Topic 3: Constraint Predicates
(Version of 27th October 2018)

Pierre Flener, Gustav Björdal, and Jean-Noël Monette

Optimisation Group
Department of Information Technology
Uppsala University
Sweden

Course 1DL441:
Combinatorial Optimisation and Constraint Programming,
whose part 1 is Course 1DL451:
Modelling for Combinatorial Optimisation
Outline

1. Motivation
2. alldifferent
3. nvalue
4. global_cardinality
5. element
6. bin_packing
7. knapsack
8. cumulative, disjunctive
9. circuit, subcircuit
10. lex_lesseq
11. regular, table
Outline

1. Motivation
2. alldifferent
3. nvalue
4. global_cardinality
5. element
6. bin_packing
7. knapsack
8. cumulative, disjunctive
9. circuit, subcircuit
10. lex_lesseq
11. regular, table
Examples

Let A be a 1d array of variables, say with indices in $1..n$:

- An **alldifferent** (A) constraint holds if and only if (iff) all the elements of A take different values:
 \[
 \text{forall}(i, j \text{ in } 1..n \text{ where } i < j)(A[i] \neq A[j]).
 \]

- An **at_least** (c, A, v) constraint holds iff at least c elements of A take the value v, where c is an integer:
 \[
 c \leq (\text{sum}(i \text{ in } 1..n)(\text{bool2int}(A[i]=v))).
 \]

- A **count_leq** (A, v, c) or $c \leq \text{count}(A, v)$ constraint has the semantics of **at_least** (c, A, v), but v and c can even be variables.

- All prior uses of $\text{count}(A, v) \sim c$ had non-variables v and c, with $\sim \in \{\leq, =, \geq\}$, and should thus be reformulated respectively as **at_most** (c, A, v), **exactly** (c, A, v), and **at_least** (c, A, v): always use the predicate with the most specific type signature!
Motivation

Definition

A definition of a constraint predicate is its semantics, stated in MiniZinc in terms of usually simpler constraint predicates.

Definition

Each use of a predicate is decomposed during flattening by inlining either its MiniZinc-provided default definition or an overriding backend-provided solver-specific definition.
Motivation:

+ More compact and intuitive models, because more expressive predicates are available: islands of common combinatorial structure are identified in declarative medium-level abstractions.

+ Faster solving, due to better *inference* and *relaxation*, enabled by more global information in the model, provided the predicate is a built-in of the used solver.

Enabling constraint-based modelling:

- Constraint predicates over *any* number of variables go by many names: *global-constraint predicates*, *combinatorial-constraint predicates*, ...

Outline

1. Motivation
2. alldifferent
3. nvalue
4. global_cardinality
5. element
6. bin_packing
7. knapsack
8. cumulative, disjunctive
9. circuit, subcircuit
10. lex_lesseq
11. regular, table
The **alldifferent** Predicate

Definition (Laurière, 1978)

An *alldifferent* \((A)\) constraint, where \(A\) is a 1d array of variables, holds if and only if all the elements of \(A\) take different values.

Its default definition in MiniZinc is a conjunction of \(\frac{n \cdot (n-1)}{2}\) disequality constraints when \(A\) has \(n\) elements:

\[
\text{forall}(i, j \text{ in index_set}(A) \text{ where } i < j)(A[i] \neq A[j])
\]

Examples

- *n*-queens problem: see Topic 1: Introduction.
- Photo problem: see Topic 2: Basic Modelling.

An *alldifferent_except_0* \((A)\) constraint however allows multiple occurrences of the special dummy value 0.
Outline

1. Motivation
2. alldifferent
3. nvalue
4. global_cardinality
5. element
6. bin_packing
7. knapsack
8. cumulative, disjunctive
9. circuit, subcircuit
10. lex_lesseq
11. regular, table
The \texttt{nvalue} Predicate

\textbf{Definition (Pachet and Roy, 1999)}

An \texttt{nvalue}(m,A) constraint holds if and only if variable m takes the number of distinct values taken by the elements of the 1d array A of variables, say with indices in $1 \ldots n$:

$$|\{A[1], \ldots, A[n]\}| = m$$

The \texttt{nvalue}(A) expression denotes the number of distinct values taken by the elements of the 1d array A of variables.

\textbf{Note:} \texttt{alldifferent}(A) \textit{iff} \texttt{nvalue}(n,A), when A has size n: always use the most specific available predicate!

\textbf{Example}

Model 2 of the Warehouse Location Problem:
see Topic 6: Case Studies.
Outline

1. Motivation
2. alldifferent
3. nvalue
4. global_cardinality
5. element
6. bin_packing
7. knapsack
8. cumulative, disjunctive
9. circuit, subcircuit
10. lex_lesseq
11. regular, table
The **global_cardinality** Predicate

Definition (Régin, 1996)

A global_cardinality(A, V, C) constraint holds iff each variable $C[j]$ has the number of elements of the 1d array A of variables that take value $V[j]$. Variants exist.

Its default definition in MiniZinc is:

$$\forall j \in \text{index_set}(V) \left(\text{count}(A, V[j]) = C[j] \right)$$

It means alldifferent(A) when $\text{dom}(C[j]) = \{0, 1\}$ for all j and $V = \bigcup_{i=1}^{n} \text{dom}(A[i])$, if A has indices in $1..n$.

Always use the most specific predicate!

Example

Model of the Magic Series problem: see Topic 4: Modelling.
Outline

1. Motivation
2. alldifferent
3. nvalue
4. global_cardinality
5. element
6. bin_packing
7. knapsack
8. cumulative, disjunctive
9. circuit, subcircuit
10. lex_lesseq
11. regular, table
The **element** Predicate

Definition (Van Hentenryck and Carillon, 1988)

An **element** \((i, A, e)\) constraint, where:
- \(A\) is an array of variables,
- \(i\) is an integer variable, and
- \(e\) is a variable,

holds if and only if \(A[i] = e\).

For better model readability, the **element** predicate should not be used, as the functional form \(A[\phi]\) is allowed, even if \(\phi\) is an integer expression involving at least one variable.

Example (Job allocation at minimal salary cost)

Given jobs Jobs and the salaries of work applicants Apps, *find* a work applicant for each job *such that* some constraints (on the qualifications of the work applicants for the jobs, on workload distribution, etc) are satisfied and the total salary cost is minimal:

1. `array[Apps] of int: Salary;`
2. `array[Jobs] of var Apps: Worker; % job j by Worker[j]`
3. `solve minimize sum(j in Jobs)(Salary[Worker[j]]);`
4. `constraint ...; % qualifications, workload, etc`

Line 3 is equivalent to the less readable formulation

```
array[Jobs] of var 0..max(Salary): Cost; % Cost[$j$] for job $j$
constraint forall($j$ in Jobs) (element(Worker[$j$],Salary,Cost[$j$]));
solve minimize sum(Cost);
```

We do not know at modelling time the worker of each job!
Outline

1. Motivation
2. alldifferent
3. nvalue
4. global_cardinality
5. element
6. bin_packing
7. knapsack
8. cumulative, disjunctive
9. circuit, subcircuit
10. lex_lesseq
11. regular, table
The **bin_packing_load** Predicate

Definition

Let item i have the given weight or volume $V[i]$. Let variable $B[i]$ denote the bin into which item i is put. Let variable $L[b]$ denote the load of bin b. A $bin_packing_load(L, B, V)$ constraint holds iff each $L[b]$ is the sum of the $V[i]$ where $B[i]$ equals b. Variant predicates exist.

Example (Balanced academic curriculum problem)

Given, for each course c in Courses, a workload $W[c]$ and a set $Pre[c]$ of prerequisite courses, find a semester $Sem[c]$ in 1..n for each course c in order to satisfy all the prerequisites under a balanced workload:

1. `constraint bin_packing(sum(W) div n, Sem, W);`
2. `constraint forall(c in Courses, p in Pre[c])(Sem[p]<Sem[c]);`
Outline

1. Motivation
2. alldifferent
3. nvalue
4. global_cardinality
5. element
6. bin_packing
7. knapsack
8. cumulative, disjunctive
9. circuit, subcircuit
10. lex_lesseq
11. regular, table
The knapsack Predicate

Definition

Let item type t have the given weight or volume $V[t]$. Let item type t have the given value or profit $P[t]$. Let the variable $X[t]$ denote the number of items of type t that are put into a given knapsack. Let the variables v and p respectively denote the total volume and total profit of what is in the knapsack.

Given n item types, a knapsack(V, P, X, v, p) constraint holds iff

$$\sum_{t \in 1..n}(V[t] \times X[t]) = v$$

and

$$\sum_{t \in 1..n}(P[t] \times X[t]) = p.$$

Example

To model the Knapsack Problem for a knapsack of given capacity c, add $v \leq c$ and maximize p.
Example (https://xkcd.com/287)

A simplified version of the Knapsack Problem, but still NP-complete.

```plaintext
1 array[1..6] of int: Cost = [215, 275, 335, 355, 420, 580];
2 array[1..6] of int: Profit = [0, 0, 0, 0, 0, 0];
3 array[1..6] of var 0..10: Amount;
4 constraint knapsack(Cost, Profit, Amount, 1505, 0);
5 solve satisfy;
```

See this [interview](https://xkcd.com/287) for some interesting trivia.
Outline

1. Motivation
2. alldifferent
3. nvalue
4. global_cardinality
5. element
6. bin_packing
7. knapsack
8. cumulative, disjunctive
9. circuit, subcircuit
10. lex_lesseq
11. regular, table
Assume we want to schedule a set of tasks to be performed over a given period such that we have the \textbf{earliest} end.

\begin{definition}
A \textbf{task} T_i is a triple $\langle S[i], D[i], R[i] \rangle$ of constants or variables, where:
- $S[i]$ is the starting time of task T_i
- $D[i]$ is the duration of task T_i
- $R[i]$ is the quantity of a global resource needed by T_i

Tasks may be run in parallel if the global resource suffices.
\end{definition}

Sample schedule with parallel tasks and bounded resource
Definition

A *precedence constraint* of task T_1 on task T_2 expresses that the performing of T_1 must finish **before** T_2 can start. We say that task T_1 **precedes** task T_2.

Example (courtesy Magnus Ågren)

Sample tasks (bubbles), durations (black numbers), resource requirements (blue numbers), and precedences (orange arrows). Task T7 is a dummy task, as we do not know which of tasks T5 and T6 will finish last.
Let us temporarily ignore the bounded global resource: If we have an unlimited global resource or each task has its own local resource, then the polynomial-time-solvable problem of finding the earliest ending time, under only the precedence constraints, for performing all the tasks can be modelled using linear inequalities.

Example (continued)

The precedence constraints indicated by the orange arrows on slide 23 are modelled as follows, based on the task durations indicated there in black:

```plaintext
1 constraint D = [2,1,4,2,3,1,0];
6 % add here the resource constraints of the next slide
7 solve minimize S[7];
```
The **cumulative** Predicate

Definition (Aggoun and Beldiceanu, 1993)

A `cumulative(S,D,R,u)` constraint, where each task T_i has a starting time $S[i]$, a duration $D[i]$, and a resource requirement $R[i]$, holds if and only if the resource upper limit u is never exceeded when performing the T_i.

`cumulative` does not ensure any precedence constraints between the tasks: these have to be stated separately.

Example (end)

To ensure that the global resource capacity of $u = 8$ units, say, is never exceeded under the resource requirements of the tasks indicated in blue on slide 23, add the following:

```latex
1 \text{constraint } R = [1,3,3,2,4,6,0];
2 \text{constraint } \text{cumulative}(S,D,R,8);
```
The **disjunctive** Predicate

Definition

A non-overlap constraint between tasks T_1 and T_2 states that either T_1 precedes T_2 or T_2 precedes T_1, say because both tasks require a resource that is available only for one task at a time. We say that tasks T_1 and T_2 do not overlap.

Definition (Carlier, 1982)

A disjunctive (S, D) constraint, where each task T_i has a starting time $S[i]$ and a duration $D[i]$, holds if and only if no tasks T_i and T_j overlap. It has the following definitions:

- **forall**$(i,j \text{ in } 1..n \text{ where } i<j)$

 $((S[i]+D[i]<=S[j]) \lor (S[j]+D[j]<=S[i]))$

- **cumulative**$(S, D, [1 \mid i \text{ in } 1..n], 1)$

Always use the most specific available constraint predicate!
Outline

1. Motivation
2. alldifferent
3. nvalue
4. global_cardinality
5. element
6. bin_packing
7. knapsack
8. cumulative, disjunctive
9. circuit, subcircuit
10. lex_lelesseq
11. regular, table
Enabling the representation of a circuit in a digraph:

- Let variable $S[v]$ represent the successor of vertex v.
- The domain of $S[v]$ is the set of vertices w such that there is an arc from vertex v to w, plus v itself.

Example

```plaintext
enum Vertices = {a, b, c, d};
array[Vertices] of var Vertices: S;
constraint S[a] != d /\
      S[d] != c;
```

Assume the successor variables in S take these values:

- $[b, c, d, a]$: one circuit $a \rightarrow b \rightarrow c \rightarrow d \rightarrow a$
- $[c, a, b, d]$: one subcircuit $a \rightarrow c \rightarrow b \rightarrow a$ and $S[d]=d$
- $[a, b, c, d]$: one empty subcircuit: $S[v]=v$ for all v in $Vertices$
- $[c, d, a, b]$: two subcircuits, namely $a \rightarrow c \rightarrow a$ and $b \rightarrow d \rightarrow b$
- $[b, d, a, d]$: $c \rightarrow a \rightarrow b \rightarrow d$ is not a (sub)circuit
The circuit and subcircuit Predicates

Definition (Laurièrè’78; Beldiceanu & Contejean’94)

A circuit \(S\) constraint holds iff the arcs \(v \rightarrow S[v]\) form a Hamiltonian circuit: each vertex is visited exactly once.

A subcircuit \(S\) constraint holds iff circuit \(S'\) holds for exactly one possibly empty but non-singleton subarray \(S'\) of \(S\), and \(S[v] = v\) for all the other vertices.

Examples

Travelling salesperson problem (generalise this for vehicle routing problems with multiple vehicles):

3 solve minimize \(\sum(c\ in\ Cities)(Dist[c,Next[c]])\);
4 constraint circuit(Next);

Requiring a path from vertex \(v\) to vertex \(w\):

\[
\text{constraint subcircuit}(S) \setminus S[w] = v;
\]
upon adding \(v\) to the domain of \(S[w]\) if need be.
Outline

1. Motivation
2. alldifferent
3. nvalue
4. global_cardinality
5. element
6. bin_packing
7. knapsack
8. cumulative, disjunctive
circuit, subcircuit
9. circuit, subcircuit
10. lex_lesseq
11. regular, table
The *lex_lesseq* Predicate

Example

\[
\text{lex_lesseq}([1, 2, 34, 5, 678], [1, 2, 36, 45, 78])
\]

because 34 < 36, even though not (678 < 78).

Definition

A *lex_lesseq* \((A, B)\) constraint, where \(A\) and \(B\) are same-length 1d arrays of variables, say both with indices in \(1 \ldots n\), holds iff \(A\) is lexicographically at most equal to \(B\):

- either \(n=0\), or \(A[1]<B[1]\),

Variant predicates exist.

Usage: Exploit index symmetries in matrix models, where there are matrices of variables: see Topic 4: Modelling, and see Topic 5: Symmetry.
Outline

1. Motivation
2. alldifferent
3. nvalue
4. global_cardinality
5. element
6. bin_packing
7. knapsack
8. cumulative, disjunctive
9. circuit, subcircuit
10. lex_lesseq
11. regular, table
Regular Expressions

Examples (Regular Expressions)

- $(0|1)^*0$ denotes the set of even binary numbers.
- $1^*(011^*)^*(0|\epsilon)$ denotes the set of strings of zeros and ones without consecutive zeros.
- $(0|1)^*00(0|1)^*$ denotes the set of strings of zeros and ones with consecutive zeros.

Notation for strings:

- Let ϵ denote the empty string.
- Let $v \cdot w$ denote the concatenation of strings v and w.
- Let w^i denote the concatenation of i copies of string w.
Regular Expressions and Languages

Definition

Let \(\Sigma \) be an alphabet, that is a finite set of symbols. Regular expressions over \(\Sigma \) are defined as follows:

- \(\emptyset \) is a regular expression: its language, \(\mathcal{L}(\emptyset) \), is \(\emptyset \).
- \(\epsilon \) is a regular expression: \(\mathcal{L}(\epsilon) = \{\epsilon\} \).
- If \(\sigma \in \Sigma \), then \(\sigma \) is a regular expression: \(\mathcal{L}(\sigma) = \{\sigma\} \).
- If \(r \) and \(s \) are regular expressions, then \(rs \) is a regular expression: \(\mathcal{L}(rs) = \{v \cdot w \mid v \in \mathcal{L}(r) \land w \in \mathcal{L}(s)\} \).
- If \(r \) and \(s \) are regular expressions, then \(r|s \) is a regular expression: \(\mathcal{L}(r|s) = \mathcal{L}(r) \cup \mathcal{L}(s) \).
- If \(r \) is a regular expression, then \(r^* \) is a regular expression: \(\mathcal{L}(r^*) = \{w^i \mid i \in \mathbb{N} \land w \in \mathcal{L}(r)\} \).

A regular expression defines a regular language over \(\Sigma \).
Regular Expressions

Common abbreviations for regular expressions:
Let r be a regular expression:
- $r^?$ denotes $r|\epsilon$; example in MiniZinc syntax: "12?"
- r^+ denotes rr^*; example in MiniZinc syntax: "34+
- r^4 denotes $rrrr$; example in MiniZinc syntax: "56\{4\}"
- $[1\ 2\ 3\ 4]$ denotes $1|2|3|4$; same syntax in MiniZinc
- $[5-8]$ denotes $[5\ 6\ 7\ 8]$; same syntax in MiniZinc
- $[9-11\ 14]$ denotes $[9\ 10\ 11\ 14]$; same in MiniZinc
- \ldots (see the MiniZinc documentation)

Usage: Regular expressions are good for the specification of regular languages, but not so good for reasoning on them, where one often uses finite automata instead.
Deterministic Finite Automaton (DFA)

Example (DFA A used in the subsequent examples)

![Deterministic Finite Automaton Diagram]

Conventions:
- **Start state**, marked by arc coming in from nowhere: A.
- **Accepting states**, marked by double circles: D and E.
- **Determinism**: There is one outgoing arc per symbol in alphabet $\Sigma = \{s, t\}$; missing arcs go to a non-accepting missing state that has self-loops on every symbol in Σ.
The regular Predicate

Definition (Pesant, 2004)

A regular \((A, Q, S, d, q_0, F)\) constraint holds iff the values taken by the 1d variable array \(A\) form a string of the regular language accepted by the DFA with states \(1..Q\), symbols \(1..S\), transition function \(d\) in \(1..Q \times 1..S \rightarrow 0..Q\) with missing state \(0\), start state \(q_0\), and accepting states \(F\). A regular \((A, r)\) constraint holds iff \(A\) forms a string of the regular language denoted by the regular expression \(r\).

Example

The DFA \(A\) of the previous slide is represented as follows upon encoding the states \(\{A,B,C,D,E\}\) as \(1..Q\) and the alphabet \(\{s,t\}\) as \(1..S\): we have \(Q=5\) states, \(S=2\) symbols, transition function \(d=[|2,3|4,0|5,0|0,2|3,5|]\), start state \(q_0=1\), and accepting states \(F=\{4,5\}\).
The **table** Predicate

Definition

A *table* \((A, T)\) constraint holds iff the values taken by the 1d variable array \(A\) form a row of the 2d value array \(T\).

The 2d array \(T\) gives an *extensional definition* of a new constraint predicate, as opposed to the *intensional definition* given so far for all other constraint predicates.

Example

If the variable array, say \(X\), of the *regular*(...) constraint of the previous slide for the DFA \(\mathcal{A}\) of two slides ago has four variables, then that constraint is equivalent to *table* \((X, [\mid 1,1,2,1 \mid 2,1,1,1 \mid 2,1,2,2 \mid])\).
Example (The Nonogram Puzzle: instance)

Each hint gives the sequence of lengths of **blue** blocks in its row or column, with at least one white cell between blocks, but possibly none before the first and after the last block.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>1</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example (The Nonogram Puzzle: instance)

Each hint gives the sequence of lengths of blue blocks in its row or column, with at least one white cell between blocks, but possibly none before the first and after the last block.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>1</th>
<th>2</th>
<th></th>
<th>2</th>
<th></th>
<th>1</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solution:
Example (The Nonogram Puzzle: model)

Model:

- **Variables:** An enumeration-type variable for each cell, with value w if it is to be coloured white, and value b if it is to be coloured blue.

- **Constraints:** State a `regular` constraint for each hint. For example, for a hint 2 3 1 on a row or column A of length $n \geq 8$, state the constraint

 $$\text{regular}(A, \ "w* b{2} w+ b{3} w+ b{1} w*").$$

See *Survey of Paint-by-Number Puzzle Solvers*: the straightforward model above fares well, at least with a CP solver, compared to hand-written problem-specific code.
Example (Nurse Rostering)

Each nurse is assigned each day to one of the following:

- **N** normal shift (this value is not available on Sundays)
- **L** long shift (this value is not available on Sundays)
- **S** Sunday shift (this value is only available on Sundays)
- **O** day off

The nurse labour union imposes the following regulations:

- Monday off after a Sunday shift
- No single long shifts
- One day off after two consecutive long shifts

For each nurse \(n \), state the following constraint over the scheduling horizon, say 17 weeks here:

\[
\text{regular}(\text{Roster}[n,\text{Sun}1..\text{Sat}17], \ "(S \ O \ | \ L \ L \ O \ | \ N \ | \ O)^*")
\]

Further, a hospital has constraints on nurse presence.
Example (The Kakuro Puzzle: instance)

Fill in digits of 1..9 such that the digits of each word are pairwise distinct and add up to the number to the left (for horizontal words) or on top (for vertical words) of the word.

\[
\begin{array}{ccc}
11 & 4 \\
14 & 5 & 10 \\
17 & & 3 \\
6 & & 10 & 3 \\
& 10 & & 4 \\
& 3 & & \\
& & & & 3 \\
\end{array}
\]
Example (The Kakuro Puzzle: instance)

Fill in digits of $1 \ldots 9$ such that the digits of each word are pairwise distinct and add up to the number to the left (for horizontal words) or on top (for vertical words) of the word.
Example (The Kakuro Puzzle: first model)

Model:

- **Variables:** An integer variable for each cell, with domain 1..9.

- **Constraints:** For each hint $\mathbf{K[\alpha]} + \cdots + \mathbf{K[\beta]} = \mathbf{\sigma}$, state `alldifferent(i in \alpha..\beta)(\mathbf{K[i]}) \land \sum(i in \alpha..\beta)(\mathbf{K[i]}) = \mathbf{\sigma}`.

Performance, using a CP solver:

- 22 x 14 Kakuro with 114 hints: 9638 nodes, 160 s

- 90 x 124 Kakuro with 4558 hints: ? nodes, ? years

Symptom: The decomposition may give weak inference: for $x \neq y \land x+y=4$, CP inference gives $x, y \in 1..3$, not noticing that 2 should be pruned from both domains. We may need a custom predicate `alldifferent_sum`, constraining up to 9 variables over the domain 1..9.
Example (The Kakuro Puzzle: second model)

New model: Use the `regular` or `table` predicate for the `alldifferent` and `sum`-based constraints of each hint?

- For the hint \(x+y=4\): `regular([x, y], "13|31")`.
- For the hint \(y+z=3\): `regular([y, z], "12|21")`.
- One can also use `table` instead:

  ```
  table([x, y], [|1, 3|3, 1|]) /
  table([y, z], [|1, 2|2, 1|]).
  ```

- What about the hint \(K[\alpha] + \cdots + K[\alpha+8] = 45\)?
 There are \(9! = 362,880\) solutions...
Example (The Kakuro Puzzle: second model, end)

New model (end):

- For the hint $K[\alpha] + \cdots + K[\alpha+8] = 45$, it suffices to state `alldifferent(i in \alpha..\alpha+8)(K[i])`, as the sum of 9 distinct non-0 digits is necessarily 45.

- For the hint $K[\alpha] + \cdots + K[\alpha+7] = \sigma$, it suffices to state `alldifferent([K[i]|i in \alpha..\alpha+7]++[45-\sigma])`.

- For the hint $K[\alpha] = \sigma$, it suffices to state $K[\alpha] = \sigma$.

Other opportunities for improvement exist.

New performance, using a CP solver:

- 22×14 Kakuro with 114 hints: 0 search nodes, 28 ms!

- 90×124 Kakuro with 4558 hints: 0 nodes, 345 ms!

Published diabolically hard Kakuros (like the 22×14 one mentioned above) where the new model pays off are rare.

The Kakuro story is based on material by Christian Schulte.
When to Use These Predicates?

Rapid prototyping of a new constraint predicate:
The *regular* and *table* predicates are very useful in the following conjunctive situation:

- A needed constraint predicate γ on a 1d array of variables is not a built-in of the used solver.
- A definition of γ in terms of built-in predicates is not obvious to the modeller, or it has turned out that its *inference* is too expensive or weak.
- The modeller does not have the time or skill to design an *inference* algorithm for γ, or deems γ not reusable.
- The complexity and strength of an *inference* algorithm for γ are not deemed crucial for the time being.
Important Modelling Device

Example (Encoding a small function)

The constraint $x \times x = y$, where there is exactly one y for every x, may yield poor inference: for x in $1 \ldots 6$, say, try $\text{element}(x, [1, 4, 9, 16, 25, 36], y)$, that is $[1, 4, 9, 16, 25, 36][x] = y$, for better inference.

The element predicate is a specialisation of regular and table, just like a function is a special case of a relation.

Example (Encoding a small relation)

The constraint $x \times x = \text{abs}(y)$, where there can be more than one y for every x, and vice-versa, may yield poor inference: for x in $0 \ldots 3$, say, try the less readable $\text{table}([x, y], \begin{bmatrix} 0 & 0 & 1 & -1 & 1 & 1 & 2 & -4 & 2 & 4 & 3 & -9 & 3 & 9 \end{bmatrix})$ for better inference (maybe not with a MIP solver).
Bibliography

Pesant, Gilles.
A regular language membership constraint for finite sequences of variables.

Hopcroft, John E.; Motwani, Rajeev; Ullman, Jeffrey D.
Intro. to Automata Theory, Languages, & Computation.