
'

&

$

%

Heaps

(Version of 21 November 2005)

• A min-heap (resp. max-heap) is a data structure with fast
extraction of the smallest (resp. largest) item (in O(lg n) time),
as well as fast insertion (also in O(lg n) time), at the expense of
slow search (in only O(n) time).

• To make things easier, we talk about heaps of integers, with no
satellite data. Abstraction and higher-order functions allow us to
implement heaps of items of any ordered data structure.

• Heaps are frequently used in software. A particular structure is
the priority queue, where items are added to a pool and assigned
a priority. The item with the lowest/highest priority gets
extracted first. In a real-time system, this extraction operation
must be implemented efficiently.

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II – Heaps 1



'

&

$

%

Heaps and Binomial Trees

Def. A binary heap is a completely filled binary tree, except possibly
at the lowest level, which is filled from the left, such that the key of
each non-root node is at least the key of its parent (heap property).

Def. A binomial tree is recursively defined as follows:

• A binomial tree of rank 0 (denoted by B0) has a single node.

• A binomial tree of rank k (denoted by Bk) is formed by linking
together two binomial trees of rank k − 1, making one of them
the leftmost child of the other one.

Note that binomial trees are not binary trees.

Prop. A binomial tree of rank k has height k (in number of edges),
has 2k nodes in total, and has

(
k
i

)
nodes at depth i (hence its name!).

Its root has degree k and its children have degrees k − 1, k − 2, . . . , 0.

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II – Heaps 2



'

&

$

%

Representation of Binomial Trees and Heaps

We represent binomial trees by labelled trees, such that:

datatype binoTree = Node of int * int * binoTree list

REP. CONV. & INV.: the first integer, k, is the rank

of the tree, the second integer is the key at its root,

and the list has k child trees, ordered by decreasing

ranks k-1, k-2, ..., 1, 0.

Def. A binomial heap is a list of binomial trees, such that:

type binoHeap = binoTree list

REPRESENTATION INVARIANT: in each binomial tree, the key

of each non-root node is at least the key of its parent

(heap property) (hence the root of each tree contains

its minimum key); the trees have increasing ranks.

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II – Heaps 3



'

&

$

%

Consequences of the Properties

Reminder of some properties:

• A binomial tree of rank/degree k contains 2k nodes.

• In a heap, no two binomial trees have the same rank/degree.

Consider binary arithmetic:

2210 = 101102

A binomial heap of 22 items is built from one binomial tree of rank 1,
one binomial tree of rank 2, and one binomial tree of rank 4.

A binomial heap of n items has at most blg nc+ 1 binomial trees,
hence its minimum item can be found in O(lg n) time.

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II – Heaps 4



'

&

$

%

Linking Two Binomial Trees

When constructing binomial trees or heaps, we often have to link
two binomial trees of the same rank r (this is a pre-condition!)
in order to form a new binomial tree of rank r + 1;
this takes Θ(1) time, no matter what the sizes of the trees are:

fun link(t1 as Node(r,x1,c1) , t2 as Node(r,x2,c2)) =

if x1 < x2 then

Node(r+1,x1,t2::c1)

else

Node(r+1,x2,t1::c2)

Note that the resulting binomial tree can become part of a heap,
as it respects the heap property (in the representation invariant).

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II – Heaps 5



'

&

$

%

Inserting a Tree or Item into a Binomial Heap

Inserting a binomial tree of rank r into a binomial heap of n items,
whose binomial trees have ranks r′ ≥ r (pre!), takes O(lg n) time,
maintaining the list of binomial trees ordered by increasing ranks:

fun rank (Node(r,x,c)) = r

fun insTree(t,[]) = [t]

| insTree(t, ts as t’::ts’) =

if rank t < rank t’ then t::ts

else

insTree(link(t,t’),ts’)

Inserting an item into a binomial heap of n items takes O(lg n) time:

fun insert(x,ts) = insTree(Node(0,x,[]),ts)

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II – Heaps 6



'

&

$

%

Merging Two Binomial Heaps

Merging two binomial heaps with a total of n items
takes O(lg n) time:

fun merge(ts1,[]) = ts1

| merge([],ts2) = ts2

| merge(ts1 as t1::ts1’ , ts2 as t2::ts2’) =

if rank t1 < rank t2 then

t1::merge(ts1’,ts2)

else if rank t2 < rank t1 then

t2::merge(ts1,ts2’)

else

insTree(link(t1,t2) , merge(ts1’,ts2’))

If this operation is not needed, then binary heaps perform better.

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II – Heaps 7



'

&

$

%

Finding/Deleting the Minimum of a Bino. Heap

Finding or deleting the minimum item of a binomial heap
with n > 0 items takes O(lg n) time:

fun root (Node(r,x,c)) = x

fun removeMinTree [t] = (t,[])

| removeMinTree (t::ts) =

let val (t’,ts’) = removeMinTree ts

in if root t < root t’ then (t,ts) else (t’,t::ts’) end

fun findMin ts =

let val (t,_) = removeMinTree ts

in root t end

fun deleteMin ts =

let val (Node(_,_,ts1),ts2) = removeMinTree ts

in merge(rev ts1, ts2) end

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II – Heaps 8


