. Declare the realisation of the nat ADT:

abstype nat =

with (∗ here comes the code of the other sub-questions ∗) end

b. Realise the plus, natToInt, and intToNat functions, using no recursion and introducing no new

functions:

fun

fun

fun

c. Assuming you already have a realisation of the primeFactors function, use it to realise the times

function, using no recursion but one or more of the standard higher-order functions map, foldr, and

foldl as well as introducing no new functions:

fun

You may draw pictures or take scratch notes below this line!


