Topic 12: CP and Gecode
(Version of 13th November 2020)

Pierre Flener

Optimisation Group
Department of Information Technology
Uppsala University
Sweden

Course 1DL441:
Combinatorial Optimisation and Constraint Programming,
whose part 1 is Course 1DL451:
Modelling for Combinatorial Optimisation
Outline

1. Constraint Programming (CP)
2. MiniZinc to Gecode
3. linear
4. element
5. MiniModel
6. distinct, nvalues, count
7. binpacking
8. cumulative, unary
9. circuit, path
10. extensional
11. channel
12. precede
Outline

1. Constraint Programming (CP)
2. MiniZinc to Gecode
3. linear
4. element
5. MiniModel
6. distinct, nvalues, count
7. binpacking
8. cumulative, unary
9. circuit, path
10. extensional
11. channel
12. precede
Reminder from Topic 1: Introduction

A solving technology offers methods and tools for:

what: Modelling constraint problems in declarative language.

and / or

how: Solving constraint problems intelligently:

- Search: Explore the space of candidate solutions.
- Inference: Reduce the space of candidate solutions.
- Relaxation: Exploit solutions to easier problems.

A solver is a software that takes a model & data as input and tries to solve the modelled problem instance.
Constraint Programming Technology

Constraint programming (CP) offers methods and tools for:

what: Modelling constraint problems in a high-level language.

and

how: Solving constraint problems intelligently by:

• either default systematic search upon pushing a button
• or systematic search guided by a user-given strategy
• or local search guided by a user-given strategy

with lots of inference, called propagation in the case of systematic search, but yet little relaxation.

Slogan of CP:

Constraint Program = Model [+ Search]
CP Solving = Inference + Search

A CP solver conducts search interleaved with inference:

Each constraint has an inference algorithm.
Inference for *One* Constraint: Propagator

Example

Consider the constraint `CONNECTED([C_1, \ldots, C_n])`, which imposes max one stretch per colour among the *n* variables.

From the following current partial valuation for *n* = 6:

\[
\begin{array}{cccc}
\text{black} & \text{red} & C_3 & \text{red} & \text{yellow} & C_6 \\
\end{array}
\]

a propagator (under systematic search) of the `CONNECTED` predicate can infer that *C₃* = red and *C₆* ∉ \{red, black\}:

\[
\begin{array}{cccc}
\text{black} & \text{red} & \text{red} & \text{red} & \text{yellow} & C_6 \\
\end{array}
\]

,exports A propagator deletes the impossible values from the current domains of the variables, and thereby accelerates otherwise blind search.
Roadmap

For CP by systematic search:

- **Topic 13: Consistency** 📘 A **consistency** is the targeted characterisation of the domain values kept by a **propagator** (a musician) for a constraint, but correctness of the solver (the whole orchestra) must not depend on enforcing it.

- **Topic 14: Propagation** 📘 We define the really needed post-conditions of each **propagator**, and we use them to design a **Propagate** algorithm (for the conductor) that decides which **propagator** to run when.

- **Topic 15: Search** 📘 We design an **Explore** algorithm (for the conductor) that calls **Propagate** and a **brancher**.

- **Topic 16: Propagators** 📘 We design a few **propagators**: linear, element, distinct, extensional,...

For CP by local search:

- **Topic 17: Constraint-Based Local Search**
Outline

1. Constraint Programming (CP)
2. MiniZinc to Gecode
3. linear
4. element
5. MiniModel
6. distinct, nvalues, count
7. binpacking
8. cumulative, unary
9. circuit, path
10. extensional
11. channel
12. precede
Mind the Gap

- With Gecode, which is a C++ library, one writes an imperative program that states (or: posts) — via any combination of sequential, conditional, iterative, and recursive composition — the declarative constraints, which are then given to the solver via propagators enforcing chosen consistencies.

- Gecode indexes from 0, and MiniZinc indexes from 1.

- Gecode does not automatically coerce Booleans (truth is 1, and falsity is 0) into integers, and MiniZinc does.

- For lighter syntax, we here omit the first argument (a space reference, often *this) from Gecode snippets.
Reification

A MiniZinc reified constraint, such as $r \leftrightarrow x < y$, where r is a variable of type `bool`, is modelled in Gecode by appending the reifying variable r, of type `Reify`, as an additional argument to the used constraint predicate:

$$\text{rel}(x, \text{IRT}_\text{LE}, y, r)$$

Careful: Not all constraints are reifiable, as in all CP solvers!

We will use the following definition and notation:

Definition

The **reification** of a constraint $\gamma(\ldots)$ is the constraint $r \leftrightarrow \gamma(\ldots)$, where r is a “Boolean” variable, with the truth of $\gamma(\ldots)$ represented by 1 and its falsity by 0.

Propagation may be poor: see Topic 16: Propagators.
Inference: Propagator and Consistency

A MiniZinc inference annotation (recall Topic 8: Inference & Search in CP & LCG) to a constraint, bounds or domain, is modelled in Gecode by appending the consistency as an additional argument to the used constraint predicate.

The options for integer decision variables are value consistency (IPL_VAL), bounds consistency (IPL_BND), and domain consistency (IPL_DOM), consistency being called integer propagation level (IPL) in Gecode, one of them being the default (IPL_DEF) if no consistency is given.

For example:

\[\text{distinct}(X, \text{IPL_DOM}) \]

♫ For details, see Topic 13: Consistency.
Search: Selection Strategies

A MiniZinc search annotation (recall Topic 8: Inference & Search in CP & LCG) to an objective, such as `int_search(X, first_fail, indomain_min)`, is modelled in Gecode by specifying or writing a `brancher`.

For example:

```plaintext
branch(X, INT_VAR_SIZE_MIN(), INT_VAL_MIN())
```

For details, see Topic 15: Search.
Outline

1. Constraint Programming (CP)
2. MiniZinc to Gecode
3. linear
4. element
5. MiniModel
6. distinct, nvalues, count
7. binpacking
8. cumulative, unary
9. circuit, path
10. extensional
11. channel
12. precede
The linear Predicate

A MiniZinc linear constraint, such as the linear equality constraint \(\text{sum}(i \in 1..n) (A[i] \times X[i]) = d \), can be modelled in Gecode by using its reifiable linear predicate:

Definition

A linear\(([a_1, \ldots, a_n], [x_1, \ldots, x_n], R, d)\) constraint, with

- \([a_1, \ldots, a_n]\) a sequence of non-zero integer constants,
- \([x_1, \ldots, x_n]\) a sequence of integer variables,
- \(R\) in \(\{<, \leq, =, \neq, \geq, >\}\), and
- \(d\) an integer constant,

holds iff the linear relation \(\left(\sum_{i=1}^{n} a_i \cdot x_i \right) \ R \ d\) holds.

Also, linear\(([x_1, \ldots, x_n], R, d)\) holds iff \(\left(\sum_{i=1}^{n} x_i \right) \ R \ d\).
Outline

1. Constraint Programming (CP)
2. MiniZinc to Gecode
3. linear
4. element
5. MiniModel
6. distinct, nvalues, count
7. binpacking
8. cumulative, unary
9. circuit, path
10. extensional
11. channel
12. precede
The element Predicate

A MiniZinc constraint on an array element at an unknown index i, such as `element(i, X, e)` or `X[i] = e` or a constraint involving the expression $X[i]$, must be modelled in Gecode by explicitly using its non-reifiable `element` predicate:

Definition (Van Hentenryck and Carillon, 1988)

An `element([x_1, \ldots, x_n], i, e)` constraint, where the x_j are variables, i is an integer variable, and e is a variable, holds if and only if $x_i = e$.

Several variants exist: see the Gecode documentation.
Example (Warehouse Location Problem)

Recall the one-way channelling constraint of Model 1 (in Topic 6: Case Studies) from the Supplier variables to its non-mutually redundant Open variables:

\[
\text{constraint } \forall (s \in \text{Shops}) \quad (\text{Open}[\text{Supplier}[s]] = 1);
\]

This must be modelled in Gecode as in the following MiniZinc reformulation:

\[
\text{constraint } \forall (s \in \text{Shops}) \quad (\text{element}([\text{Supplier}[s]], \text{Open}, 1));
\]
Example (Warehouse Location Problem, a last time)

Recall the objective of Model 1 in Topic 6: Case Studies:

```plaintext
solve minimize maintCost * sum(Open) 
  + sum(s in Shops) (SupplyCost[s, Supplier[s]]);
```

This must be modelled in Gecode as in the following MiniZinc reformulation, by explicitly creating a `Cost[s]` variable and an `element` constraint for each implicit one:

```plaintext
% Cost[s] = actually incurred supply cost for s:
array[Shops] of var 0..max(SupplyCost): Cost;
constraint forall(s in Shops)
  (element(Supplier[s], SupplyCost[s,..], Cost[s]);
solve minimize maintCost * sum(Open) + sum(Cost);
```

Recall that we actually introduced these `Cost[s]` variables (in Topic 8: Inference & Search in CP & LCG) in order to state a maximal-regret search strategy on those variables.
Example (Job allocation at minimal salary cost)

Remember the model in Topic 3: Constraint Predicates:

1. `array[Apps] of 0..1000: Salary;` % Salary[a]/job by a
2. `array[Jobs] of var Apps: Worker;` % job j by Worker[j]
3. `solve minimize sum(j in Jobs)(Salary[Worker[j]]);`
4. `constraint ...;` % qualifications, workload, etc

Line 3 must be modelled in Gecode as in the following MiniZinc reformulation, by explicitly creating a Cost[j] variable and an element constraint for each implicit one:

```
array[Jobs] of var 0..max(Salary): Cost; % Cost[j] for job j
constraint forall(j in Jobs) (element(Worker[j], Salary, Cost[j]));
solve minimize sum(Cost);
```
Outline

1. Constraint Programming (CP)
2. MiniZinc to Gecode
3. linear
4. element
5. MiniModel
6. distinct, nvalues, count
7. binpacking
8. cumulative, unary
9. circuit, path
10. extensional
11. channel
12. precede
Using MiniModel, linear constraints can be formulated in Gecode like in MiniZinc: the appropriate linear constraints are then generated by the Gecode toolchain. Another useful feature will be discussed at page 37.

Gecode has no constrained functions: everything is modelled relationally, using only constraint predicates. However, MiniModel offers some functional syntax, such as \texttt{element(X, i)}, and the implicit variables are then generated by the Gecode toolchain.

Gecode does not eliminate common sub-expressions: a Gecode model automatically generated by the MiniZinc toolchain can outperform a handwritten Gecode model corresponding to the MiniZinc one.
Outline

1. Constraint Programming (CP)
2. MiniZinc to Gecode
3. linear
4. element
5. MiniModel
6. distinct, nvalues, count
7. binpacking
8. cumulative, unary
9. circuit, path
10. extensional
11. channel
12. precede
The distinct Predicate

A MiniZinc constraint of pairwise difference, such as `alldifferent(X)`, can be modelled in Gecode by using its non-reifiable `distinct` predicate:

Definition (Laurière, 1978)

A `distinct([x_1, \ldots, x_n])` constraint holds if and only if all the variables `x_i` take different values.

This is equivalent to \(\frac{n(n-1)}{2} \) disequality constraints:

\[
\forall i, j \in 1..n \text{ where } i < j : x_i \neq x_j
\]

Several variants exist: see the Gecode documentation.
The nvalues Predicate

A MiniZinc constraint on the number of distinct values within an array, such as \(\text{nvalue}(m, X) \), can be modelled in Gecode by using its non-reifiable nvalues predicate:

Definition (Pachet and Roy, 1999)

An \(\text{nvalues}([x_1, \ldots, x_n], R, m) \) constraint holds if and only if the number of distinct values taken by the elements of the sequence \([x_1, \ldots, x_n]\) of variables is in relation \(R \) with the variable \(m \), where \(R \) is in \(\{<, \leq, =, \neq, \geq, >\} \):

\[
|\{x_1, \ldots, x_n\}| \ R \ m
\]

Note that \(R \) is ‘\(= \)’ for the nvalue predicate of MiniZinc.

Several variants exist: see the Gecode documentation.
The count Predicate

A MiniZinc constraint on value counts within an array, such as \texttt{global_cardinality}(X, V, C), can be modelled in Gecode by using its non-reifiable \texttt{count} predicate:

\begin{definition}[
\text{Régis}, 1996\]
A \texttt{count}([x_1, \ldots, x_n], [c_1, \ldots, c_m], [v_1, \ldots, v_m]) constraint holds if and only if each variable \(c_j \) has the number of variables \(x_i \) that take the given value \(v_j \).
\end{definition}

Several variants exist: see the Gecode documentation.
Outline

1. Constraint Programming (CP)
2. MiniZinc to Gecode
3. linear
element
4. element
5. MiniModel
distinct, nvalues, count
6. binpacking
cumulative, unary
circuit, path
extensional
channel
precede
The binpacking Predicate

A MiniZinc bin-packing constraint, such as `bin_packing_load(L, B, V)`, can be modelled in Gecode by using its non-reifiable `binpacking` predicate:

Definition

Let item i have the given weight or volume v_i.
Let variable b_i denote the bin into which item i is put.
Let variable ℓ_j denote the load of bin j.

A binpacking([\ell_1, \ldots, \ell_m], [b_1, \ldots, b_n], [v_1, \ldots, v_n]) constraint holds iff each ℓ_j is the sum of the v_i where $b_i = j$.
A MiniZinc constraint on knapsack packing, such as `knapsack(V, P, X, v, p)`, can be modelled in Gecode by using two `linear` constraints:

\[
\text{linear}(V, X, =, v) \\
\text{linear}(P, X, =, p)
\]

Recall that `linear` is reifiable.
Outline

1. Constraint Programming (CP)
2. MiniZinc to Gecode
3. linear
4. element
5. MiniModel
6. distinct, nvalues, count
7. binpacking
8. cumulative, unary
9. circuit, path
10. extensional
11. channel
12. precede
The cumulative Predicate

A MiniZinc constraint on the bounded cumulative resource requirement of tasks, such as `cumulative(S,D,R,u)`, can be modelled in Gecode by using its non-reifiable `cumulative` predicate:

Definition (Aggoun and Beldiceanu, 1993)

A \(\text{cumulative}(u,[s_1, \ldots, s_n],[d_1, \ldots, d_n],[r_1, \ldots, r_n]) \) constraint, where each task \(T_i \) has a starting time \(s_i \), a duration \(d_i \), and a resource requirement \(r_i \), holds if and only if the resource upper limit \(u \) is never exceeded when performing the tasks \(T_i \).

Several variants exist: see the Gecode documentation.
The unary Predicate

A MiniZinc temporal non-overlap constraint on tasks, such as \texttt{disjunctive}(S,D), can be modelled in Gecode by using its non-reifiable unary predicate, so called because it applies to tasks requiring a unary resource:

\begin{definition}[Carlier, 1982]
\begin{align*}
\text{A } & \text{unary}([s_1, \ldots, s_n], [d_1 \ldots, d_n]) \text{ constraint, where each task } T_i \text{ has a starting time } s_i \text{ and a duration } d_i, \text{ holds if and only if no two tasks } T_i \text{ and } T_j \text{ overlap in time.}
\end{align*}
\end{definition}

Several variants exist: see the Gecode documentation.
Outline

1. Constraint Programming (CP)
2. MiniZinc to Gecode
3. linear
4. element
5. MiniModel
6. distinct, nvalues, count
7. binpacking
8. cumulative, unary
9. circuit, path
10. extensional
11. channel
12. precede
The circuit Predicate

A MiniZinc constraint on a Hamiltonian circuit, such as `circuit(S)`, can be modelled in Gecode by using its non-reifiable `circuit` predicate:

Definition (Laurière, 1978)

A `circuit([s₁, ..., sₙ])` constraint holds iff the arcs `i → sᵢ` form a Hamiltonian circuit in the graph defined by the domains of the variables `sᵢ`:

- each vertex is visited exactly once.

Several variants exist: see the Gecode documentation.
No Subcircuit, but a Path Predicate

A MiniZinc constraint `subcircuit(S)` can be modelled in Gecode as in its MiniZinc default definition, which is actually used by the Gecode backend to MiniZinc.

A MiniZinc constraint on a Hamiltonian path, such as `circuit(S) \ S[t] = f`, can be modelled in Gecode by using its non-reifiable `path` predicate:

Definition

A `path([s_1, \ldots, s_n], f, t)` constraint holds iff the arcs `i \rightarrow s_i` form a Hamiltonian path from vertex `f` to vertex `t` in the graph defined by the domains of the variables `s_i`:

- each vertex is visited exactly once.

Several variants exist: see the Gecode documentation.
Outline

1. Constraint Programming (CP)
2. MiniZinc to Gecode
3. linear
4. element
5. MiniModel
6. distinct, nvalues, count
7. binpacking
8. cumulative, unary
9. circuit, path
10. extensional
11. channel
12. precede
The extensional Predicate

A MiniZinc constraint on membership in a table T or regular language, such as $\text{table}(X,T)$ or $\text{regular}(X,R)$, where R is a regular expression or a deterministic finite automaton (DFA) defining a regular language, is modelled in Gecode by using its reifiable extensional predicate:

Definition

An extensional$([x_1, \ldots, x_n], R)$ constraint holds if and only if the values taken by the sequence $[x_1, \ldots, x_n]$ of variables form a row of the 2d table R of constants or form a string that belongs to the regular language accepted by the regular expression (when using MiniModel) or DFA R.

Several variants exist: see the Gecode documentation.
Outline

1. Constraint Programming (CP)
2. MiniZinc to Gecode
3. linear
4. element
5. MiniModel
6. distinct, nvalues, count
7. binpacking
8. cumulative, unary
9. circuit, path
10. extensional
11. channel
12. precede
The channel Predicate

A MiniZinc constraint on two arrays representing a function and its inverse, such as \texttt{inverse(X, Y)}, can be modelled in Gecode by using its non-reifiable \texttt{channel} predicate:

\textbf{Definition}

A \texttt{channel}([x_1, \ldots, x_n], [y_1, \ldots, y_n]) constraint holds iff:

$$\forall i, j \in 1..n : x_i = j \iff y_j = i$$

Several variants exist: see the Gecode documentation.
Outline

1. Constraint Programming (CP)
2. MiniZinc to Gecode
3. linear
4. element
5. MiniModel
6. distinct, nvalues, count
7. binpacking
8. cumulative, unary
9. circuit, path
10. extensional
11. channel
12. precede
The precede Predicate

A MiniZinc constraint \(\text{value_precede}(v, w, X) \) and its generalisation \(\text{value_precede_chain}(V, X) \), which are useful for breaking value symmetries, can be modelled in Gecode by using its non-reifiable \(\text{precede} \) predicate:

Definition

A \(\text{precede}([x_1, \ldots, x_n], v, w) \) constraint holds iff the first occurrence, if any, of value \(v \) precedes the first occurrence, if any, of value \(w \) among the variables \(x_i \).

Definition

A \(\text{precede}([x_1, \ldots, x_n], [v_1, \ldots, v_m]) \) constraint holds iff the first occurrence, if any, of every value \(v_i \) precedes the first occurrence, if any, of value \(v_{i+1} \) among the variables \(x_i \).