Uppsala University
ITP1 Programkonstruktion, del 1
Periods 1 \& 2 of Fall 2001
Exam 1
Friday 7 December 2001, from 9:00 to 14:00

Global Instructions

Read these instructions, as well as the actual questions, very carefully before attempting to solve the problems. Especially pay attention to stressed words (in boldface). The questions have been engineered to have concise and elegant answers, so if you get into some messy reasoning, you are probably on the wrong track and would benefit from re-reading the question.

Write your answers onto these sheets, including their backsides: the provided space is sufficient. Write your Swedish person number onto every sheet. Do not write your name onto any sheet. This is an exam with closed books and notes. An English-Swedish dictionary is available at the front desk. Normally, the instructor will come to answer questions between 11:00 and 12:00.

Comment every SML function with its specification, indicating the signature, pre-condition, and postcondition of the function, and (when useful) listing some examples and counter-examples of its usage. None of the functions in this exam should have side-effects or raise exceptions, so you need never mention that there are none. All components of the argument of a function should be named and used in at least the post-condition. Failure to comply with this directive for at least one function for a sub-question will result in a zero grade for that sub-question, even if the function is actually correct.

Comment every recursive SML function with the induction parameter and the well-founded relation you used during the analysis phase of programming. Failure to comply with this directive for at least one recursive function for a sub-question will result in a zero grade for that sub-question, even if the function is actually correct. You need not hand in any other information about any analysis phase.
You may only use the functions of the standard library of SML. For instance, my solutions to the questions only involve $=,<,<=,+,-$, as well as if-then-else. Layout is unimportant, but please be considerate.

Unless otherwise posted, I am only interested in correct SML functions, so any attempts at efficient functions are purely at your own risk, namely the risk of missing out on correctness.

The two credit points for this exam are awarded for HT01 if the sum of your exam points and bonus points is in the interval 55..100. Furthermore, a "med beröm godkänd" (5) grade is earned if this sum is in the interval 85..100, while an "icke utan beröm godkänd" (4) grade is earned if this sum is in the interval 70..84, and a "godkänd" (3) grade is earned if this sum is in the interval 55..69. In all other cases, an "underkänd" (U) grade is earned.

For official use (do not write below this line):

Q 1	Q 2	Q 3	Q 4	Q 5	Q 6	Bonus	Total
$/ 10$	$/ 15$	$/ 20$	$/ 15$	$/ 10$	$/ 10$	$/ 20$	$/ 100$

Question 1 Reduction and Currying (10 points)

Consider the SML function declaration

```
fun fromTo i j = if i>j then [] else i::fromTo (i+1) j
```

for a function that returns the list of integers from i to j, both inclusive. Answer the following sub-questions:
(a) What is the signature of fromTo?
(b) Which SML value declaration is equivalent to the SML function declaration above?
(c) Considering (b), show the reductions and bindings effected by the following 2 SML value declarations:

```
val f = fromTo 1
```

val $x s=f 2$

Question 2 Reverse Engineering (15 points)

Infer specifications, if any, for the following five SML declarations of pre-condition-free functions:
(a)

```
fun f (x, []) = []
    |f(x,y::ys)=(x+y)::f(x-1,ys)
```

(b)

```
fun g [] = []
    | g ((x,y)::s) = (x,y)::(y,x)::(g s)
```

(c)

```
fun h [] = []
    | h (x::xs) = x:: (h xs) @[x]
```

(d)

```
fun \(k\) e [] = []
    | k e (x::xs) = if e=x then \(k\) e xs else \(x:: k\) e \(x\)
```

(e)

```
fun m x:int = x div 2
    | m x:real = x / 2
```


Question 3 The Usefulness of Pre-Conditions (20 points)

An integer list $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is non-decreasing if its elements satisfy the inequalities

$$
x_{1} \leq x_{2} \leq \ldots \leq x_{n-1} \leq x_{n}
$$

Using recursion, non-defensively construct SML functions for four of the following five requirements.
You must exploit the fact that a given list is expected to be non-decreasing.
(a) Function count returns the number of occurrences of an integer in a non-decreasing integer list.

Example: count $(3,[0,1,1,1,3,3,7])=2$.
(b) Function insert returns the non-decreasing integer list obtained by inserting an integer into such a list.

Example: insert $(3,[0,1,1,1,3,3,7])=[0,1,1,1,3,3,3,7]$.
(c) Function intersect returns the non-decreasing integer list that is the intersection of two such lists.

Example: intersect $[0,1,1,1,3,3,7][1,1,7,7,9]=[1,1,7]$.
(d) Function union returns the non-decreasing integer list that is the union of two such lists.

Example: union $[0,1,1,1,3,3,7][1,1,7,7,9]=[0,1,1,1,1,1,3,3,7,7,7,9]$.
(e) Function minus returns the non-decreasing list of integers that are in a first but not in a second such list.

Example: minus $[0,1,1,1,3,3,7][1,1,7,7,9]=[0,1,3,3]$.

Question 4 The Choices of Methodology (15 points)

A segment of a list is a prefix of a suffix of that list
For example, the lists [], [4,5], and [2,1,4,5,3] are segments of the list [2,1,4,5,3].
A plateau of a list is a segment thereof with all-equal elements but different previous and next elements, if any. For example, the list $[2,2]$ is a plateau of $[4,2,2,3,3,3,1]$, but its segments $[2,2,3]$ and [2] are not plateaus thereof. The compression of a list L is a list of $\left(x_{i}, c_{i}\right)$ pairs, such that the $i^{\text {th }}$ plateau of L has c_{i} elements equal to x_{i}. For example, the compression of $[4,2,2,2,2,3,3,3,4,4]$ is $[(4,1),(2,4),(3,3),(4,2)]$.

Using recursion, non-defensively construct two different SML functions, both named compress, for computing the compression of a list, following two methodological variants:
(a) Give the common specification for the two functions, using the definitions above.
(b) Construct a function by induction on the number of elements of the list that is to be compressed.
(c) Construct a function by induction on the number of plateaus of the list that is to be compressed.

Question 5 The Usefulness of Reuse (10 points)

Given a list L, the function reducePlateau returns a copy of L where all the plateaus of L have been reduced to one element. For example, reducePlateau [] = [] and reducePlateau $[1,2,2,2,7,3,3]=[1,2,7,3]$. As a counterexample, reducePlateau $[1,2,2,2,7,3,3] \neq[3,7,2,1]$.

Using recursion, non-defensively construct - by induction on the number of plateaus in L (and not on any other expression) - an SML function for the requirement above.

Hint: Is there a function elsewhere in this exam that you can (adapt and) reuse?

Question 6 The Usefulness of Generalisation (10 points)

Consider the following SML function declarations:

```
fun f 0 = 1
    | n = n * f (n-1)
fun g 0 y = y
    | g x y = g (x-1) (x*y)
```

Answer the following sub-questions:
(a) What is the most likely specification of f ?
(b) Step-by-step reduce the following SML expressions, ignoring the details about anonymous functions: f 4
g 41
(c) What differences do you observe in these reductions? Discuss them!
(d) Write a new, non-recursive SML function for f, in terms of g, establishing g as a generalisation of f.

