
Topic 1: Introduction 1

(Version of 23rd October 2023)

Pierre Flener and Jean-Noël Monette

Optimisation Group
Department of Information Technology

Uppsala University
Sweden

Course 1DL442:
Combinatorial Optimisation and Constraint Programming,

whose part 1 is Course 1DL451:
Modelling for Combinatorial Optimisation

1Based partly on material by Guido Tack

https://user.it.uu.se/~pierref
https://www.it.uu.se/research/group/optimisation

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Optimisation

Optimisation is a science of service:
to scientists, to engineers, to artists, and to society.

COCP/M4CO 1 - 2 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

MiniZinc Challenge 2015: Some Problems and Winners
Problem and Model Backend and Solver Technology
Costas array Mistral CP
capacitated VRP iZplus hybrid
GFD schedule Chuffed LCG
grid colouring MiniSAT(ID) hybrid
instruction scheduling Chuffed LCG
large scheduling Google OR-Tools.cp CP
application mapping JaCoP CP
multi-knapsack mzn-cplex MIP
portfolio design fzn-oscar-cbls CBLS
open stacks Chuffed LCG
project planning Chuffed LCG
radiation mzn-gurobi MIP
satellite management mzn-gurobi MIP
time-dependent TSP G12.FD CP
zephyrus configuration mzn-cplex MIP

COCP/M4CO 1 - 3 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Outline

1. Constraint Problems

2. Combinatorial Optimisation

3. Modelling (in MiniZinc)

4. Solving

5. The MiniZinc Toolchain

6. Course Information
Part 1: Modelling for Combinatorial Optimisation
Part 2: Combinatorial Optimisation and CP
Contact

COCP/M4CO 1 - 4 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Outline

1. Constraint Problems

2. Combinatorial Optimisation

3. Modelling (in MiniZinc)

4. Solving

5. The MiniZinc Toolchain

6. Course Information
Part 1: Modelling for Combinatorial Optimisation
Part 2: Combinatorial Optimisation and CP
Contact

COCP/M4CO 1 - 5 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Example (Agricultural experiment design)
plot1 plot2 plot3 plot4 plot5 plot6 plot7

barley
corn

millet
oats
rye

spelt
wheat

Constraints to be satisfied:
1 Equal growth load: Every plot grows 3 grains.
2 Equal sample size: Every grain is grown in 3 plots.
3 Balance: Every grain pair is grown in 1 common plot.

Instance: 7 plots, 7 grains, 3 grains/plot, 3 plots/grain, balance 1.

COCP/M4CO 1 - 6 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Example (Agricultural experiment design)
plot1 plot2 plot3 plot4 plot5 plot6 plot7

barley ✓ ✓ ✓ – – – –
corn ✓ – – ✓ ✓ – –

millet ✓ – – – – ✓ ✓
oats – ✓ – ✓ – ✓ –
rye – ✓ – – ✓ – ✓

spelt – – ✓ ✓ – – ✓
wheat – – ✓ – ✓ ✓ –

Constraints to be satisfied:
1 Equal growth load: Every plot grows 3 grains.
2 Equal sample size: Every grain is grown in 3 plots.
3 Balance: Every grain pair is grown in 1 common plot.

Instance: 7 plots, 7 grains, 3 grains/plot, 3 plots/grain, balance 1.

COCP/M4CO 1 - 6 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Example (Doctor rostering)

Mon Tue Wed Thu Fri Sat Sun
Doctor A
Doctor B
Doctor C
Doctor D
Doctor E

Constraints to be satisfied:
1 #on-call doctors / day = 1
2 #operating doctors / weekday ≤ 2
3 #operating doctors / week ≥ 7
4 #appointed doctors / week ≥ 4
5 day off after operation day
6 . . .

Objective function to be minimised: Cost: . . .
COCP/M4CO 1 - 7 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Example (Doctor rostering)

Mon Tue Wed Thu Fri Sat Sun
Doctor A call none oper none oper none none
Doctor B appt call none oper none none call
Doctor C oper none call appt appt call none
Doctor D appt oper none call oper none none
Doctor E oper none oper none call none none

Constraints to be satisfied:
1 #on-call doctors / day = 1
2 #operating doctors / weekday ≤ 2
3 #operating doctors / week ≥ 7
4 #appointed doctors / week ≥ 4
5 day off after operation day
6 . . .

Objective function to be minimised: Cost: . . .
COCP/M4CO 1 - 7 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Example (Vehicle routing: parcel delivery)
Given a depot with parcels for clients and a vehicle fleet,
find which vehicle visits which client when.
Constraints to be satisfied:

1 All parcels are delivered on time.
2 No vehicle is overloaded.
3 Driver regulations are respected.
4 . . .

Objective function to be minimised:
Cost: the total fuel consumption and driver salary.

Example (Travelling salesperson: optimisation TSP)
Given a map and cities,
find a shortest route visiting each city once and returning to the starting city.

COCP/M4CO 1 - 8 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Applications in Air Traffic Management

Demand vs capacity Airspace sectorisation

Contingency planning
Flow Time Span Hourly Rate
From: Arlanda 00:00 – 09:00 3
To: west, south 09:00 – 18:00 5

18:00 – 24:00 2
From: Arlanda 00:00 – 12:00 4
To: east, north 12:00 – 24:00 3
.

Workload balancing

COCP/M4CO 1 - 9 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Example (Air-traffic demand-capacity balancing)
Reroute flights, in height and speed, so as to balance the workload of air traffic
controllers in a multi-sector airspace:

COCP/M4CO 1 - 10 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Example (Airspace sectorisation)
Given an airspace split into c cells,
a targeted number s of sectors,
and flight schedules.

Find a colouring of the c cells
into s connected convex sectors,
with minimal imbalance of the work-
loads of their air traffic controllers.

There are sc possible colourings, but very few optimally satisfy the constraints:
is intelligent search necessary?

COCP/M4CO 1 - 11 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Applications in Biology and Medicine

Phylogenetic supertree Haplotype inference

Medical image analysis Doctor rostering

gy

COCP/M4CO 1 - 12 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Example (What supertree is maximally consistent with several given
trees that share some species?)

COCP/M4CO 1 - 13 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Example (Haplotype inference by pure parsimony)
Given n child genotypes, with homo- and heterozygous sites:

· · ·
A C / G T C A / T C

· · ·
A / T G T C / G A C

· · ·

find a minimal set of (at most 2 · n) parent haplotypes:

· · ·
A C T C T C

· · ·
A G T C A C

· · ·
T G T G A C

· · ·

so that each given genotype conflates 2 found haplotypes.
COCP/M4CO 1 - 14 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Applications in Programming and Testing

Robot programming Sensor-net configuration

Compiler design Base-station testing

COCP/M4CO 1 - 15 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Other Application Areas

School timetabling Sports tournament design

Security: SQL injection? Container packing

COCP/M4CO 1 - 16 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Definitions
In a constraint problem, values have to be found for all the unknowns,
called variables (in the mathematical sense; also called decision variables)
and ranging over given sets, called domains, so that:

All the given constraints on the decision variables are satisfied.
Optionally: A given objective function on the decision variables has an
optimal value: either a minimal cost or a maximal profit.

A candidate solution to a constraint problem maps each decision variable to a
value within its domain; it is:

feasible if all the constraints are satisfied;
optimal if the objective function takes an optimal value.

The search space consists of all candidate solutions.
A solution to a satisfaction problem is feasible.
An optimal solution to an optimisation problem is feasible and optimal.

COCP/M4CO 1 - 17 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

P ?
= NP (Cook, 1971; Levin, 1973)

This is one of the seven Millennium Prize problems of the Clay Mathematics
Institute (Massachusetts, USA), each worth 1 million US$.

Informally:
P = class of problems that need no search to be solved
NP = class of problems that might need search to solve
P = class of problems with easy-to-compute solutions
NP = class of problems with easy-to-check solutions

Thus: Can search always be avoided (P = NP),
or is search sometimes necessary (P ̸= NP)?

Problems that are solvable in polynomial time (in the input size) are
considered tractable, aka easy.
Problems needing super-polynomial time are considered intractable, aka hard.

COCP/M4CO 1 - 18 -

https://www.claymath.org/millennium-problems/p-vs-np-problem

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

NP Completeness: Examples

Given a digraph (V ,E):

Examples
Finding a shortest path takes O(V · E) time and is thus in P.
Determining the existence of a simple path (which has distinct vertices),
from a given single source, that has at least a given number ℓ of edges
is NP-complete. Hence finding a longest path seems hard:
increase ℓ starting from a trivial lower bound, until answer is ‘no’.

Examples
Finding an Euler tour (which visits each edge once) takes O(E) time
and is thus in P.
Determining the existence of a Hamiltonian cycle (which visits each vertex
once) is NP-complete.

COCP/M4CO 1 - 19 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

NP Completeness: More Examples

Examples
n-SAT: Determining the satisfiability of a conjunction of disjunctions
of n Boolean literals is in P for n = 2 but NP-complete for n = 3.
SAT: Determining the satisfiability of a formula over Boolean literals is
NP-complete.
Clique: Determining the existence of a clique (complete subgraph) of a
given size in a graph is NP-complete.
Vertex Cover: Determining the existence of a vertex cover (a vertex
subset with at least one endpoint for all edges) of a given size in a graph
is NP-complete.
Subset Sum: Determining the existence of a subset, of a given set, that
has a given sum is NP-complete.

COCP/M4CO 1 - 20 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Search spaces are often larger than the universe!

Many important real-life problems are NP-hard or worse: their real-life
instances can only be solved exactly and fast enough by intelligent search,
unless P = NP. NP-hardness is not where the fun ends, but where it begins!

COCP/M4CO 1 - 21 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Example (Optimisation TSP over n cities)
A brute-force algorithm evaluates all n! candidate routes:

A computer of today evaluates 106 routes / second:
n time
11 40 seconds
14 1 day
18 203 years
20 77k years

Planck time is shortest useful interval: ≈ 5.4 · 10−44 second;
a Planck computer would evaluate 1.8 · 1043 routes / second:

n time
37 0.7 seconds
41 20 days
48 1.5 · age of universe

The dynamic program by Bellman-Held-Karp “only” takes O(n2 · 2n) time:
a computer of today takes a day for n = 27, a year for n = 35, the age of the
universe for n = 67, and beats the O(n!) algo on Planck computer for n ≥ 44.

COCP/M4CO 1 - 22 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Intelligent Search upon NP-Hardness

Do not give up but try to stay ahead of the curve:
there is an instance size until which an exact algorithm is fast enough!

10 14 27 35 44 48
100

105
108

1013

1018

1 day
1 year

age of universe

n! (today) n! (Planck)

n2 · 2n (today)

ntim
e

(s
):

lo
g

sc
al

e!

Concorde TSP Solver beats the Bellman-Held-Karp exact algo: it uses local
search & approximation algos, but sometimes proves exactness of its optima.
The largest instance solved exactly, in 136 CPU years in 2006, has n = 85900.

COCP/M4CO 1 - 23 -

https://www.math.uwaterloo.ca/tsp/concorde

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Outline

1. Constraint Problems

2. Combinatorial Optimisation

3. Modelling (in MiniZinc)

4. Solving

5. The MiniZinc Toolchain

6. Course Information
Part 1: Modelling for Combinatorial Optimisation
Part 2: Combinatorial Optimisation and CP
Contact

COCP/M4CO 1 - 24 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

A solving technology offers languages, methods, and tools for:

what: Modelling constraint problems in a declarative language.

and / or

how: Solving constraint problems intelligently:
• Search: Explore the space of candidate solutions.
• Inference: Reduce the space of candidate solutions.
• Relaxation: Exploit solutions to easier problems.

A solver is a program that takes a model and data as input
and tries to solve that problem instance.

Combinatorial (= discrete) optimisation covers satisfaction and optimisation
problems for variables ranging over discrete sets: combinatorial problems.

The ideas in this course extend to continuous optimisation,
to soft optimisation, and to stochastic optimisation.

COCP/M4CO 1 - 25 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Examples (Solving technologies)
With general-purpose solvers, taking model and data as input:

Boolean satisfiability (SAT)
SAT (resp. optimisation) modulo theories (SMT and OMT)
(Mixed) integer linear programming (IP and MIP)
Constraint programming (CP) ☞ part 2 of 1DL442
. . .
Hybrid technologies (LCG = CP + SAT, . . .)

Methodologies, usually without modelling and solvers:
Dynamic programming (DP)
Greedy algorithms
Approximation algorithms
Local search (LS)
. . .

COCP/M4CO 1 - 26 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Outline

1. Constraint Problems

2. Combinatorial Optimisation

3. Modelling (in MiniZinc)

4. Solving

5. The MiniZinc Toolchain

6. Course Information
Part 1: Modelling for Combinatorial Optimisation
Part 2: Combinatorial Optimisation and CP
Contact

COCP/M4CO 1 - 27 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

What vs How

Example
Consider the problem of sorting an array A of n numbers into an array S
of increasing-or-equal numbers.

A formal specification is:

sort(A,S) ≡ permutation(A,S) ∧ increasing(S)

saying that S must be a permutation of A in increasing order.

Seen as a generate-and-test algorithm, it takes O(n!) time,
but it can be refined into the existing O(n log n) algorithms.

A specification is a declarative description of what problem is to be solved.
An algorithm is an imperative description of how to solve the problem (fast).

COCP/M4CO 1 - 28 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Modelling vs Programming

problem

specification

model

program

automatic!

what? (declarative)

algorithm

program

manual!

how? (imperative)

COCP/M4CO 1 - 29 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Example (Sudoku)

8
3 6

7 9 2
5 7

4 5 7
1 3

1 6 8
8 5 1

9 4

8 1 2 7 5 3 6 4 9
9 4 3 6 8 2 1 7 5
6 7 5 4 9 1 2 8 3
1 5 4 2 3 7 8 9 6
3 6 9 8 4 5 7 2 1
2 8 7 1 6 9 5 3 4
5 2 1 9 7 4 3 6 8
4 3 8 5 2 6 9 1 7
7 9 6 3 1 8 4 5 2

A Sudoku is a 9-by-9 array of integers in the range 1..9. Some of the elements
are provided as parameters. The remaining elements are unknowns that have
to satisfy the following constraints:

1 the elements in each row are all different;
2 the elements in each column are all different;
3 the elements in each 3-by-3 block are all different.

COCP/M4CO 1 - 30 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Example (Sudoku)

COCP/M4CO 1 - 31 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Example (Sudoku �)

8
3 6

7 9 2
5 7

4 5 7
1 3

1 6 8
8 5 1

9 4

8 1 2 7 5 3 6 4 9
9 4 3 6 8 2 1 7 5
6 7 5 4 9 1 2 8 3
1 5 4 2 3 7 8 9 6
3 6 9 8 4 5 7 2 1
2 8 7 1 6 9 5 3 4
5 2 1 9 7 4 3 6 8
4 3 8 5 2 6 9 1 7
7 9 6 3 1 8 4 5 2

-2 array[1..9,1..9] of var 1..9: Sudoku;
-1

0 solve satisfy;
1 constraint forall(row in 1..9)(all_different(Sudoku[row,..]));
2 constraint forall(col in 1..9)(all_different(Sudoku[..,col]));
3 constraint forall(i,j in {0,3,6})

(all_different(Sudoku[i+1..i+3,j+1..j+3]));

COCP/M4CO 1 - 32 -

https://user.it.uu.se/~pierref/courses/COCP/models/sudoku.mzn

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Example (Agricultural experiment design, AED)
plot1 plot2 plot3 plot4 plot5 plot6 plot7

barley ✓ ✓ ✓ – – – –
corn ✓ – – ✓ ✓ – –

millet ✓ – – – – ✓ ✓
oats – ✓ – ✓ – ✓ –
rye – ✓ – – ✓ – ✓

spelt – – ✓ ✓ – – ✓
wheat – – ✓ – ✓ ✓ –

Constraints to be satisfied:
1 Equal growth load: Every plot grows 3 grains.
2 Equal sample size: Every grain is grown in 3 plots.
3 Balance: Every grain pair is grown in 1 common plot.

Instance: 7 plots, 7 grains, 3 grains/plot, 3 plots/grain, balance 1.

General term: balanced incomplete block design (BIBD).
COCP/M4CO 1 - 33 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Example (Agricultural experiment design, AED)
plot1 plot2 plot3 plot4 plot5 plot6 plot7

barley 1 1 1 0 0 0 0
corn 1 0 0 1 1 0 0

millet 1 0 0 0 0 1 1
oats 0 1 0 1 0 1 0
rye 0 1 0 0 1 0 1

spelt 0 0 1 1 0 0 1
wheat 0 0 1 0 1 1 0

Constraints to be satisfied:
1 Equal growth load: Every plot grows 3 grains.
2 Equal sample size: Every grain is grown in 3 plots.
3 Balance: Every grain pair is grown in 1 common plot.

Instance: 7 plots, 7 grains, 3 grains/plot, 3 plots/grain, balance 1.

General term: balanced incomplete block design (BIBD).
COCP/M4CO 1 - 33 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

In a BIBD, the plots are called blocks and the grains are called varieties:

Example (BIBD integer model �: ✓⇝ 1 and –⇝ 0)

-3 enum Varieties; enum Blocks;
-2 int: blockSize; int: sampleSize; int: balance;
-1 array[Varieties,Blocks] of var 0..1: BIBD; % BIBD[v,b]=1 iff v is in b
0 solve satisfy;
1 constraint forall(b in Blocks) (blockSize = sum(BIBD[..,b]));
2 constraint forall(v in Varieties)(sampleSize = sum(BIBD[v,..]));
3 constraint forall(v, w in Varieties where v < w)

(balance = sum([BIBD[v,b]*BIBD[w,b] | b in Blocks]));

Example (Instance data for our AED �)

-3 Varieties = {barley,...,wheat}; Blocks = {plot1,...,plot7};
-2 blockSize = 3; sampleSize = 3; balance = 1;

COCP/M4CO 1 - 34 -

https://user.it.uu.se/~pierref/courses/COCP/models/BIBD-int-sum.mzn
https://user.it.uu.se/~pierref/courses/COCP/models/BIBD-AED.dzn

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Using the count abstraction instead of sum:

Example (BIBD integer model �: ✓⇝ 1 and –⇝ 0)

-3 enum Varieties; enum Blocks;
-2 int: blockSize; int: sampleSize; int: balance;
-1 array[Varieties,Blocks] of var 0..1: BIBD; % BIBD[v,b]=1 iff v is in b
0 solve satisfy;
1 constraint forall(b in Blocks) (blockSize = count(BIBD[..,b], 1));
2 constraint forall(v in Varieties)(sampleSize = count(BIBD[v,..], 1));
3 constraint forall(v, w in Varieties where v < w)

(balance = count([BIBD[v,b]*BIBD[w,b] | b in Blocks], 1));

Example (Instance data for our AED �)

-3 Varieties = {barley,...,wheat}; Blocks = {plot1,...,plot7};
-2 blockSize = 3; sampleSize = 3; balance = 1;

COCP/M4CO 1 - 35 -

https://user.it.uu.se/~pierref/courses/COCP/models/BIBD-int-count.mzn
https://user.it.uu.se/~pierref/courses/COCP/models/BIBD-AED.dzn

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Using the count abstraction over linear expressions:

Example (BIBD integer model �: ✓⇝ 1 and –⇝ 0)

-3 enum Varieties; enum Blocks;
-2 int: blockSize; int: sampleSize; int: balance;
-1 array[Varieties,Blocks] of var 0..1: BIBD; % BIBD[v,b]=1 iff v is in b
0 solve satisfy;
1 constraint forall(b in Blocks) (blockSize = count(BIBD[..,b], 1));
2 constraint forall(v in Varieties)(sampleSize = count(BIBD[v,..], 1));
3 constraint forall(v, w in Varieties where v < w)

(balance = count([BIBD[v,b]+BIBD[w,b] | b in Blocks], 2));

Example (Instance data for our AED �)

-3 Varieties = {barley,...,wheat}; Blocks = {plot1,...,plot7};
-2 blockSize = 3; sampleSize = 3; balance = 1;

COCP/M4CO 1 - 36 -

https://user.it.uu.se/~pierref/courses/COCP/models/BIBD-int-count2.mzn
https://user.it.uu.se/~pierref/courses/COCP/models/BIBD-AED.dzn

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Reconsider the model fragment:

2 constraint forall(v in Varieties)(sampleSize = count(BIBD[v,..], 1));

This constraint is declarative (and by the way non-linear),
so read it using only the verb “to be” or synonyms thereof:

for all varieties v,
the count of occurrences of 1 in row v of BIBD
must equal sampleSize

The constraint is not procedural:

for all varieties v,
we first count the occurrences of 1 in row v
and then check if that count equals sampleSize

The latter reading is appropriate for solution checking,
but solution finding performs no such procedural counting.

COCP/M4CO 1 - 37 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Example (Idea for another BIBD model)
barley {plot1,plot2,plot3

,plot4,plot5,plot6,plot7

}
corn {plot1,

plot2,plot3,

plot4,plot5

,plot6,plot7

}
millet {plot1,

plot2,plot3,plot4,plot5,

plot6,plot7}
oats {

plot1,

plot2,

plot3,

plot4,

plot5,

plot6

,plot7

}
rye {

plot1,

plot2,

plot3,plot4,

plot5,

plot6,

plot7}
spelt {

plot1,plot2,

plot3,plot4,

plot5,plot6,

plot7}
wheat {

plot1,plot2,

plot3,

plot4,

plot5,plot6

,plot7

}

Constraints to be satisfied:
1 Equal growth load: Every plot grows 3 grains.
2 Equal sample size: Every grain is grown in 3 plots.
3 Balance: Every grain pair is grown in 1 common plot.

COCP/M4CO 1 - 38 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Example (BIBD set model �: a block set per variety)

-3 enum Varieties; enum Blocks;
-2 int: blockSize; int: sampleSize; int: balance;
-1 array[Varieties] of var set of Blocks: BIBD; % BIBD[v] = blocks for v
0 solve satisfy;
1 constraint forall(b in Blocks)

(blockSize = sum(v in Varieties)(b in BIBD[v]));
2 constraint forall(v in Varieties)

(sampleSize = card(BIBD[v]));
3 constraint forall(v, w in Varieties where v < w)

(balance = card(BIBD[v] intersect BIBD[w]));

Example (Instance data for our AED �)

-3 Varieties = {barley,...,wheat}; Blocks = {plot1,...,plot7};
-2 blockSize = 3; sampleSize = 3; balance = 1;

COCP/M4CO 1 - 39 -

https://user.it.uu.se/~pierref/courses/COCP/models/BIBD-set.mzn
https://user.it.uu.se/~pierref/courses/COCP/models/BIBD-AED.dzn

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Example (Doctor rostering)

Mon Tue Wed Thu Fri Sat Sun
Doctor A call none oper none oper none none
Doctor B appt call none oper none none call
Doctor C oper none call appt appt call none
Doctor D appt oper none call oper none none
Doctor E oper none oper none call none none

Constraints to be satisfied:
1 #on-call doctors / day = 1
2 #operating doctors / weekday ≤ 2
3 #operating doctors / week ≥ 7
4 #appointed doctors / week ≥ 4
5 day off after operation day
6 . . .

Objective function to be minimised: Cost: . . .
COCP/M4CO 1 - 40 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Example (Doctor rostering �)
-5 set of int: Days; % d mod 7 = 1 iff d is a Monday
-4 enum Doctors;
-3 enum ShiftTypes = {appt, call, oper, none};
-2 % Roster[i,j] = shift type of Dr i on day j:
-1 array[Doctors,Days] of var ShiftTypes: Roster;
0 solve minimize ...; % plug in an objective function
1 constraint forall(d in Days)(count(Roster[..,d],call) = 1);
2 constraint forall(d in Days where d mod 7 in 1..5)

(count(Roster[..,d],oper) <= 2);
3 constraint count(Roster,oper) >= 7;
4 constraint count(Roster,appt) >= 4;
5 constraint forall(d in Doctors)

(regular(Roster[d,..],"((oper none) | appt | call | none)*"));
6 ... % other constraints

Example (Instance data for our small hospital unit �)
-4 Days = 1..7;
-3 Doctors = {Dr_A, Dr_B, Dr_C, Dr_D, Dr_E};

COCP/M4CO 1 - 41 -

https://user.it.uu.se/~pierref/courses/COCP/models/doctor.mzn
https://user.it.uu.se/~pierref/courses/COCP/models/doctor.dzn

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Using decision variables as indices within arrays: black magic?!

Example (Job allocation at minimal salary cost)
Given jobs Jobs and the salaries of work applicants Apps,
find a work applicant for each job
such that some constraints (on the qualifications of the work applicants
for the jobs, on workload distribution, etc) are satisfied
and the total salary cost is minimal:

1 array[Apps] of 0..1000: Salary; % Salary[a] = cost per job to appl. a
2 array[Jobs] of var Apps: Worker; % Worker[j] = appl. allocated job j
3 solve minimize sum(j in Jobs)(Salary[Worker[j]]);
4 constraint ...; % qualifications, workload, etc

COCP/M4CO 1 - 42 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Using decision variables as indices within arrays: black magic?!

Example (Vehicle routing: backbone model)

enum Cities = {AMS,BRU,LUX,CDG}

AMS BRU LUX CDG
Next:

BRU LUX

BRU AMS

LUXCDG

162.6128.8

1 array[Cities,Cities] of float: Distance; % instance data
2 array[Cities] of var Cities: Next; % travel from c to Next[c]
3 solve minimize sum(c in Cities)(Distance[c,Next[c]]);
4 constraint circuit(Next);
5 constraint ...; % side constraints, if any

COCP/M4CO 1 - 43 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Using decision variables as indices within arrays: black magic?!

Example (Vehicle routing: backbone model)

enum Cities = {AMS,BRU,LUX,CDG}

AMS BRU LUX CDG
Next: BRU AMS CDG LUX

So all_different(Next) is too weak!

BRU AMS

LUXCDG

85.2

162.6

146.7

128.8

1 array[Cities,Cities] of float: Distance; % instance data
2 array[Cities] of var Cities: Next; % travel from c to Next[c]
3 solve minimize sum(c in Cities)(Distance[c,Next[c]]);
4 constraint circuit(Next);
5 constraint ...; % side constraints, if any

COCP/M4CO 1 - 43 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Using decision variables as indices within arrays: black magic?!

Example (Vehicle routing: backbone model)

enum Cities = {AMS,BRU,LUX,CDG}

AMS BRU LUX CDG
Next: BRU CDG AMS LUX

Let us use circuit(Next) instead:

BRU AMS

LUXCDG

85.2

162.6

146.7

128.8

1 array[Cities,Cities] of float: Distance; % instance data
2 array[Cities] of var Cities: Next; % travel from c to Next[c]
3 solve minimize sum(c in Cities)(Distance[c,Next[c]]);
4 constraint circuit(Next);
5 constraint ...; % side constraints, if any

COCP/M4CO 1 - 43 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Using decision variables as indices within arrays: black magic?!

Example (Vehicle routing: backbone model)

enum Cities = {AMS,BRU,LUX,CDG}

AMS BRU LUX CDG
Next: BRU CDG AMS LUX

Let us use circuit(Next) instead:

BRU AMS

LUXCDG

85.2

162.6

146.7

128.8

1 array[Cities,Cities] of float: Distance; % instance data
2 array[Cities] of var Cities: Next; % travel from c to Next[c]
3 solve minimize sum(c in Cities)(Distance[c,Next[c]]);
4 constraint circuit(Next);
5 constraint ...; % side constraints, if any

COCP/M4CO 1 - 43 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Toy Example: 8-Queens

Can one place 8 queens onto an 8 × 8 chessboard
so that all queens are in distinct rows, columns, and diagonals?

1

8

2

3

4

5

6

7

ba
 d f g he

1

8

2

3

4

5

6

7

ba
 d f g he

COCP/M4CO 1 - 44 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

An 8-Queens Model

One of the many models, with one decision variable per queen:

1

8

2

3

4

5

6

7

ba
 d f g he

Let decision variable Row[c], of domain 1..8,
denote the row of the queen in column c,
for c in {a,b, c, . . . ,h}, which we rename into 1..8.
Example: Row[3] = 4 means that the queen of
column 3 (column c in the picture) is in row 4.
The constraint that all queens must be in distinct
columns is satisfied by the choice of variables!

The remaining constraints to be satisfied are:
• All queens are in distinct rows: the var.s Row[c] take distinct values for all c
• All queens are in distinct diagonals:

the expressions Row[c]+c take distinct values for all c
the expressions Row[c]-c take distinct values for all c

COCP/M4CO 1 - 45 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

An 8-Queens Model in MiniZinc

Consider the following model � in a file 8-queens.mzn:

1 include "globals.mzn"; % ensures that lines 4 to 6 are understood
2 int: n = 8; % the given number of queens
3 array[1..n] of var 1..n: Row; % Row[c] = the unknown row of the queen

in column c; enforces that all queens are in distinct columns
4 constraint all_different(Row); % distinct rows
5 constraint all_different([Row[c]+c | c in 1..n]); % distinct up-dia.
6 constraint all_different([Row[c]-c | c in 1..n]); % distinct down-dia.
7 solve satisfy; % solve to satisfaction of all the constraints
8 output [show(Row)]; % pretty-printing of solutions

The all_different(X) constraint holds if and only if all the expressions in
the array X take different values.

COCP/M4CO 1 - 46 -

https://user.it.uu.se/~pierref/courses/COCP/models/n-queens.mzn

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Modelling Concepts

A variable, also called a decision variable,
is an existentially quantified unknown of a problem.

The domain of a decision variable x , here denoted by dom(x),
is the set of values in which x must take its value, if any.

A variable expression takes a value that depends on the value
of one or more decision variables.

A parameter has a value from a problem description.

Decision variables, parameters, and expressions are typed.

MiniZinc types are (arrays and sets of) Booleans, integers, floating-point
numbers, enumerations, records, tuples, and strings,
but not all these types can serve as types for decision variables.

COCP/M4CO 1 - 47 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Decision Variables, Parameters, and Identifiers

Decision variables and parameters in a model are concepts very different
from programming variables in an imperative or object-oriented program.

A decision variable in a model is like a variable in mathematics:
it is not given a value in a model or a formula, and
its value is only fixed in a solution, if a solution exists.

A parameter in a model must be given a value, but only once:
we say that it is instantiated.

A decision variable or parameter is referred to by an identifier.

An index identifier of an array comprehension takes on all its designated
values in turn. Example: the index c in the 8-queens model.

COCP/M4CO 1 - 48 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Parametric Models

A parameter need not be instantiated inside a model.
Example: drop “=8” from “int: n=8” in the 8-queens model to make it
an n-queens model, and rename 8-queens.mzn into n-queens.mzn.

Data are values for parameters given outside a model:
either in a datafile (.dzn suffix), or at the command line,
or interactively in the integrated development environment (IDE).

A parametric model has uninstantiated parameters.

An instance is a pair of a parametric model and data.

COCP/M4CO 1 - 49 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Modelling Concepts (end)

A constraint is a restriction on the values that its decision variables can
take together; equivalently, it is a Boolean-valued variable expression that
must be true.

An objective function is a numeric variable expression whose value is to
be either minimised or maximised.

An objective states what is being asked for:
• find a first solution
• find a solution minimising an objective function
• find a solution maximising an objective function
• find all solutions
• count the number of solutions
• prove that there is no solution
• . . .

COCP/M4CO 1 - 50 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Constraint-Based Modelling

MiniZinc is a high-level constraint-based modelling language (not a solver):

There are several types for decision variables: bool, int, float, enum,
string, tuple, record, and set,
possibly as elements of multidimensional matrices (array).

There is a large vocabulary of predicates (<, <=, =, !=, >=, >,
all_different, circuit, regular, . . .), functions (+, −, *, card,
count, intersect, sum, . . .), and logical connectives & quantifiers
(not, /\, \/, ->, <-, <->, forall, exists, . . .).

There is support for both constraint satisfaction (satisfy)
and constrained optimisation (minimize and maximize).

Most modelling languages are (much) lower-level than this!

COCP/M4CO 1 - 51 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Correctness Is Not Enough for Models

COCP/M4CO 1 - 52 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Modelling is an Art!

There are good and bad models for each constraint problem:

Different models of a problem may take different time
on the same solver for the same instance.

Different models of a problem may scale differently
on the same solver for instances of growing size.

Different solvers may take different time
on the same model for the same instance.

Good modellers are worth their weight in gold!

Use solvers: based on decades of cutting-edge research,
they are very hard to beat on exact solving.

COCP/M4CO 1 - 53 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Outline

1. Constraint Problems

2. Combinatorial Optimisation

3. Modelling (in MiniZinc)

4. Solving

5. The MiniZinc Toolchain

6. Course Information
Part 1: Modelling for Combinatorial Optimisation
Part 2: Combinatorial Optimisation and CP
Contact

COCP/M4CO 1 - 54 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Solutions to a problem instance can be found by running a MiniZinc backend,
that is a MiniZinc wrapper for a particular solver, on a file containing a model of
the problem.

Example (Solving the 8-queens instance)
Let us run the solver Gecode, of CP technology, from the command line:

minizinc --solver gecode 8-queens.mzn

The result is printed on stdout:

[4, 2, 7, 3, 6, 8, 5, 1]

This means that the queen of column 1 is in row 4 (note that MiniZinc
uses 1-based indexing), the queen of column 2 is in row 2, and so on.
Use the command-line flag -a to ask for all solutions:
the line ---------- is printed after each solution, but the
line ========== is printed after the last (the 92nd here) solution.

COCP/M4CO 1 - 55 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Definition (Solving = Search + Inference + Relaxation)
Search: Explore the space of candidate solutions.
Inference: Reduce the space of candidate solutions.
Relaxation: Exploit solutions to easier problems.

Definition (Systematic Search)
Progressively build a solution, and backtrack if necessary.
Use inference and relaxation in order to reduce the search effort.
It is used in most SAT, SMT, OMT, CP, LCG, and MIP solvers.

Definition (Local Search)
Start from a candidate solution and iteratively modify it a bit.
It is the basic idea behind LS and genetic algorithms (GA) technologies.

For some details, see Topic 7: Solving Technologies.
COCP/M4CO 1 - 56 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

There Are So Many Solving Technologies

No technology universally dominates all the others.

One should test several technologies on each problem.

Some technologies have no modelling languages:
LS, DP, and GA are rather methodologies.

Some technologies have standardised modelling languages
across all solvers: SAT, SMT, OMT, and (M)IP.

Some technologies have non-standardised modelling languages
across their solvers: CP and LCG.

COCP/M4CO 1 - 57 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Model and Solve

Advantages:

+ Declarative model of a problem.

+ Easy adaptation to changing problem requirements.

+ Use of powerful solving technologies that are
based on decades of cutting-edge research.

Disadvantages:

− Do I need to learn several modelling languages? No!

− Do I need to understand the used solving technologies in order to get the
most out of them? Yes, but . . . !

COCP/M4CO 1 - 58 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Outline

1. Constraint Problems

2. Combinatorial Optimisation

3. Modelling (in MiniZinc)

4. Solving

5. The MiniZinc Toolchain

6. Course Information
Part 1: Modelling for Combinatorial Optimisation
Part 2: Combinatorial Optimisation and CP
Contact

COCP/M4CO 1 - 59 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

MiniZinc

MiniZinc is a declarative language (not a solver)
for the constraint-based modelling of constraint problems:

At Monash University, Australia
Introduced in 2007; version 2.0 in 2014
Homepage: https://www.minizinc.org

Integrated development environment (IDE)
Annual MiniZinc Challenge for solvers, since 2008
There are also courses at Coursera, also in Chinese

COCP/M4CO 1 - 60 -

https://www.minizinc.org
https://www.minizinc.org/challenge.html
https://www.coursera.org/instructor/peterstuckey

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

MiniZinc Features

Declarative language for modelling what the problem is

Separation of problem model and instance data

Open-source toolchain

Much higher-level language than those of (M)IP and SAT

Solver-independent language

Solving-technology-independent language

Vocabulary of predefined types, predicates and functions

Support for user-defined predicates and functions

Support for annotations with hints on how to solve

Ever-growing number of users, solvers, and other tools

COCP/M4CO 1 - 61 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

MiniZinc Backends and Their Solvers

SAT = Boolean satisfiability: Plingeling via PicatSAT, . . .
MIP = mixed integer programming: Cbc, FICO Xpress, Gurobi Optimizer,
HiGHS, IBM ILOG CPLEX Optimizer, . . .
CP = constraint programming:
Choco, Gecode, JaCoP, Mistral, SICStus Prolog, . . .
CBLS = constraint-based LS (local search):
Atlantis, OscaR.cbls via fzn-oscar-cbls, Yuck, . . .
LCG = lazy clause generation, a hybrid of CP and SAT:
Chuffed, Google’s CP-SAT of OR-Tools, . . .
Other hybrid technologies: iZplus, MiniSAT(ID), SCIP, . . .
. . . , SMT, OMT, portfolios of solvers, . . .

The backends installed on the IT department’s ThinLinc hardware are in red.
The commercial Gurobi Optimizer is under a free academic license:
you may not use it for non-academic purposes.

COCP/M4CO 1 - 62 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

MiniZinc Backends and Their Solvers

SAT = Boolean satisfiability: Plingeling via PicatSAT, . . .
MIP = mixed integer programming: Cbc, FICO Xpress, Gurobi Optimizer,
HiGHS, IBM ILOG CPLEX Optimizer, . . .
CP = constraint programming:
Choco, Gecode, JaCoP, Mistral, SICStus Prolog, . . .
CBLS = constraint-based LS (local search):
Atlantis, OscaR.cbls via fzn-oscar-cbls, Yuck, . . .
LCG = lazy clause generation, a hybrid of CP and SAT:
Chuffed, Google’s CP-SAT of OR-Tools, . . .
Other hybrid technologies: iZplus, MiniSAT(ID), SCIP, . . .
. . . , SMT, OMT, portfolios of solvers, . . .

The backends installed on the IT department’s ThinLinc hardware are in red.
The commercial Gurobi Optimizer is under a free academic license:
you may not use it for non-academic purposes.

COCP/M4CO 1 - 62 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

MiniZinc Challenge 2015: Some Problems and Winners
Problem and Model Backend and Solver Technology
Costas array Mistral CP
capacitated VRP iZplus hybrid
GFD schedule Chuffed LCG
grid colouring MiniSAT(ID) hybrid
instruction scheduling Chuffed LCG
large scheduling Google OR-Tools.cp CP
application mapping JaCoP CP
multi-knapsack mzn-cplex MIP
portfolio design fzn-oscar-cbls CBLS
open stacks Chuffed LCG
project planning Chuffed LCG
radiation mzn-gurobi MIP
satellite management mzn-gurobi MIP
zephyrus configuration mzn-cplex MIP

(portfolio and parallel categories omitted)
COCP/M4CO 1 - 63 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

MiniZinc: Model Once, Solve Everywhere!

model flattening

instance
data

technology capabilities
and solver capabilities

flat
model

backend
and solver

(optimal)
solution

From a single language, one has access transparently
to a wide range of solving technologies from which to choose.

COCP/M4CO 1 - 64 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

There Is No Need to Reinvent the Wheel!

Before solving, each decision variable of a type that is non-native to the
targeted solver is replaced by decision variables of native types,
using some well-known linear / clausal / . . . encoding.

Example (SAT)
The order encoding of integer decision variable var 4..6: x is

array[4..7] of var bool: B; % B[i] denotes truth of x >= i
constraint B[4]; % lower bound on x
constraint not B[7]; % upper bound on x
constraint B[4] \/ not B[5]; % consistency
constraint B[5] \/ not B[6]; % consistency
constraint B[6] \/ not B[7]; % consistency

For an integer decision variable with n domain values,
there are n + 1 Boolean decision variables and n clauses, all 2-ary.

COCP/M4CO 1 - 65 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Before solving, each use of a non-native predicate or function is replaced by:
either: its MiniZinc-provided default definition,
stated in terms of a kernel of imposed predicates;

Example (default; not to be used for IP and MIP)
all_different([x,y,z]) gives x != y /\ y != z /\ z != x.

or: a backend-provided solver-specific definition,
using some well-known linear / clausal / . . . encoding.

Example (IP and MIP)
A compact linearisation of x != y is
var 0..1: p; % p = 1 denotes that x < y holds
int: Mx = ub(x-y+1); int: My = ub(y-x+1); % big-M constants
constraint x + 1 <= y + Mx * (1-p); % either x < y and p = 1
constraint y + 1 <= x + My * p ; % or x > y and p = 0

One cannot naturally model graph colouring in IP,
but the problem has integer decision variables (ranging over the colours).

COCP/M4CO 1 - 66 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Benefits of Model-and-Solve with MiniZinc

+ Try many solvers of many technologies from 1 model.

+ A model improves with the state of the art of backends:
• Type of decision variable: native representation or encoding.
• Predicate: inference, relaxation, and definition.
• Implementation of a solving technology.

More on this in Topic 7: Solving Technologies.

+ For most managers, engineers, and scientists, it is easier with
such a model-once-and-solve-everywhere toolchain to achieve
good solution quality and high solving speed, including for harder data,
and this without knowing (deeply) how the solvers work,
compared to programming from first principles.

COCP/M4CO 1 - 67 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

How to Solve a Constraint Problem?

1 Model the problem

• Understand the problem
• Choose the decision variables and their domains
• Choose predicates to model the constraints
• Model the objective function, if any
• Make sure the model really represents the problem
• Iterate!

2 Solve the problem

• Choose a solving technology
• Choose a backend
• Choose a search strategy, if not black-box search
• Improve the model
• Run the model and interpret the (lack of) solution(s)
• Debug the model, if need be
• Iterate!

Easy, right?
COCP/M4CO 1 - 68 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

How to Solve a Constraint Problem?

1 Model the problem
• Understand the problem
• Choose the decision variables and their domains
• Choose predicates to model the constraints
• Model the objective function, if any
• Make sure the model really represents the problem
• Iterate!

2 Solve the problem
• Choose a solving technology
• Choose a backend
• Choose a search strategy, if not black-box search
• Improve the model
• Run the model and interpret the (lack of) solution(s)
• Debug the model, if need be
• Iterate!

Easy, right?
COCP/M4CO 1 - 68 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

How to Solve a Constraint Problem?

1 Model the problem
• Understand the problem
• Choose the decision variables and their domains
• Choose predicates to model the constraints
• Model the objective function, if any
• Make sure the model really represents the problem
• Iterate!

2 Solve the problem
• Choose a solving technology
• Choose a backend
• Choose a search strategy, if not black-box search
• Improve the model
• Run the model and interpret the (lack of) solution(s)
• Debug the model, if need be
• Iterate!

Not so easy, but much easier than without a modelling tool!
COCP/M4CO 1 - 68 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Outline

1. Constraint Problems

2. Combinatorial Optimisation

3. Modelling (in MiniZinc)

4. Solving

5. The MiniZinc Toolchain

6. Course Information
Part 1: Modelling for Combinatorial Optimisation
Part 2: Combinatorial Optimisation and CP
Contact

COCP/M4CO 1 - 69 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Outline

1. Constraint Problems

2. Combinatorial Optimisation

3. Modelling (in MiniZinc)

4. Solving

5. The MiniZinc Toolchain

6. Course Information
Part 1: Modelling for Combinatorial Optimisation
Part 2: Combinatorial Optimisation and CP
Contact

COCP/M4CO 1 - 70 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Content of Part 1 = M4CO (course 1DL451)

The use of tools for solving a combinatorial problem, by

1 first modelling it in a solving-technology-independent
constraint-based modelling language, and

2 then running the model on an off-the-shelf solver.

COCP/M4CO 1 - 71 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Learning Outcomes of Part 1 = M4CO

In order to pass, the student must be able to:
define the concept of combinatorial (optimisation or satisfaction) problem;
explain the concept of constraint, as used in a constraint-based language;
model a combinatorial problem in a solving-technology-independent
constraint-based modelling language;
compare empirically several models, say by introducing redundancy or by
detecting and breaking symmetries;
describe and compare solving technologies that can be used by the
backends to a modelling language, including CP, LS, SAT, SMT, and MIP;
choose suitable solving technologies for a new combinatorial problem,
and motivate this choice;
present and discuss topics related to the course content,
orally and in writing, with a skill appropriate for the level of education.
☞ written reports and oral resubmissions!

COCP/M4CO 1 - 72 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Organisation and Time Budget of Part 1 = M4CO

Period 1: late August to late October, budget = 133.3 h:

No textbook: slides, MiniZinc documentation, Coursera

1 warm-up session for learning the MiniZinc toolchain

3 teacher-chosen assignments with 3 help sessions, 1 grading session,
and 1 solution session each, to be done in student-chosen duo team:
budget = average of 22 hours / assignment / student (3 credits)

1 student-chosen project, to be done in student-chosen duo team,
and individual written peer review of another team’s initial report:
budget = 49.5 hours / student (2 credits)

12 lectures, including a mandatory guest lecture: budget = 18 hours

Prerequisites: basic concepts in algebra, combinatorics, logic, graph
theory, set theory, and implementation of basic search algorithms

COCP/M4CO 1 - 73 -

https://www.minizinc.org/doc-latest
https://www.coursera.org/instructor/peterstuckey
https://www.minizinc.org

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

No Exams in Part 1 and Part 2

Both M4CO (1DL451) and COCP (1DL442) have no exam!

You must demonstrate — by writing reports — that you cannot only code,
namely:

correctly and efficiently solve a constraint problem via a model (in Part 1),

design a correct and efficient inference algorithm or search algorithm
for a CP solver (in Part 2),

but also motivate and explain your code in terms of all the course concepts,
as well as experimentally demonstrate the correctness and efficiency of your
code.

COCP/M4CO 1 - 74 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Lecture Topics of Part 1 = M4CO

Topic 1: Introduction

Topic 2: Basic Modelling

Topic 3: Constraint Predicates

Topic 4: Modelling (for CP and LCG)

Topic 5: Symmetry

Topic 6: Case Studies

Topic 7: Solving Technologies

Topic 8: Inference & Search in CP & LCG

(Topic 9: Modelling for CBLS)

(Topic 10: Modelling for SAT, SMT, and OMT)

(Topic 11: Modelling for MIP)

COCP/M4CO 1 - 75 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

3 Assignment Cycles of 2 to 3 Weeks in Part 1 = M4CO

Let Di be the deadline day of Assignment i , with i ∈ 1..3:

Di − 14: publication and all needed material was taught: start!

Di − 8: help session a: participation strongly recommended!

Di − 4: help session b: participation strongly recommended!

Di − 2: help session c: participation strongly recommended!

Di ± 0: submission, by 13:00 Swedish time on a Friday

Di + 5 by 16:00: initial score ai ∈ 0..5 points

Di + 6: teamwise oral grading session for some ai ∈ {1,2}:
possibility of earning 1 extra point for final score;
otherwise final score = initial score

Di + 6 = Di+1 − 8: solution session and help session a

COCP/M4CO 1 - 76 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Assignments (3 credits) and Overall Grade in Part 1

The final score on Assignment 1 is actually “pass” or “fail”.

Let ai ∈ 0..5 be the final score on Assignment i , with i ∈ 2..3:

20% threshold: ∀i ∈ 2..3 : ai ≥ 20% · 5 = 1
No catastrophic failure on individual assignments

50% threshold: m = a2 + a3 ≥ 50% · (5 + 5) = 5
The formulae for the modelling assignment grade and project grade
in 3..5 are at the course homepage

Worth going full-blast: A modelling assignment sum m ∈ 5..10 is
combined with a project score p ∈ 5..10 in order to determine the overall
grade in 3..5 for 1DL451 according to a formula at the course homepage

COCP/M4CO 1 - 77 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Project (2 credits) in Part 1 = M4CO

Topic:
Model and solve a combinatorial problem that you are interested in,
say for research, a course, a hobby, . . .
See the Project page at the course homepage for ideas for projects
and the format for a project proposal.

Deadlines in 2023 (overlap with Assignments 2 and 3):
Wed 13 Sep at 13:00: upload several proposals
Wed 20 Sep at 13:00: secure our approval; start!
Fri 13 Oct at 13:00: upload initial report
Wed 18 Oct at 13:00: upload individual peer review
Mon 30 Oct at 13:00: upload final report; score p ∈ 0..10

COCP/M4CO 1 - 78 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Project Guidelines

Start early, despite overlap with Assignments 2 and 3.

Attend the help sessions (some jointly with Assignment 3).

Read the Rules and Grading Criteria at the Project page.

An approach is either a model for the entire problem, or a script
(consider using MiniZinc-Python) with pre-processing + solving (possibly
on a pipeline of multiple models) + post-processing:
the final report is on one sufficiently complete and efficient approach.

The initial report is on one approach, but it need be neither the final one,
nor complete, nor efficient.

COCP/M4CO 1 - 79 -

https://minizinc-python.readthedocs.io

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Project Guidelines (end)

Model the constraints incrementally, and be prepared to backtrack to the
choice of decision variables (aka viewpoint).

If the instances are too easy, then you still need to demonstrate skills in
the advanced concepts (49.5h!).

If the instances are too hard, then relax the problem (say by some loss of
precision on the objective value) or some instances (or both).

Collaborate with other teams that work on the same problem for the
parsing, generation, or simplification of shared instances, and so on
(but not for modelling). There is no competition between such teams.

Consider also using the powerful local-search backend Gecode-LNS for
the experiments (see Assignment 3).

COCP/M4CO 1 - 80 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Assignment and Project Rules

Register a team by Sun 3 Sep 2023 at 23:59 at Studium:
Duo team: Two consenting teammates sign up.
Solo team: Apply to the head teacher, who rarely agrees.
Random teammate? Request from the helpdesk, else you are bounced.

Other considerations:
Why (not) like this? Why no email reply? See FAQ.
Teammate swapping: Allowed, but to be declared to the helpdesk.
Teammate scores may differ if no-show or passivity at grading session.
No freeloader: Implicit honour declaration in reports that each teammate
can individually explain everything; random checks will be made by us!
No plagiarism: Implicit honour declaration in reports;
extremely powerful detection tools will be used by us;
suspected cases of using or providing will be reported!

COCP/M4CO 1 - 81 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Outline

1. Constraint Problems

2. Combinatorial Optimisation

3. Modelling (in MiniZinc)

4. Solving

5. The MiniZinc Toolchain

6. Course Information
Part 1: Modelling for Combinatorial Optimisation
Part 2: Combinatorial Optimisation and CP
Contact

COCP/M4CO 1 - 82 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Learning Outcomes of Part 2 = COCP

In order to pass, the student must be able to:
describe how a CP solver works,
by giving its architecture and explaining the principles it is based on;
augment a CP solver with a propagator for a new constraint predicate,
and evaluate empirically whether the propagator is better than a definition
based on the existing constraint predicates of the solver;
devise empirically a (problem-specific) search strategy that can be used
by a CP solver;
design and compare empirically several constraint programs (with model
and search parts) for a combinatorial problem;
present and discuss topics related to the course content,
orally and in writing, with a skill appropriate for the level of education.
☞ written reports!

COCP/M4CO 1 - 83 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Organisation and Time Budget of Part 2 = COCP

Period 2: late October to mid January(!), budget = 133.3 h:

12 lectures, including a mandatory guest lecture:
budget = 19.5 hours

No textbook: slides and MiniCP teaching materials, with videos at edX.org

1 warm-up session about the MiniCP code base, INGInious, and GitHub

3 teacher-chosen assignments, with 3 help sessions and 1 solution
session each (but no grading session), done in student-chosen duo team:
budget = average of 38 hours / assignment / student (5 credits)

Prerequisites: Java; basic concepts in algebra, combinatorics, logic, graph
theory, set theory, and implementation of basic search algorithms

COCP/M4CO 1 - 84 -

http://minicp.org
https://www.edx.org/course/constraint-programming
http://minicp.org
https://inginious.org
https://github.com/minicp/minicp

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Lecture Topics of Part 2 = COCP

Topic 12: CP and the MiniCP Solver
Module 1: TinyCSP
Module 2: MiniCP: Domains, Variables, Constraints, Propagation,

Fixpoint Algorithm, Views, State Management, Search, Backtracking
Module 3: Sum Constraint, Element Constraint, Consistency
Module 4: Table Constraint
Module 5: AllDifferent Constraint
Module 6: Circuit Constraint, Vehicle Routing, and LNS
Module 7: Cumulative Scheduling
Module 8: Disjunctive Scheduling
Module 9: Black-Box Search
Topic 18: Conclusion

COCP/M4CO 1 - 85 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

3 Assignment Cycles of 2 to 3 Weeks in Part 2 = COCP

Let Di be the deadline day of Assignment i , with i ∈ 4..6:

Di − 14: publication and all needed material was taught: start!

Di − 7: help session a: participation strongly recommended!

Di − 4: help session b: participation strongly recommended!

Di − 2: help session c: participation strongly recommended!

Di ± 0: submission, by 13:00 Swedish time on a Friday

Di + 6 by 16:00: final score ai ∈ 0..5 points

No initial grade and no grading session!

Di + 6 = Di+1 − 8: solution session and help session a

COCP/M4CO 1 - 86 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Assignments (5 credits) in Part 2 and Overall Grade

The final score on Assignment 4 is actually “pass” or “fail”.

Let ai ∈ 0..5 be the final score on Assignment i , with i ∈ 5..6:

20% threshold: ∀i ∈ 5..6 : ai ≥ 20% · 5 = 1
No catastrophic failure on individual assignments

50% threshold: c = a5 + a6 ≥ ⌈50% · (5 + 5)⌉ = 5
The formula for the programming assignment grade in 3..5 is at the course
homepage

Worth going full-blast: A modelling assignment sum m ∈ 5..10 is
combined with a project score p ∈ 5..10 and a programming assignment
sum c ∈ 5..10 in order to determine the overall grade in 3..5 for 1DL442
according to a formula at the course homepage

COCP/M4CO 1 - 87 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Assignment Rules

Register a team, if new, by Sun 5 Nov 2023 at 23:59:
Duo team: Two consenting teammates inform the helpdesk.
Solo team: Apply to the head teacher, who rarely agrees.
Random teammate? Request from the helpdesk, else you are bounced.

Other considerations:
Why (not) like this? Why no email reply? See FAQ
Teammate swapping: Allowed, but to be declared to the helpdesk.
Teammate scores may differ
No freeloader: Implicit honour declaration in reports that each teammate
can individually explain everything; random checks will be made by us!
No plagiarism: Implicit honour declaration in reports;
extremely powerful detection tools will be used by us;
suspected cases of using or providing will be reported

COCP/M4CO 1 - 88 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

Outline

1. Constraint Problems

2. Combinatorial Optimisation

3. Modelling (in MiniZinc)

4. Solving

5. The MiniZinc Toolchain

6. Course Information
Part 1: Modelling for Combinatorial Optimisation
Part 2: Combinatorial Optimisation and CP
Contact

COCP/M4CO 1 - 89 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

How To Communicate by Email or Studium?

If you have a question about the lecture material or course
organisation, then email the head teacher. An immediate answer will be
given right before and after lectures, as well as during their breaks.

If you have a question about the assignments or infrastructure, then
contact the assistants at a help session or solution session for an
immediate answer.
Short clarification questions (that is: not about modelling or programming
issues) that are either emailed (see the address at the course website)
or posted (at the Studium discussion) to the COCP helpdesk are
answered as soon as possible during working days and hours.
No answer means that you should go to a help session:
almost all the assistants’ budgeted time is allocated to grading
and to the help, grading, and solution sessions.

COCP/M4CO 1 - 90 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

What Has Changed Since Last Time?

Change made by the TekNat Faculty:
Period 1 is one day longer (now 9w1d, but still not 10w): more time for the
Project after Assignment 3, but you still need to work on them in parallel.

Changes triggered by the formal and informal course evaluations:
Slides: The models and data within the slides are uploaded and linked to.
Demo Report: There are fewer questions to answer per model. However,
this means that the bar on the comments within the models goes up.
Project: The oral presentation and oral peer review of the initial report are
dropped, but there is still feedback by the teachers and a written peer
review. However, this means less practice for your BSc or MSc seminar.
Assignment 5: Deadline is 3 (not 2) weeks after deadline of Assignment 4.
However, this means that we must begin with the teaching of the material
for Assignment 6 before the deadline of Assignment 5.

COCP/M4CO 1 - 91 -

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

What To Do Now in Part 1?

Bookmark and read course website, especially FAQs.

Read Sections 1 to 2.2 of the MiniZinc Handbook.

Get started on Assignment 1 and have questions ready for its first
help session, which is on Thu 31 Aug 2023.

Register a duo team by Sun 3 Sep 2023 at 23:59, possibly upon
advertising for a teammate at a course event or the discussion at Studium,
and requesting a random teammate from the helpdesk as a last resort.

Install the MiniZinc toolchain on your hardware, if you have any.

Be aware that few questions are tagged with MiniZinc at StackOverflow:
you have to read the documentation.

COCP/M4CO 1 - 92 -

https://www.minizinc.org/doc-latest

Constraint
Problems

Combinatorial
Optimisation

Modelling
(in MiniZinc)

Solving

The MiniZinc
Toolchain

Course
Information
Part 1: Modelling for
Combinatorial
Optimisation

Part 2: Combinatorial
Optimisation and CP

Contact

What To Do Now in Part 2?

Bookmark and re-read course website, especially FAQs.
Inform us of a new duo team by Sun 5 Nov 2023 at 23:59, possibly upon
advertising for a teammate at a course event or the discussion at Studium,
and requesting a random teammate from the helpdesk as a last resort.
Sign up at edX if you want to watch the MiniCP videos.
Attend the warm-up session on MiniCP, INGInious, and GitHub on
Thu 2 Nov 2023, and install MiniCP on your hardware, if you have any.
Get started on Assignment 4 and have questions ready for its first
help session, which is on Fri 10 Nov 2023.
Get started on Assignment 5 before the deadline of Assignment 4: you
can ask questions on Assignment 5 at the help sessions on Assignment 4.
Be aware that there is no StackOverflow-like website for avoiding to have
to read the MiniCP documentation.

COCP/M4CO 1 - 93 -

https://www.edx.org/course/constraint-programming
http://minicp.org
https://inginious.org
https://github.com/minicp/minicp

	Constraint Problems
	Combinatorial Optimisation
	Modelling (in MiniZinc)
	Solving
	The MiniZinc Toolchain
	Course Information
	Part 1: Modelling for Combinatorial Optimisation
	Part 2: Combinatorial Optimisation and CP
	Contact

