Topic 15: Search
(Version of 26th October 2019)

Pierre Flener

Optimisation Group
Department of Information Technology
Uppsala University
Sweden

Course 1DL441:
Combinatorial Optimisation and Constraint Programming,
whose part 1 is Course 1DL451:
Modelling for Combinatorial Optimisation

1 Based partly on material by Christian Schulte and Yves Deville
Outline

1. Branching

2. Exploration

3. Dynamic Symmetry Breaking
Search = Branching + Exploration

- **Branching** describes how to define the search tree.
- **Exploration** describes how to explore the search tree:
 - first solution
 - all solutions
 - best solution: via branch-and-bound
 - depth-first
 - breadth-first
 - multi-start
 - ...
Outline

1. Branching

2. Exploration

3. Dynamic Symmetry Breaking
Outline

1. Branching

2. Exploration

3. Dynamic Symmetry Breaking
Definition (Brancher)

A brancher \(b \) satisfies the following conditions, when
\[
b(R, s) = \langle R_1, \ldots, R_c \rangle \land \forall i. \text{Propagate}(R \cup R_i, R_i, s) = \langle _, s_i \rangle:
\]
- **Contraction**: \(\forall i : s_i \not\preceq s \). (Hence a finite search tree.)
- **No solutions lost or duplicated**: \(\forall \sigma \in s : \exists! i : \sigma \in s_i \).

where propagator set \(R_i \) is called the \(i^{th} \) decision or guess.

Definition (Branch & propagate search tree)

Let \(\langle V, U, P, b \rangle \) be a model extended with a brancher \(b \).
The search tree is as follows, for \(s_0 = \{ v \mapsto U \mid v \in V \} \):
- The root node is Propagate\((P, P, s_0)\).
- Node \(\langle R, s \rangle \) has the \(c \) nodes Propagate\((R \cup R_i, R_i, s)\) as children, where \(b(R, s) = \langle R_1, \ldots, R_c \rangle \) with \(c \neq 1 \); it is a leaf if \(s = \emptyset \) (failed node) or \(c = 0 \) (solved node).
Definition (Variable selection strategy)

A brancher \(b(R, s) \) selects a variable, based on either the current store \(s \), or the current set \(R \) of propagators, or both (dynamic selection); or neither (static selection); or also the previously visited nodes (adaptive selection):

- **Next**: Select the next variable by order in the model
- **Random**: Randomly select a variable unfixed by \(s \)
- **SizeMin**: Select an unfixed var with smallest dom in \(s \)
- **DegreeMax**: Select a variable \(v \) unfixed by \(s \) with the largest degree in \(R \) (\(= |\{p \in R \mid v \in \text{var}(p)\}| \))
- **AFCmin**: Select a variable unfixed by \(s \) with the smallest accumulated failure count

...

Ties are broken under any combination of these strategies.
Further, $b(R, s)$ selects values for the chosen variable v:
- Select the minimum: $m = \min(s(v))$
- Select the middle: $\hat{m} = \left\lfloor \frac{\min(s(v)) + \max(s(v))}{2} \right\rfloor$
- Select all the values of $s(v) = \{d_1, \ldots, d_n\}$

We assume domains are ordered sets.

Finally, $b(R, s)$ builds decisions, which are propagator sets:
- **ValMin**: Branch left on $\{v = m\}$ and right on $\{v \neq m\}$
- **SplitMin**: Branch left on $\{v \leq \hat{m}\}$ and right on $\{v > \hat{m}\}$
- **ValuesMin**: Branch left-right on $\{v = d_1\}, \ldots, \{v = d_n\}$
- \ldots
Set Variables (Reminder)

Definition

A set (decision) variable takes an integer set as value, and has a set of integer sets as domain. For its domain to be finite, a set variable must be a subset of a finite set Σ.

CP solvers over-approximate the domain of a set variable S by a pair $\langle \ell, u \rangle$ of finite sets, denoting the set of all sets σ such that $\ell \subseteq \sigma \subseteq u \subseteq \Sigma$:

- ℓ is the current set of mandatory elements of S;
- $u \setminus \ell$ is the current set of optional elements of S.

Example

The domain of a set var represented as $\langle \{1\}, \{1, 2, 3, 4\} \rangle$ has the sets $\{1\}$, $\{1, 2\}$, $\{1, 3\}$, $\{1, 4\}$, $\{1, 2, 3\}$, $\{1, 2, 4\}$, $\{1, 3, 4\}$, and $\{1, 2, 3, 4\}$. Removing $\{1, 2, 3\}$ is impossible!
Strategies for the selection of a set variable \(S = \{ \ell, u \} \):

- **SizeMin**: Select a set variable with smallest \(|u \setminus \ell| \)
- **MinMax**: Select a set variable with largest \(\min(u \setminus \ell) \)
- . . .

Strategies for the selection of an **optional** element of \(S \):

- Select the minimum: \(m = \min(u \setminus \ell) \)
- Select the median \(\bar{m} \) of \(u \setminus \ell \)
- Select a random element \(r \) of \(u \setminus \ell \)
- . . .

Branching decisions on inclusion and exclusion:

- **MinInc**: Branch left on \(\{ m \in S \} \) and right on \(\{ m \notin S \} \)
- **RndExc**: Branch left on \(\{ r \notin S \} \) and right on \(\{ r \in S \} \)
- . . .
First-Fail Brancher

Example (SizeMin × Random + ValMin)

function $b(R, s)$
if $\exists v : |s(v)| > 1$ then
 pick random v
 such that $|s(v)| > 1$ and $|s(v)|$ is smallest
 return $\langle \{ p_v = \text{min}(s(v)) \} , \{ p_v \neq \text{min}(s(v)) \} \rangle$
else
 return $\langle \rangle$
Outline

1. Branching
2. Exploration
3. Dynamic Symmetry Breaking
Example (Depth-first first-sol’n search, bin. branching)

For \(\langle V, U, P, b \rangle \) call DFE\((P, P, s_0, b)\), which is defined as follows:

```plaintext
function DFE(R, Q, s, b)
    \( \langle R', s' \rangle := \text{Propagate}(R, Q, s) \)
    if \( s' = \emptyset \) then
        return \( s' \) // failed node
    else
        // \( s' \) is not necessarily a solution store
        \( B := b(R', s') \)
        if \( B = \emptyset \) then
            return \( s' \) // solved node: \( s' \) is a solution store!
        else
            let \( B = \langle R_1, R_2 \rangle \)
            \( s'' := \text{DFE}(R' \cup R_1, R_1, s', b) \)
            if \( s'' = \emptyset \) then
                return DFE\((R' \cup R_2, R_2, s', b)\) // backtrack
            else
                return \( s'' \) // solved node: \( s'' \) is a solution store!
```
State Restoration Upon Backtracking

Approaches:

- **Trailing**: Remember changes and undo them.
 - Most common approach, but difficult to implement, and difficult to combine with concurrency.

- **Batch recomputation**: Recompute state from the root.
 - Problem-independent memory usage, but slow.

- **Copying (or cloning)**: Store an additional copy.
 - Easy to implement, and easy to combine with concurrency or parallelism, but too costly in memory.

Gecode uses a hybrid of copying and batch recomputation, called *adaptive recomputation*, which remembers a copy on the path from the root.
Diversification

Example (Multistart Exploration)

Perform several searches, sequentially or in parallel, especially in order to benefit from randomisation in branching strategies or from adaptive branching strategies:

- Stop each search (especially in sequential multistart) at some cutoff, say on the execution time, the number of visited nodes, or the number of failed nodes. Under the chosen cutoffs, the search may be incomplete.

- Specified as a sequence of \(\langle b, e, c \rangle \) triples, each with a brancher \(b \), exploration \(e \), and cutoff \(c \). Example:

 \[
 \begin{align*}
 &\langle \text{SizeMin} \times \text{DegreeMax} + \text{ValMin}, \text{DFE}, 1000 \text{ fails} \rangle, \\
 &\langle \text{AFCmin} \times \text{Random} + \text{Random}, \text{DFE}, +\infty \text{ hours} \rangle
 \end{align*}
 \]

One can also solve a COP as a sequence of CSPs.
Outline

1. Branching
2. Exploration
3. Dynamic Symmetry Breaking
Dynamic Symmetry Breaking (DSB)

Definition

DSB = the elimination of symmetric solutions by search.

Classification:

- Via the addition of constraints by the search procedure.
- Via a problem-specific search procedure.

Benefit:

No interference with dynamic variable selection and domain splitting strategies, especially problem-specific ones!
State of the Art

Two dual approaches, with large bodies of research:

- **Symmetry breaking during search** (SBDS, . . .): after reaching a leaf (failed or solved node) in the search tree, add constraints preventing its symmetric nodes from being visited in the future.

- **Symmetry breaking by dominance detection** (SBDD, GCF, . . .): before expanding a node, check whether a symmetric node thereof has been visited in the past.

The SBD∗ schemes are general and may take exponential time or space if there are exponentially many symmetries (and they are beyond the scope of this topic). Hence:

- **Dynamic structural symmetry breaking**: exploit the combinatorial structure of a problem for designing a symmetry-free search procedure (in SBDD style).
Full Value Symmetry

<table>
<thead>
<tr>
<th>Example (Map colouring: symmetry-free search)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given a partial colouring using u colours, only $u + 1$ colours need to be considered for the next country c:</td>
</tr>
<tr>
<td>- Colour c with one of the u already used colours.</td>
</tr>
<tr>
<td>- Colour c with an arbitrary unused colour, if any left.</td>
</tr>
<tr>
<td>In practice: The already used colours are the first u colours, say $0, ..., u - 1$, so that the new colour to be considered is u. This breaks all the $n!$ value symmetries in constant time and constant space overhead at every node explored! We say that it takes constant amortised time & space.</td>
</tr>
</tbody>
</table>

Applications (Van Hentenryck [& Michel]):
- Scene allocation (*INFORMS J. of Computing*, 2002)
- Steel mill slab design (*CPAIOR 2008*)
Partial Value Symmetry (IJCAI 2003)

Example (Partial value symmetry; often in instances)
Weekdays vs weekend days; same-size boats.

Clustering:
Let $D = D_1 \cup D_2 \cup \cdots \cup D_m$ be the domain of the variables, where the values in each set D_i are fully interchangeable (full value sym for $m = 1$): cluster the variables for each D_i.

Search procedure at constant amortised time & space:
In each set D_i, only the values already used and one so far unused value need to be tried.

Application (Michel, . . . , Van Hentenryck, CPAIOR’08):
- Eventually-serialisable data service deployment
Example (Wreath value symmetry)

Schedule meetings in (day, room) pairs, where the days are interchangeable, and the rooms are interchangeable within each day:

Wreath permutation

Not a wreath permutation!
Clustering:
Let \(D = D_1 \times D_2 \) be the domain of the pairs of variables, where the values in each set \(D_i \) are fully interchangeable (full value symmetry for \(|D_2| = 1\)): one cluster for \(D_1 \), and \(m \) clusters for \(D_2 \) when \(m \) values of \(D_1 \) are used, with variable clustering as for full value symmetry.

Search procedure at constant amortised time & space:
1. For the first value component, in set \(D_1 \), only the values already used and one so far unused value need to be tried. Let \(d_1 \in D_1 \) be the chosen value.
2. For the second value component, in set \(D_2 \), only the values already used with \(d_1 \) and one so far unused value need to be tried.
Selected Other Results

Consider a combinatorial problem with n decision variables over a domain of k values:

- **Generalisation to any value symmetry:**
 group equivalence (GE) trees
 (Roney-Dougal et al., *ECAI 2004*)
 $O(n^4)$ time overhead at every node explored.

- **Partial variable symmetry + partial value symmetry**
 (Sellmann & Van Hentenryck, *IJCAI 2005*)
 $O(k^{2.5} + n \cdot k)$ time at every node explored.

 Coinage of the term structural symmetry breaking.
 Can be specialised for full variable symmetry only.
Tractability: State of the Art

<table>
<thead>
<tr>
<th>Variable Symmetry</th>
<th>None</th>
<th>Full</th>
<th>Partial</th>
<th>Wreath</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Full</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>NP</td>
</tr>
<tr>
<td>Partial</td>
<td>P</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
</tr>
<tr>
<td>Wreath</td>
<td>P</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
</tr>
</tbody>
</table>

P: All symmetric sub-trees can be eliminated with a polynomial time & space overhead at every node explored.

NP: Dominance-detection schemes (in SBDD style) are NP-hard.

Scalar problem
- set problem

