Topic 10: Modelling for SAT and SMT
(Version of 14th December 2016)

Jean-Noël Monette

ASTRA Research Group
on Combinatorial Optimisation
Uppsala University
Sweden

Course 1DL449:
Modelling for Combinatorial Optimisation
Outline

1. SAT and SMT

2. Encoding into SAT

3. Modelling for SAT and SMT in MiniZinc

4. Case Study
 Graph Colouring
Outline

1. SAT and SMT

2. Encoding into SAT

3. Modelling for SAT and SMT in MiniZinc

4. Case Study
 Graph Colouring
Revisit the slides on Boolean satisfiability (SAT) and SAT modulo theories (SMT) of Topic 7: Solving Technologies.
Revisit the slides on Boolean satisfiability (SAT) and SAT modulo theories (SMT) of Topic 7: Solving Technologies.

SAT using MiniZinc:
The currently only SAT backend, `mzn-g12sat`, allows only Boolean decision variables:

- One must manually transform a model with integer variables (see the next slides), just like when directly using a SAT solver. This will probably be automated in a future release of the MiniZinc toolchain.

- One can already flatten a model with set variables using the option `-Gnosets`.
Revisit the slides on Boolean satisfiability (SAT) and SAT modulo theories (SMT) of Topic 7: Solving Technologies.

SAT using MiniZinc:
The currently only SAT backend, `mzn-g12sat`, allows only Boolean decision variables:

- One must manually transform a model with integer variables (see the next slides), just like when directly using a SAT solver. This will probably be automated in a future release of the MiniZinc toolchain.

- One can already flatten a model with set variables using the option `-GnoSets`.

SMT using MiniZinc:

- The backend `fzn2smt` transforms a FlatZinc model into the SMTlib language, which is understood by most SMT solvers, such as CVC4, Yices, and Z3.

- All predicates are decomposed by the flattening.
Outline

1. SAT and SMT
2. Encoding into SAT
3. Modelling for SAT and SMT in MiniZinc
4. Case Study
 Graph Colouring
Encoding into SAT

Challenges:

- How to encode an integer variable into a collection of Boolean variables?
- How to encode a constraint on integer variables into a collection of constraints on Boolean variables?
- How to transform a constraint on Boolean variables into clausal form? Most solvers do this for you.
Encoding into SAT

Challenges:

- How to encode an integer variable into a collection of Boolean variables?
- How to encode a constraint on integer variables into a collection of constraints on Boolean variables?
- How to transform a constraint on Boolean variables into clausal form? Most solvers do this for you.

Considerations:

- We want few variables.
- We want few clauses.
Encoding into SAT

Challenges:

- How to encode an integer variable into a collection of Boolean variables?
- How to encode a constraint on integer variables into a collection of constraints on Boolean variables?
- How to transform a constraint on Boolean variables into clausal form? Most solvers do this for you.

Considerations:

- We want few variables.
- We want few clauses.

As usual, there are many possibilities and it is not always clear what is the best choice.
Encoding an Integer Variable

Well-known encodings, described on the next three slides:

- **Direct (or sparse) encoding:**
 a Boolean variable for each equality with a value.

- **Order encoding:**
 a Boolean variable for each inequality with a value.

- **Direct + order encoding:**
 channel between the direct and order encodings.

- **Bit (or binary) encoding:**
 a Boolean variable for each bit in the base-2 representation of the domain values [not covered here].
Direct Encoding of an Integer Variable

Consider an integer variable x with domain $1..n$:

- Create a Boolean variable $b_{x=k}$ for all k in $1..n$.
- The variable $b_{x=k}$ is true if and only if $x = k$ holds.
- Consistency constraints:

 - At least one value: $\bigvee_{k \in 1..n} b_{x=k}$
 - At most one value: $\bigwedge_{j,k \in 1..n, j<k} \neg (b_{x=j} \land b_{x=k})$
Direct Encoding of an Integer Variable

Consider an integer variable x with domain $1..n$:

- Create a Boolean variable $b_{x=k}$ for all k in $1..n$.
- The variable $b_{x=k}$ is true if and only if $x = k$ holds.
- Consistency constraints:
 - At least one value: $\bigvee_{k \in 1..n} b_{x=k}$
 - At most one value: $\bigwedge_{j,k \in 1..n, j<k} \neg (b_{x=j} \land b_{x=k})$
- There are n variables, $n \cdot (n - 1)/2$ binary clauses, and one n-ary clause.
Direct Encoding of an Integer Variable

Consider an integer variable x with domain $1..n$:

- Create a Boolean variable $b_{[x=k]}$ for all k in $1..n$.
- The variable $b_{[x=k]}$ is true if and only if $x = k$ holds.
- Consistency constraints:
 - At least one value: $\bigvee_{k \in 1..n} b_{[x=k]}$
 - At most one value: $\bigwedge_{j,k \in 1..n, j<k} \neg (b_{[x=j]} \land b_{[x=k]})$

- There are n variables, $n \cdot (n - 1)/2$ binary clauses, and one n-ary clause.
- The constraint $x \neq k$ is encoded as $\neg b_{[x=k]}$.
- The constraint $x < k$ is encoded as $\bigwedge_{j \in k..n} \neg b_{[x=j]}$.
Order Encoding of an Integer Variable

Consider an integer variable \(x \) with domain \(1..n \):

- Create a Boolean variable \(b_{[x \geq k]} \) for all \(k \) in \(1..(n + 1) \).
- The variable \(b_{[x \geq k]} \) is true if and only if \(x \geq k \) holds.
- Consistency constraints:

 - Order: \(\bigwedge_{k \in 1..n} (b_{[x \geq k]} \lor \neg b_{[x \geq k+1]}) \)
 - Bounds: \(b_{[x \geq 1]} \land \neg b_{[x \geq n+1]} \)
Order Encoding of an Integer Variable

Consider an integer variable x with domain $1..n$:

- Create a Boolean variable $b_{x\geq k}$ for all k in $1..(n + 1)$.
- The variable $b_{x\geq k}$ is true if and only if $x \geq k$ holds.
- Consistency constraints:
 - Order: $\bigwedge_{k \in 1..n} (b_{x\geq k} \lor \neg b_{x\geq k+1})$
 - Bounds: $b_{x\geq 1} \land \neg b_{x\geq n+1}$
- There are $n + 1$ variables and n binary clauses.
Order Encoding of an Integer Variable

Consider an integer variable x with domain $1..n$:

- Create a Boolean variable $b_{[x \geq k]}$ for all k in $1..(n + 1)$.
- The variable $b_{[x \geq k]}$ is **true** if and only if $x \geq k$ holds.

Consistency constraints:

- **Order:** $\bigwedge_{k \in 1..n} (b_{[x \geq k]} \lor \neg b_{[x \geq k+1]})$
- **Bounds:** $b_{[x \geq 1]} \land \neg b_{[x \geq n+1]}$

- There are $n + 1$ variables and n binary clauses.
- The constraint $x = k$ is encoded as $b_{[x \geq k]} \land \neg b_{[x \geq k+1]}$.
- The constraint $x \neq k$ is encoded as $\neg b_{[x \geq k]} \lor b_{[x \geq k+1]}$.
- The constraint $x < k$ is encoded as $\neg b_{[x \geq k]}$.
Direct + Order Encoding of Integer Variable

- Channelling constraints:

\[\bigwedge_{k \in 1..n} (b_{[x=k]} \iff (b_{[x\geq k]} \land \neg b_{[x\geq k+1]})) \]

- Reminder: \(\alpha \iff \beta \) is equivalent to \((\neg \alpha \lor \beta) \land (\alpha \lor \neg \beta)\).

- Channelling constraints in clausal form:

\[\bigwedge_{k \in 1..n} ((\neg b_{[x=k]} \lor b_{[x\geq k]}) \land (\neg b_{[x=k]} \lor \neg b_{[x\geq k+1]}) \land (b_{[x=k]} \lor \neg b_{[x\geq k]} \lor b_{[x\geq k+1]})) \]

- There are \(2 \cdot n \) new binary and \(n \) new ternary clauses.
A constraint encoding is a constraint decomposition in clausal form.

Many possibilities exist for each constraint predicate.

There is a lot of research on how to encode constraints.

There are two general approaches:

- encode solutions;
- encode non-solutions.

Constraint encodings depend on the variable encoding.
Encoding Simple Constraints of Arity > 1

Constraint $x = y$, both variables with domain $1..n$:

- **Direct encoding:** $\bigwedge_{k \in 1..n} (b_{x=k} \iff b_{y=k})$
- **Order encoding:** $\bigwedge_{k \in 1..n} (b_{x\geq k} \iff b_{y\geq k})$

Constraint $x \neq y$, both variables with domain $1..n$:

- **Direct encoding:** $\bigwedge_{k \in 1..n} (\neg b_{x=k} \lor \neg b_{y=k})$
- **Order encoding:**

$$\bigwedge_{k \in 1..n} (\neg b_{x\geq k} \lor b_{x\geq k+1} \lor \neg b_{y\geq k} \lor b_{y\geq k+1})$$
Constraint $x \leq y$, both variables with domain $1..n$:

- Direct encoding: \[\bigwedge_{k \in 1..n} \left(\neg b[x=k] \lor \bigvee_{j \in k..n} b[y=j] \right) \]

- Order encoding: \[\bigwedge_{k \in 1..n} \left(\neg b[x \geq k] \lor b[y \geq k] \right) \]

Constraint $x + c = y$, with $x \in 1..n$ and $y \in (1 + c)..(n + c)$:

- Direct encoding: \[\bigwedge_{k \in 1..n} \left(b[x=k] \iff b[y=k+c] \right) \]

- Order encoding: \[\bigwedge_{k \in 1..n} \left(b[x \geq k] \iff b[y \geq k+c] \right) \]
Encoding \texttt{alldifferent}

How to encode \texttt{alldifferent}([X_1, \ldots, X_m]), where all the variables have domain 1..n, with usually \(m \leq n \)?
Encoding **alldifferent**

How to encode $\text{alldifferent}([X_1, \ldots, X_m])$, where all the variables have domain $1..n$, with usually $m \leq n$?

- **Approach 1:** Decompose alldifferent into binary disequalities, and encode each disequality separately.
Encoding \texttt{alldifferent}

How to encode \texttt{alldifferent}([X_1, \ldots, X_m]), where all the variables have domain 1..n, with usually \(m \leq n \)?

- \textbf{Approach 1:} Decompose \texttt{alldifferent} into binary disequalities, and encode each disequality separately.

- \textbf{Approach 2:} Each value is taken by at most one var:
 - Use a decomposition into binary clauses, like in the direct encoding: this actually boils down to Approach 1.
 - Use a ladder encoding: see the next slide.
Ladder Encoding for \texttt{alldifferent}

- Add a Boolean variable A_{ik} for each $i \in 0..m$ & $k \in 1..n$.
- Variable A_{ik} is \textbf{true} iff one of X_1, \ldots, X_i has value k.
- Constraints:
 - Consistency:
 \[
 \bigwedge_{k \in 1..n} \bigwedge_{i \in 1..m} \left(\neg A_{(i-1)k} \lor A_{ik} \right)
 \]
 - Channelling:
 \[
 \bigwedge_{k \in 1..n} \bigwedge_{i \in 1..m} \left(B_{[X_i=k]} \iff \left(\neg A_{(i-1)k} \land A_{ik} \right) \right)
 \]
Comparison of alldifferent Encodings

Decomposition encoding:

- The decomposition has $\frac{m \cdot (m-1)}{2}$ binary disequalities.
- Each disequality is encoded by n binary clauses.
- Total: $\frac{n \cdot m \cdot (m-1)}{2}$ binary clauses.
Comparison of \textit{alldifferent} Encodings

Decomposition encoding:

- The decomposition has $\frac{m \cdot (m-1)}{2}$ binary disequalities.
- Each disequality is encoded by n binary clauses.
- Total: $\frac{n \cdot m \cdot (m-1)}{2}$ binary clauses.

Ladder encoding:

- First part: $n \cdot m$ binary clauses.
- Second part: $2 \cdot n \cdot m$ binary and $n \cdot m$ ternary clauses.
- Total: $4 \cdot n \cdot m$ clauses with 2 or 3 literals.
Outline

1. SAT and SMT
2. Encoding into SAT
3. Modelling for SAT and SMT in MiniZinc
4. Case Study
 Graph Colouring
Some Guidelines

Use higher-level variable types (sets, . . .), even if not supported by the SAT or SMT backend.

- They enable the use of carefully designed encodings.
- It is easier for the modeller to reason about them.
Some Guidelines

Use higher-level variable types (sets, ...), even if not supported by the SAT or SMT backend.

- They enable the use of carefully designed encodings.
- It is easier for the modeller to reason about them.

Use global constraint predicates, even if not supported by the SAT or SMT backend.

- They enable the use of carefully designed encodings.
- It is easier for the modeller to reason about them.
Add implied constraints:

- They may reduce the search space a lot

- This might be redundant with the clause-learning mechanisms of modern SAT and SMT solvers.
Add implied constraints:

- They may reduce the search space a lot

- This might be redundant with the clause-learning mechanisms of modern SAT and SMT solvers.

Add symmetry-breaking constraints:

- They may reduce the search space a lot.
Add implied constraints:

- They may reduce the search space a lot
- This might be redundant with the clause-learning mechanisms of modern SAT and SMT solvers.

Add symmetry-breaking constraints:

- They may reduce the search space a lot.

Limit the number of SMT theories used:

- Using several theories may decrease the inference power of the solver.
Outline

1. SAT and SMT
2. Encoding into SAT
3. Modelling for SAT and SMT in MiniZinc
4. Case Study
 Graph Colouring
Outline

1. SAT and SMT
2. Encoding into SAT
3. Modelling for SAT and SMT in MiniZinc
4. Case Study
 Graph Colouring
Given a graph (V, E), colour each vertex so that adjacent vertices have different colours, using at most n colours.

Model 2, MiniZinc/CP/LCG-style

Variable $C[v]$ in $1..n$ is k iff vertex v has colour k.

1. One colour per vertex: enforced by choice of variables.
2. Different colours on edge ends:

 $$\forall (u, v) \in E \ (C[u] \neq C[v])$$

Give SAT and SMT flattenings of this model!