Heaps
 (Version of 21 November 2005)

- A min-heap (resp. max-heap) is a data structure with fast extraction of the smallest (resp. largest) item (in $O(\lg n)$ time), as well as fast insertion (also in $O(\lg n)$ time), at the expense of slow search (in only $O(n)$ time).
- To make things easier, we talk about heaps of integers, with no satellite data. Abstraction and higher-order functions allow us to implement heaps of items of any ordered data structure.
- Heaps are frequently used in software. A particular structure is the priority queue, where items are added to a pool and assigned a priority. The item with the lowest/highest priority gets extracted first. In a real-time system, this extraction operation must be implemented efficiently.

Heaps and Binomial Trees

Def. A binary heap is a completely filled binary tree, except possibly at the lowest level, which is filled from the left, such that the key of each non-root node is at least the key of its parent (heap property).

Def. A binomial tree is recursively defined as follows:

- A binomial tree of rank 0 (denoted by B_{0}) has a single node.
- A binomial tree of rank k (denoted by B_{k}) is formed by linking together two binomial trees of rank $k-1$, making one of them the leftmost child of the other one.

Note that binomial trees are not binary trees.
Prop. A binomial tree of rank k has height k (in number of edges), has 2^{k} nodes in total, and has $\binom{k}{i}$ nodes at depth i (hence its name!). Its root has degree k and its children have degrees $k-1, k-2, \ldots, 0$.

Representation of Binomial Trees and Heaps

We represent binomial trees by labelled trees, such that:
datatype binoTree = Node of int * int * binoTree list REP. CONV. \& INV.: the first integer, k, is the rank of the tree, the second integer is the key at its root, and the list has k child trees, ordered by decreasing ranks k-1, k-2, ..., 1, 0.

Def. A binomial heap is a list of binomial trees, such that:
type binoHeap = binoTree list
REPRESENTATION INVARIANT: in each binomial tree, the key of each non-root node is at least the key of its parent (heap property) (hence the root of each tree contains its minimum key); the trees have increasing ranks.

Consequences of the Properties

Reminder of some properties:

- A binomial tree of rank/degree k contains 2^{k} nodes.
- In a heap, no two binomial trees have the same rank/degree.

Consider binary arithmetic:

$$
22_{10}=10110_{2}
$$

A binomial heap of 22 items is built from one binomial tree of rank 1, one binomial tree of rank 2 , and one binomial tree of rank 4.

A binomial heap of n items has at most $\lfloor\lg n\rfloor+1$ binomial trees, hence its minimum item can be found in $O(\lg n)$ time.

Linking Two Binomial Trees

When constructing binomial trees or heaps, we often have to link two binomial trees of the same rank r (this is a pre-condition!) in order to form a new binomial tree of rank $r+1$; this takes $\Theta(1)$ time, no matter what the sizes of the trees are:
fun link(t1 as $\operatorname{Node(r,x1,c1),~t2~as~} \operatorname{Node}(r, x 2, c 2))=$ if x 1 < x 2 then

$$
\operatorname{Node}(r+1, x 1, t 2:: c 1)
$$

else

$$
\operatorname{Node}(r+1, x 2, t 1:: c 2)
$$

Note that the resulting binomial tree can become part of a heap, as it respects the heap property (in the representation invariant).

Inserting a Tree or Item into a Binomial Heap

Inserting a binomial tree of rank r into a binomial heap of n items, whose binomial trees have ranks $r^{\prime} \geq r$ (pre!), takes $O(\lg n)$ time, maintaining the list of binomial trees ordered by increasing ranks:
fun rank $(\operatorname{Node}(r, x, c))=r$
fun insTree(t, []) = [t]
| insTree(t, ts as t'::ts') =
if rank t < rank t' then $t:$:ts
else

```
insTree(link(t,t'),ts')
```

Inserting an item into a binomial heap of n items takes $O(\lg n)$ time:
fun insert($x, t s)=\operatorname{insTree}(\operatorname{Node}(0, x,[]), t s)$

Merging Two Binomial Heaps

Merging two binomial heaps with a total of n items takes $O(\lg n)$ time:
fun merge(ts1,[]) = ts1
| merge([],ts2) = ts2
| merge(ts1 as t1::ts1', ts2 as t2::ts2') = if rank t1 < rank t2 then
t1: :merge (ts1', ts2)
else if rank t2 < rank t1 then t2: merge(ts1,ts2')
else
insTree(link(t1,t2) , merge(ts1',ts2'))

If this operation is not needed, then binary heaps perform better.

Finding/Deleting the Minimum of a Bino. Heap

Finding or deleting the minimum item of a binomial heap with $n>0$ items takes $O(\lg n)$ time:
fun $\operatorname{root}(\operatorname{Node}(r, x, c))=x$
fun removeMinTree [t] = (t, [])
| removeMinTree (t::ts) = let val (t',ts') = removeMinTree ts in if root t < root t ' then ($t, t s$) else ($t^{\prime}, t: t s^{\prime}$) end
fun findMin ts $=$
let val (t,_) = removeMinTree ts
in root t end
fun deleteMin ts =
let val (Node(_,_,ts1),ts2) = removeMinTree ts
in merge (rev ts1, ts2) end

