
Sorting Merge Sort

Sorting
(Version of 16 November 2005)

1. Merge Sort

Running time: Θ(n log n),
where n is the number of elements to be sorted.

Apply the Divide & Conquer (& Combine) Principle

sort

5 127 13 7 2 8

123 5 7 1 7 8

sort

2

7 3 12 1 85 7 2

7 7 8 121 2 3 5

split

merge

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II Sorting B.1

Sorting Merge Sort

Merging two sorted lists

123 5 7

7 7 8 121 2 3 5 13

merge

1 2 7 8 13

Specification

function merge L M
TYPE: int list → int list → int list
PRE: L and M are non-decreasingly sorted
POST: a non-decreasingly sorted permutation of the list L@M

Exercise

Redo all the functions in this chapter for α lists.

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II Sorting B.2

Sorting Merge Sort

Construction

Variant: length(L) · length(M). (Exercise: try length(L) + length(M).)

Base cases
If L is empty, then the result is M.
If M is empty, then the result is L.

General case
Let L be x::xs and let M be y::ys.
If x < y, then x is the minimum of L and M,
and the result is x::zs, where zs is merge xs M.
If x >= y, then y is the minimum of L and M,
and the result is y::zs, where zs is merge L ys.

Note that the recursive calls do satisfy the pre-condition,
and that the variant does get smaller.

SML program

fun merge [] M = M
| merge L [] = L
| merge (L as x::xs) (M as y::ys) =

if x < y
then x :: (merge xs M)
else y :: (merge L ys)

Running time: O(|L| + |M |)
c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II Sorting B.3

Sorting Merge Sort

Splitting a list into two ‘halves’

Specification

function split L
TYPE: α list → (α list ∗ α list)
PRE: (none)
POST: (A,B) such that A@B is a permutation of L

while A and B are of the same length, up to one element

Note that the order of the elements in A and B is irrelevant!

Naive SML program

fun split L =
let

val t = (length L) div 2
in

(List.take (L,t) , List.drop (L,t))
end

• Running time: n + bn
2c + bn

2c = Θ(n),
where n is the length of L.

• How to realise split with a single traversal of L?!

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II Sorting B.4

Sorting Merge Sort

Merge sort

Specification

function sort L
TYPE: int list → int list
PRE: (none)
POST: a non-decreasingly sorted permutation of L

SML Program

Variant: length(L).

fun sort [] = []
| sort [x] = [x]
| sort xs =

let
val (ys,zs) = split xs

in
merge (sort ys) (sort zs)

end

Why is the base case sort [x] indispensable?!

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II Sorting B.5

Sorting Quicksort

2. Quicksort

A sorting method proposed by C.A.R. Hoare, in 1962.
Average-case running time: Θ(n log n),
where n is the number of elements to be sorted.

Application of the Divide & Conquer Principle

1 23 7 12 87

2 3 7 8 121

7 7 8

7

1 2 3

7 3 12 1 2 7 85

12

sort sort

5

partition

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II Sorting B.6

Sorting Quicksort

Specification

The same as for merge sort!

SML program

fun sort [] = []
| sort (x::xs) =

let val (S,B) = partition (x,xs)
in (sort S) @ (x :: (sort B))
end

• Double recursion and no tail-recursion

• Average-case running time: Θ(n log n)

• Usage of X @ Y (concatenation), which is Θ(|X|)

Help function: partition

function partition (p,L)
TYPE: int ∗ int list → int list ∗ int list
PRE: (none)
POST: (S,B) where S has all x<p of L and B has all x≥p of L

fun partition (p,[]) = ([],[])
| partition (p,x::xs) =

let val (S,B) = partition (p,xs)
in if x < p then (x::S,B)

else (S,x::B)
end

• Running time: Θ(|L|)

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II Sorting B.7

Sorting Quicksort

Generalisation

Asorted Bxsorted S

sort’ B A

x :: (sort’ B A)

function sort’ L A
TYPE: int list → int list → int list
PRE: (none)
POST: (a non-decreasingly sorted permutation of L) @ A
(Exercise: try POST: A @ (a non-decreasingly sorted permutation of L))

local
fun sort’ [] A = A

| sort’ (x::xs) A =
let val (S,B) = partition (x,xs)
in sort’ S (x :: (sort’ B A))
end

in fun sort2 L = sort’ L []
end

• Double recursion, but one tail-recursion

• No usage of @ (no concatenation)

• Average-case running time: again Θ(n log n),
but less space consumption

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II Sorting B.8

