
Topic 12: CP and Gecode
(Version of 13th November 2020)

Pierre Flener

Optimisation Group
Department of Information Technology

Uppsala University
Sweden

Course 1DL441:
Combinatorial Optimisation and Constraint Programming,

whose part 1 is Course 1DL451:
Modelling for Combinatorial Optimisation

http://user.it.uu.se/~pierref
http://optimisation.research.it.uu.se

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

Outline

1. Constraint Programming (CP)

2. MiniZinc to Gecode

3. linear

4. element

5. MiniModel

6. distinct, nvalues, count

7. binpacking

8. cumulative, unary

9. circuit, path

10. extensional

11. channel

12. precede

COCP/M4CO 12 - 2 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

Outline

1. Constraint Programming (CP)

2. MiniZinc to Gecode

3. linear

4. element

5. MiniModel

6. distinct, nvalues, count

7. binpacking

8. cumulative, unary

9. circuit, path

10. extensional

11. channel

12. precede

COCP/M4CO 12 - 3 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

Reminder from Topic 1: Introduction

A solving technology offers methods and tools for:

what: Modelling constraint problems in declarative language.

and / or

how: Solving constraint problems intelligently:

• Search: Explore the space of candidate solutions.

• Inference: Reduce the space of candidate solutions.

• Relaxation: Exploit solutions to easier problems.

A solver is a software that takes a model & data as
input and tries to solve the modelled problem instance.

COCP/M4CO 12 - 4 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

Constraint Programming Technology

Constraint programming (CP) offers methods and tools for:

what: Modelling constraint problems in a high-level language.

and

how: Solving constraint problems intelligently by:
• either default systematic search upon pushing a button
• or systematic search guided by a user-given strategy
• or local search guided by a user-given strategy

with lots of inference, called propagation in the case of
systematic search, but yet little relaxation.

Slogan of CP:

Constraint Program = Model [+ Search]

COCP/M4CO 12 - 5 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

CP Solving = Inference + Search

A CP solver conducts search interleaved with inference:

Each constraint has an inference algorithm.

COCP/M4CO 12 - 6 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

Inference for One Constraint: Propagator

Example
Consider the constraint CONNECTED([C1, . . . ,Cn]), which
imposes max one stretch per colour among the n variables.

From the following current partial valuation for n = 6:

C3 C6

a propagator (under systematic search) of the CONNECTED

predicate can infer that C3 = red and C6 6∈ {red,black}:

C6

+ A propagator deletes the impossible values
from the current domains of the variables,

and thereby accelerates otherwise blind search.

COCP/M4CO 12 - 7 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

Roadmap

For CP by systematic search:
Topic 13: Consistency + A consistency is the
targeted characterisation of the domain values
kept by a propagator (a musician) for a constraint,
but correctness of the solver (the whole orchestra)
must not depend on enforcing it.
Topic 14: Propagation + We define the really needed
post-conditions of each propagator, and we use them
to design a Propagate algorithm (for the conductor)
that decides which propagator to run when.
Topic 15: Search + We design an Explore algorithm
(for the conductor) that calls Propagate and a brancher.
Topic 16: Propagators + We design a few propagators:
linear, element, distinct, extensional, . . .

For CP by local search:
Topic 17: Constraint-Based Local Search

COCP/M4CO 12 - 8 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

Outline

1. Constraint Programming (CP)

2. MiniZinc to Gecode

3. linear

4. element

5. MiniModel

6. distinct, nvalues, count

7. binpacking

8. cumulative, unary

9. circuit, path

10. extensional

11. channel

12. precede

COCP/M4CO 12 - 9 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

Mind the Gap

With Gecode, which is a C++ library, one writes
an imperative program that states (or: posts) — via
any combination of sequential, conditional, iterative,
and recursive composition — the declarative
constraints, which are then given to the solver via
propagators enforcing chosen consistencies.

Gecode indexes from 0, and MiniZinc indexes from 1.

Gecode does not automatically coerce Booleans (truth
is 1, and falsity is 0) into integers, and MiniZinc does.

For lighter syntax, we here omit the first argument (a
space reference, often *this) from Gecode snippets.

COCP/M4CO 12 - 10 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

Reification

A MiniZinc reified constraint, such as r <-> x < y,
where r is a variable of type bool, is modelled in Gecode
by appending the reifying variable r, of type Reify, as an
additional argument to the used constraint predicate:

rel(x,IRT LE,y,r)

Careful: Not all constraints are reifiable, as in all CP solvers!

We will use the following definition and notation:

Definition
The reification of a constraint γ(. . .) is
the constraint r ⇔ γ(. . .), where r is a “Boolean” variable,
with the truth of γ(. . .) represented by 1 and its falsity by 0.

Propagation may be poor: + see Topic 16: Propagators.

COCP/M4CO 12 - 11 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

Inference: Propagator and Consistency

A MiniZinc inference annotation (recall Topic 8: Inference &
Search in CP & LCG) to a constraint, bounds or domain,
is modelled in Gecode by appending the consistency as an
additional argument to the used constraint predicate.

The options for integer decision variables are value
consistency (IPL VAL), bounds consistency (IPL BND),
and domain consistency (IPL DOM), consistency being
called integer propagation level (IPL) in Gecode, one of
them being the default (IPL DEF) if no consistency is given.

For example:

distinct(X,IPL DOM)

+ For details, see Topic 13: Consistency.

COCP/M4CO 12 - 12 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

Search: Selection Strategies

A MiniZinc search annotation (recall Topic 8: Inference &
Search in CP & LCG) to an objective, such as
int_search(X,first_fail,indomain_min),
is modelled in Gecode by specifying or writing a brancher.

For example:

branch(X,INT VAR SIZE MIN(),INT VAL MIN())

+ For details, see Topic 15: Search.

COCP/M4CO 12 - 13 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

Outline

1. Constraint Programming (CP)

2. MiniZinc to Gecode

3. linear

4. element

5. MiniModel

6. distinct, nvalues, count

7. binpacking

8. cumulative, unary

9. circuit, path

10. extensional

11. channel

12. precede

COCP/M4CO 12 - 14 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

The linear Predicate

A MiniZinc linear constraint, such as the linear equality
constraint sum(i in 1..n)(A[i]*X[i]) = d, can be
modelled in Gecode by using its reifiable linear predicate:

Definition
A linear([a1, . . . ,an] , [x1, . . . , xn] ,R,d) constraint, with

[a1, . . . ,an] a sequence of non-zero integer constants,
[x1, . . . , xn] a sequence of integer variables,
R in {<,≤,=, 6=,≥, >}, and
d an integer constant,

holds iff the linear relation

(
n∑

i=1

ai · xi

)
R d holds.

Also, linear([x1, . . . , xn] ,R,d) holds iff

(
n∑

i=1

xi

)
R d .

COCP/M4CO 12 - 15 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

Outline

1. Constraint Programming (CP)

2. MiniZinc to Gecode

3. linear

4. element

5. MiniModel

6. distinct, nvalues, count

7. binpacking

8. cumulative, unary

9. circuit, path

10. extensional

11. channel

12. precede

COCP/M4CO 12 - 16 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

The element Predicate

A MiniZinc constraint on an array element at an unknown
index i, such as element(i,X,e) or X[i] = e
or a constraint involving the expression X[i],
must be modelled in Gecode by explicitly using its
non-reifiable element predicate:

Definition (Van Hentenryck and Carillon, 1988)
An element([x1, . . . , xn] , i ,e) constraint, where the xj are
variables, i is an integer variable, and e is a variable, holds
if and only if xi = e.

Several variants exist: see the Gecode documentation.

COCP/M4CO 12 - 17 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

Example (Warehouse Location Problem)
Recall the one-way channelling constraint of Model 1 (in
Topic 6: Case Studies) from the Supplier variables to its
non-mutually redundant Open variables:

constraint forall(s in Shops)
(Open[Supplier[s]] = 1);

This must be modelled in Gecode as in the following
MiniZinc reformulation:

constraint forall(s in Shops)
(element(Supplier[s], Open, 1));

COCP/M4CO 12 - 18 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

Example (Warehouse Location Problem, a last time)
Recall the objective of Model 1 in Topic 6: Case Studies:

solve minimize maintCost * sum(Open)
+ sum(s in Shops)(SupplyCost[s,Supplier[s]]);

This must be modelled in Gecode as in the following
MiniZinc reformulation, by explicitly creating a Cost[s]
variable and an element constraint for each implicit one:

% Cost[s] = actually incurred supply cost for s:
array[Shops] of var 0..max(SupplyCost): Cost;
constraint forall(s in Shops)

(element(Supplier[s], SupplyCost[s,..], Cost[s]);
solve minimize maintCost * sum(Open) + sum(Cost);

Recall that we actually introduced these Cost[s] variables
(in Topic 8: Inference & Search in CP & LCG) in order to
state a maximal-regret search strategy on those variables.

COCP/M4CO 12 - 19 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

Example (Job allocation at minimal salary cost)
Remember the model in Topic 3: Constraint Predicates:

1 array[Apps] of 0..1000: Salary; % Salary[a]/job by a
2 array[Jobs] of var Apps: Worker; % job j by Worker[j]
3 solve minimize sum(j in Jobs)(Salary[Worker[j]]);
4 constraint ...; % qualifications, workload, etc

Line 3 must be modelled in Gecode as in the following
MiniZinc reformulation, by explicitly creating a Cost[j]
variable and an element constraint for each implicit one:
array[Jobs] of var 0..max(Salary): Cost; % Cost[j] for job j
constraint forall(j in Jobs)

(element(Worker[j],Salary,Cost[j]));
solve minimize sum(Cost);

COCP/M4CO 12 - 20 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

Outline

1. Constraint Programming (CP)

2. MiniZinc to Gecode

3. linear

4. element

5. MiniModel

6. distinct, nvalues, count

7. binpacking

8. cumulative, unary

9. circuit, path

10. extensional

11. channel

12. precede

COCP/M4CO 12 - 21 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

MiniModel

Using MiniModel, linear constraints can be formulated
in Gecode like in MiniZinc: the appropriate linear
constraints are then generated by the Gecode
toolchain. Another useful feature will be discussed at
page 37.

Gecode has no constrained functions: everything is
modelled relationally, using only constraint predicates.
However, MiniModel offers some functional syntax,
such as element(X,i), and the implicit variables are
then generated by the Gecode toolchain.

Gecode does not eliminate common sub-expressions:
a Gecode model automatically generated by the
MiniZinc toolchain can outperform a handwritten
Gecode model corresponding to the MiniZinc one.

COCP/M4CO 12 - 22 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

Outline

1. Constraint Programming (CP)

2. MiniZinc to Gecode

3. linear

4. element

5. MiniModel

6. distinct, nvalues, count

7. binpacking

8. cumulative, unary

9. circuit, path

10. extensional

11. channel

12. precede

COCP/M4CO 12 - 23 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

The distinct Predicate

A MiniZinc constraint of pairwise difference,
such as alldifferent(X), can be modelled in Gecode
by using its non-reifiable distinct predicate:

Definition (Laurière, 1978)
A distinct([x1, . . . , xn]) constraint holds if and only if all
the variables xi take different values.

This is equivalent to n·(n−1)
2 disequality constraints:

∀i , j ∈ 1..n where i < j : xi 6= xj

Several variants exist: see the Gecode documentation.

COCP/M4CO 12 - 24 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

The nvalues Predicate

A MiniZinc constraint on the number of distinct values within
an array, such as nvalue(m,X), can be modelled in
Gecode by using its non-reifiable nvalues predicate:

Definition (Pachet and Roy, 1999)
An nvalues([x1, . . . , xn] ,R,m) constraint holds if and only
if the number of distinct values taken by the elements of the
sequence [x1, . . . , xn] of variables is in relation R with the
variable m, where R is in {<,≤,=, 6=,≥, >}:

|{x1, . . . , xn}| R m

Note that R is ‘=’ for the nvalue predicate of MiniZinc.

Several variants exist: see the Gecode documentation.

COCP/M4CO 12 - 25 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

The count Predicate

A MiniZinc constraint on value counts within an array, such
as global_cardinality(X,V,C), can be modelled in
Gecode by using its non-reifiable count predicate:

Definition (Régin, 1996)
A count([x1, . . . , xn] , [c1, . . . , cm] , [v1, . . . , vm]) constraint
holds if and only if each variable cj has the number of
variables xi that take the given value vj .

Several variants exist: see the Gecode documentation.

COCP/M4CO 12 - 26 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

Outline

1. Constraint Programming (CP)

2. MiniZinc to Gecode

3. linear

4. element

5. MiniModel

6. distinct, nvalues, count

7. binpacking

8. cumulative, unary

9. circuit, path

10. extensional

11. channel

12. precede

COCP/M4CO 12 - 27 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

The binpacking Predicate

A MiniZinc bin-packing constraint, such
as bin_packing_load(L,B,V), can be modelled in
Gecode by using its non-reifiable binpacking predicate:

Definition
Let item i have the given weight or volume vi .
Let variable bi denote the bin into which item i is put.
Let variable `j denote the load of bin j .
A binpacking([`1, . . . , `m] , [b1, . . . ,bn] , [v1, . . . , vn])
constraint holds iff each `j is the sum of the vi where bi = j .

COCP/M4CO 12 - 28 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

There is No Knapsack Predicate in Gecode

A MiniZinc constraint on knapsack packing,
such as knapsack(V,P,X,v,p), can be modelled in
Gecode by using two linear constraints:

linear(V ,X ,=, v)

linear(P,X ,=,p)

Recall that linear is reifiable.

COCP/M4CO 12 - 29 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

Outline

1. Constraint Programming (CP)

2. MiniZinc to Gecode

3. linear

4. element

5. MiniModel

6. distinct, nvalues, count

7. binpacking

8. cumulative, unary

9. circuit, path

10. extensional

11. channel

12. precede

COCP/M4CO 12 - 30 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

The cumulative Predicate

A MiniZinc constraint on the bounded cumulative resource
requirement of tasks, such as cumulative(S,D,R,u),
can be modelled in Gecode by using its
non-reifiable cumulative predicate:

Definition (Aggoun and Beldiceanu, 1993)
A cumulative(u, [s1, . . . , sn] , [d1, . . . ,dn] , [r1, . . . , rn])
constraint, where each task Ti has a starting time si , a
duration di , and a resource requirement ri , holds if and only
if the resource upper limit u is never exceeded when
performing the tasks Ti .

Several variants exist: see the Gecode documentation.

COCP/M4CO 12 - 31 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

The unary Predicate

A MiniZinc temporal non-overlap constraint on tasks, such
as disjunctive(S,D), can be modelled in Gecode by
using its non-reifiable unary predicate, so called because it
applies to tasks requiring a unary resource:

Definition (Carlier, 1982)
A unary([s1, . . . , sn] , [d1 . . . ,dn]) constraint, where each
task Ti has a starting time si and a duration di , holds if and
only if no two tasks Ti and Tj overlap in time.

Several variants exist: see the Gecode documentation.

COCP/M4CO 12 - 32 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

Outline

1. Constraint Programming (CP)

2. MiniZinc to Gecode

3. linear

4. element

5. MiniModel

6. distinct, nvalues, count

7. binpacking

8. cumulative, unary

9. circuit, path

10. extensional

11. channel

12. precede

COCP/M4CO 12 - 33 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

The circuit Predicate

A MiniZinc constraint on a Hamiltonian circuit,
such as circuit(S), can be modelled in Gecode by using
its non-reifiable circuit predicate:

Definition (Laurière, 1978)
A circuit([s1, . . . , sn]) constraint holds iff the arcs i → si
form a Hamiltonian circuit in the graph defined by the
domains of the variables si :
each vertex is visited exactly once.

Several variants exist: see the Gecode documentation.

COCP/M4CO 12 - 34 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

No Subcircuit, but a Path Predicate

A MiniZinc constraint subcircuit(S) can be modelled in
Gecode as in its MiniZinc default definition, which is
actually used by the Gecode backend to MiniZinc.

A MiniZinc constraint on a Hamiltonian path, such as
circuit(S) /\ S[t] = f, can be modelled in Gecode
by using its non-reifiable path predicate:

Definition
A path([s1, . . . , sn] , f , t) constraint holds iff the arcs i → si
form a Hamiltonian path from vertex f to vertex t in the
graph defined by the domains of the variables si :
each vertex is visited exactly once.

Several variants exist: see the Gecode documentation.

COCP/M4CO 12 - 35 -

https://www.minizinc.org/doc-latest/en/lib-globals.html

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

Outline

1. Constraint Programming (CP)

2. MiniZinc to Gecode

3. linear

4. element

5. MiniModel

6. distinct, nvalues, count

7. binpacking

8. cumulative, unary

9. circuit, path

10. extensional

11. channel

12. precede

COCP/M4CO 12 - 36 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

The extensional Predicate

A MiniZinc constraint on membership in a table T or regular
language, such as table(X,T) or regular(X,R),
where R is a regular expression or a deterministic finite
automaton (DFA) defining a regular language, is modelled
in Gecode by using its reifiable extensional predicate:

Definition
An extensional([x1, . . . , xn] ,R) constraint holds if and
only if the values taken by the sequence [x1, . . . , xn] of
variables form a row of the 2d table R of constants or form
a string that belongs to the regular language accepted by
the regular expression (when using MiniModel) or DFA R.

Several variants exist: see the Gecode documentation.

COCP/M4CO 12 - 37 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

Outline

1. Constraint Programming (CP)

2. MiniZinc to Gecode

3. linear

4. element

5. MiniModel

6. distinct, nvalues, count

7. binpacking

8. cumulative, unary

9. circuit, path

10. extensional

11. channel

12. precede

COCP/M4CO 12 - 38 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

The channel Predicate

A MiniZinc constraint on two arrays representing a function
and its inverse, such as inverse(X,Y), can be modelled
in Gecode by using its non-reifiable channel predicate:

Definition
A channel([x1, . . . , xn] , [y1, . . . , yn]) constraint holds iff:

∀i , j ∈ 1..n : xi = j ⇔ yj = i

Several variants exist: see the Gecode documentation.

COCP/M4CO 12 - 39 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

Outline

1. Constraint Programming (CP)

2. MiniZinc to Gecode

3. linear

4. element

5. MiniModel

6. distinct, nvalues, count

7. binpacking

8. cumulative, unary

9. circuit, path

10. extensional

11. channel

12. precede

COCP/M4CO 12 - 40 -

Constraint
Program-
ming (CP)

MiniZinc to
Gecode

linear

element

MiniModel

distinct,
nvalues,
count

binpacking

cumulative,
unary

circuit,
path

extensional

channel

precede

The precede Predicate

A MiniZinc constraint value_precede(v,w,X) and its
generalisation value_precede_chain(V,X), which are
useful for breaking value symmetries, can be modelled in
Gecode by using its non-reifiable precede predicate:

Definition
A precede([x1, . . . , xn] , v ,w) constraint holds iff
the first occurrence, if any, of value v precedes the
first occurrence, if any, of value w among the variables xi .

Definition
A precede([x1, . . . , xn] , [v1, . . . , vm]) constraint holds iff
the first occurrence, if any, of every value vi precedes the
first occurrence, if any, of value vi+1 among the variables xi .

COCP/M4CO 12 - 41 -

	Constraint Programming (CP)
	MiniZinc to Gecode
	linear
	element
	MiniModel
	distinct, nvalues, count
	binpacking
	cumulative, unary
	circuit, path
	extensional
	channel
	precede

