
Name: Page 1 of 6

Uppsala University
ITP1 Programkonstruktion, del 2 + DVP1 Programmeringsmetodik 1
Period 3, Spring 2002 + Fall 2001
Exam 2 + Exam 2’
Wednesday 5 June 2002, from 15:00 to 20:00

Global Instructions
Read these instructions, as well as the actual questions, very carefullybefore attempting to solve the problems.

Especially pay attention tostressed words (in boldface). The questions have been engineered to have many

short and elegant answers.If you get into some lengthy or difficult reasoning, you are probably on the wrong

track and might benefit from re-reading the question.

This question set is double-sided.To the extent possible, write your answers into the gaps. The provided

space is really sufficient each time.Write your name ontoevery sheet.This is an exam withclosed books and

notes.An English-Swedish dictionary is available at the front desk.Normally, the instructor will come and

answer questions between 17:00 and 18:00.

Provide a specification (with at least the names of the argument components, a signature, a pre-condition, a

post-condition involving all the names of the argument components, anduseful examples) forevery function

you construct.Each specificationmust be suitable for justifying your function or for constructing another

function. Provide a justification outline (with the chosen induction parameter and the chosen well-founded

relation) forevery recursive function you construct.You often neednot provide any other justifications, but

the given onesmust correspond to your function.For instance, each clause shouldnot be redundant with the

other clauses.Failure to provide such a specification or justification outline for at least one function of a sub-

question will result in zero points for that entire sub-question, even if the program is actually correct.

You mayonly use the functions and directives of thestandard library of SML, as well as Math.sqrt . Do

not use higher-order functions,except where requested.For instance, the instructor’s solutions to the questions

only involve + , - , ∗, :: , @, abstype , as , fn , foldl , foldr , fun , hd , infix , let…in…end ,

list , map , Math.sqrt , of , op , tl , and val . Layout is unimportant, but please be considerate.

Unless otherwise posted, the instructor isonly interested in correct SML functions.Any attempts at efficient

functions are purely at your own risk, namely the risk of missing out on correctness or of losing time.

ITP1: The 2.2 credit points for this exam are awarded for VT02 if the sum of your exam points and bonus

points is in the interval [55,100]. A “med beröm godkänd” (5) grade is earned if this sum is in [85,100], while

an “icke utan beröm godkänd” (4) grade is earned if this sum is in [70,84], and a “godkänd” (3) grade is earned

if this sum is in [55,69].Otherwise, an “underkänd” (U) grade is earned.

DVP1: The 4 credit points for this exam are awarded for HT01 if the sum of your exam points and bonus

points is in the interval [55,100]. A very-good grade is earned if this sum is in the interval [75,100], while a

good grade is earned if this sum is in the interval [55,74]. Otherwise, an “underkänd” (U) grade is earned.

For official use (do not write below this line):

Q1 Q2 Exam

/ 20 / 60 / 80

Name: Page 2 of 6

Background
A matrix is a rectangular array of elements that is arranged in rows and columns.A matrix with m rows and

n columns is called anm × n matrix. If A is a matrix, thenaij denotes the element in itsi th row andj th column.

The rows of anm × n matrix aren-dimensional vectors, and its columns arem-dimensional vectors.The

dotproduct of two vectors (x1,x2,…,xn) and (y1,y2,…,yn) is the scalarx1y1 + x2y2 + … +xnyn. Theproduct of

anm × n matrixA by ann × p matrixB, denotedA ⋅ B, is anm × p matrixC whose elementcij is the dot product

of thei th row of A and thej th column ofB. Thetranspose of anm × n matrixA, denotedA', is then × m matrix

obtained by converting the rows ofA into columns.Thenorm of anm × n matrixA, denoted|A|, is the scalar

. For example, , and , and .

Question 1 Specification of an ADT (20 points)
Specify an SML abstract datatype (ADT) — called ’a mat — for matrices, with the following functions:

a. A function mat2list , which converts a matrix A into a list by appending its row vectors top-down.

function

pre:

post:

example:

b. A curried function list2mat , which, given a pair(m,n) of positive integers and a listL of m ∗ n

elements, converts L into the m × n matrix A so that mat2list A = L .

function

pre:

post:

example:

c. A function norm , which returns the norm of a real-number matrix A .

function

pre:

post:

d. A function transpose , which returns the transpose of a matrix A .

function

pre:

post:

e. An infix function times , which returns the product of two integer matrices A , B , assuming it is defined.

function

pre:

post:

ai j
2

j 1=

n

∑
i 1=

m

∑ 2 3

1– 4

5 2– 1

3 8 6–
⋅ 19 20 16–

7 34 25–
= 5 2– 1

3 8 6–

′ 5 3

2– 8

1 6–

= 2 3

1– 4
30=

(4 points)

(6 points)

(3 points)

(3 points)

(4 points)

Name: Page 3 of 6

Question 2 A Realisation of the ADT (60 points)
Realise the mat ADT, using a representation that is based on lists of lists. An m × n matrix A, with m > 0 and

n > 0, is to be represented by MAT [[a11,…, a1n],...,[am1,…, amn]] . Protect the representation

invariant that there are m > 0 element lists, all of the same length n > 0. Answer the following sub-questions:

f. Declare the realisation of the mat ADT.

abstype ’a mat =

with (∗ here comes the code of the other sub-questions ∗) end

g. Realise the mat2list function. Use no recursion. Use one or more of the standard higher-order

functions map , foldr , and foldl . Introduce no new functions.

fun

h. Realise the list2mat function. Use recursion. Introduce at most one new function.

fun

by simple induction on: m

well-founded relation: <

If you introduced a (recursive) new function, then give a most general specification and implement it here:

function

pre:

post:

example:

fun

by induction on:

well-founded relation:

(1 point)

(3 points)

(12 points)

Name: Page 4 of 6

i. Realise the norm function. Use no recursion. Use one or more of the standard higher-order functions

map, foldr, and foldl. Introduce no new functions. You may use other functions from the ADT.

fun

j. Realise the transpose function. Build the transpose row by row, that is reduce the given matrix by

traversing its columns. Use recursion. Introduce at most one new function.

example: transpose (MAT [[5,~2,1],[3,8,~6]])

= MAT [[5,3],[~2,8],[1,~6]]

fun

by induction on: A

well-founded relation: has one column less than

If you introduced a (recursive) new function, then give a most general specification and implement it here:

function

pre:

post:

example:

fun

by induction on:

well-founded relation:

(14 points)

(6 points)

Name: Page 5 of 6

In what sense is the given example of transpose not really an example?

k. Specify and implement an infix function dot for the dot product of two integer vectors of the same length,

represented as integer lists. Use recursion. Introduce no new functions.

function

pre:

post:

example:

fun

by induction on:

well-founded relation:

Is this function tail-recursive or not? Why?

If not, then specify a generalisation, called dot’’, of dot and implement it using tail-r ecursion:

function

pre:

post:

example:

fun

by induction on:

well-founded relation:

Non-recursively re-realise the dot function, calling it dot’ now but with the same specification as

dot , using only dot’’ :

val dot’ =

(17 points)

Name: Page 6 of 6

l. To realise the times function, let us introduce a new, similar infix function mult that takes the

transpose of the second matrix so as to get more convenient access to its columns.

example: (MAT [[2],[~1]]) times (MAT [[3,4]]) = (MAT [[6,8],[~3,~4]])

infix times

fun A times B = A mult (transpose B)

Give a most general specification of mult and implement it here. Use recursion. Use the dot

function. Use the standard higher-order function map to avoid introducing another new function.

function A mult B :

pre:

post:

example: (MAT [[2],[~1]]) mult (MAT [[3],[4]])

= (MAT [[6,8],[~3,~4]])

fun

by induction on: A

well-founded relation: has one row less than

You may draw pictures or take scratch notes below this line!

(7 points)

